導波路の光デバイスへの応用

-光・電子融合回路デバイスの回路モデル開発-

研究分担者 裏 升吾 大学院 工芸科学研究科 電子システム工学部門 教授

【研究目的】

サブナノメートル以下の周期精度を有するグレーティングを用いた光・電子融合回路の実現へ向けて、 デバイスの試作を通して、その作製技術の確立および設計アルゴリズムの開発を行うことを目的とする。

【研究内容】

(1) はじめに

情報通信技術を支える電子集積回路プロセッサの高性能化に限界が近づきつつある。電子集積回路は 微細化技術により順調に性能が向上してきたが、今後はその延長線上での技術開発では対応が困難と予 測されている。微細化技術にはまだ進展の余地はあるが、製造コストの急激な増大を招き、高速化によ る発熱の問題が表面化してきた。すなわち電子回路チップへの機能集積に限界がきており、次世代情報 処理システムとしてトータル性能を向上させるためには、クロック周波数を制限し、チップを分散させ ざるを得ない状況にあり、その際、チップ間配線の広帯域化が課題となる。しかしながら、電磁干渉ノ イズや配線密度の点で現在のレイアウトの電気配線では対応が困難である。そこで、配線の短小化を狙 った3次元集積化やアーキテクチャの最適化とともに、ボード内やモジュール内、チップ内の光配線が 注目されている。

これらの基板内光配線の方式としては、自由空間(もしくは媒体)を伝送路とした結像光学系型と光 配線ボードを基本とした導波路型とに大別されよう。結像光学系型を構成する方法は、基本的に2次元 並列伝送が可能で伝送容量の点で優位であり、McGill 大、Vrije 大/Ghent 大、Hagen 大 、IMT Mainz、 UC San Diego、沖電気などから報告されている。送信側電子回路チップに近接して垂直共振器型面発光 レーザ(VCSEL; Vertical Cavity Surface Emitting Laser)2次元アレイを実装し駆動回路で高速直 接変調する。基板に垂直に出射された2次元並列光信号は、マイクロレンズアレイならびにミラーなど からなる結像光学系や回折レンズと導光板で形成される結像光学系などにより自由空間(媒質)を伝送 され、受信側チップに近接して実装されたフォトダイオード(PD; Photodiode)2次元アレイに1対1 で垂直入射され、PDおよびレシーバー回路で電気信号に変換される。この結像光学系型は、単なる信号 伝送だけではなく、伝送路中に能動的な光路変換素子を挿入してスイッチングや並列演算などの機能を 容易に実現するポテンシャルも併せ持つ。またチップ内の極短小距離にも比較的容易にレイアウト可能 である。しかしながら、バルク光学系や厚い導光板を用いるためスペース的な問題や放熱対策等に課題 が残る。

一方、配線板に光導波路を集積もしくは搭載する導波路型のボード内光配線に関しては、国内ではNTT、 ASET、京セラ、松下電工、オムロン、住友ベークライト、日立、京都工繊大/(独)産総研など、国外で は IBM/Agilent、VTT-TRC Finland、Fraunhofer IZM 、韓国情報通信大、Texas 大 Austin、Vrije 大/Ghent 大、Georgia 工大、米国富士通研、韓国 ETLI などの報告がある。導波路型光配線板を構成する上でのひ とつの重要な課題は、伝搬方向が直交している入出力空間光と導波路内伝搬光(導波光)との結合であ る。導波路ディメンジョンが大きな多モード導波路や導光板を利用するほとんどの場合、微小光学素子 (光線光学での扱いが可能)である直角変換素子(45°ミラー)が利用され、実装トレランスは数µm ~ 数十µm である。導波路型光配線板のもう一つの課題は伝送容量である。単一伝送路で2次元並列伝送を 実現できる結像光学系型と異なり、1伝送路に1信号チャネルである。そのため、伝送容量を確保する 方策として、導波路の多階層化による2次元導波路アレイが検討されている。ただし、光配線板の厚さ はそれだけ増すことになる。また、2次元並列信号の入出力結合方法が新たな課題となる。

光信号は搬送波(キャリヤ)の上に信号を載せて伝送する方式であるから、周波数(波長)が異なる キャリヤには異なる信号を載せることができる。すなわち、同一の伝送路に複数の信号チャネルを形成 できる。これが波長(分割)多重であり、光ファイバ通信では広く普及している。チップ内光配線を検 討している Intel や Rochester 大は、電気配線を凌駕する可能性のある光配線の条件として、波長多重 の導入と Global 配線への応用を示唆している。多モード導波路や導光板を用いる導波路型光配線板に 波長多重技術を用いようとすると、波長フィルタや波長合分波素子などの光学素子を新たに導入する必 要があり、配線サイズや製造コストの点から整合性は高くない。一方、薄膜光導波路と集積光学素子を 用いれば、波長分散を有する導波型素子をプレーナプロセスで集積可能となる。薄膜光導波路を用いる 構成は、波面を扱うために実装トレランスが〜µm と厳しくなるが、ディメンジョンが小さく、またこの ように波長多重技術の適用が比較的容易である。

(2) 空間光アドドロップ素子を用いた波長多重薄膜光導波路配線

図1に示すように、薄膜光導波路を集積した光電気配線板に、電子回路チップを光-電気変換素子と 共に表面実装する構成を基本とする。電気-光信号変換には VCSEL 2 次元アレイを、光-電気信号変換に は面型 PD 2 次元アレイを用いる。薄膜導波路で 2 次元信号伝送を実現するため波長多重技術を利用する。 例えば、導波路チャネル幅を 150µm とし 8 波長多重とするとチップ 10mm 辺当たり 500 の信号チャネル が形成でき、チャネル当たり 10Gbps としてチップ 1 辺当たり 2.5Tbps (一方向当たり)の伝送が期待で きる。

図2 波長多重光配線導波路の構成とアドドロップ機能

入出力に集光グレーティングカップラ (FGC; Focusing Grating Coupler) と分布ブラッグ反射器 (DBR; Distributed Bragg Reflector)を用いた空間光アドドロップ素子を集積した波長多重光配線導波路の 構成とアドドロップ動作の様子を図2に示す。簡単のため2×2チャネルのみを示している。送信側に は VCSEL 2 次元アレイを実装するが、送信方向に波長の異なるものを配列する。光配線基板には高反射 膜上に主導波コア層と副導波コア層からなるガラス導波路が形成され、FGC と DBR で構成する空間光ア ドドロップ素子を集積する。VCSELからの発散空間光は導波路面にほぼ垂直に入射し FGC により TE₁モ ード導波光に結合される。TE1モード光はDBRによりTE1モード導波光に逆方向結合される。図3に導波 路の断面構造および TE。モード光、TE1モード光の電界分布の例を示す。TE。モード光は電界の大部分が 主導波コア層に閉じこめられているが、TE₁モード光の電界は主導波コア層と副導波コア層に広がって いる。FGCをTE1モード光の電界が大きくTE2モード光の電界が小さい副導波コア層の中央付近に作製す ることで、TE₁モード光は回折するがTE₂モード光をほとんど回折しない導波モード選択性を持たせてい る。また、DBR は主導波コアのトップに作製するが、導波モードの離散性と波長分散のため、強い波長 選択性を示す。したがって、TE,モード光を入出力モードとして利用し、TE,モード光を伝送モードとし て利用すれば、一対の FGC/DBR により空間光を波長多重 TE。モード光にアド(加算) する空間光アド機 能が得られる。受信側に伝送された波長多重 TE。モード光(伝送モード)は、DBR により所望の信号波 長のみが TE₁モード光(入出力モード)に逆方向結合され、FGC により対応する PD への収束空間光に回 折される。すなわち、空間光ドロップ機能を得る。

(3) 干渉露光を用いた DBR の集積化

高密度波長多重を利用するため、結合特性は作製誤差に敏感である。例えば、実効屈折率が0.1%ずれ

ると結合波長は1nm ずれる。そこで、検討しているデバイスでは波長分波に使うDBRを最後に集積し、 その周期を微調することで、それまでの作製誤差を補償する構成をとっている。したがって、DBRの作 製には生産性とともに周期微調が求められる。電子ビーム描画は、周期を微調して作製する能力に優れ る反面、生産性は良くない。また、ステッパー露光は、生産性に優れる反面、周期を微調して作製する 能力は弱い。我々は、生産性に優れ、周期微調可能な干渉露光法の検討を行ってきた。 図4に基本と なる干渉露光光学系を示す。ロイドミラー干渉光学系を用いて、平面ミラーの角度を微調してレーザ光 を下方に照射する。半分の光は直接メタルマスクに角度なで入射する。また、残りの光は、もうひとつ のミラーで反射され、角度 y =- o で入射する。2波の干渉により干渉縞が形成される。これまでは平面 ミラーを用いていたので1回の露光につき同一周期のDBRの作製しかできなかった。今回は、異なる周 期のDBRを一度に作製する露光システムを検討した。円柱ミラーを用いてチャープグレーティングを形 成し、マスクでセグメント化して異周期DBR を一括露光する方法である。また、ポリゴンミラーを用い て角度γを面ごとに変化させ、異周期DBR を一括露光する方法もある。設計仕様として、8 波長多重DBR を8mm 以内のサイズに集積すること、結合効率80%以上、クロストーク雑音-10dB 以下、±3%の実効屈 折率誤差を補償可能な周期微調能力とした。円柱ミラー方式は干渉縞周期をチャープさせるので、反射 特性の劣化が問題となる。一方、ポリゴンミラー方式では、ミラーをセグメント化しているので、以下 の2 点が問題となる。ひとつは、 回折により干渉領域端で周期が乱れるので、その影響を考慮する必 要がある。もうひとつは、周期を変化させる場合に、角度δを変化させてγ及びφを変えるが、γの変 化に伴い干渉領域の位置も変化することである。以下、円柱ミラーを用いた場合のチャープDBR の結合 特性および周期微調、素子作製と実験について述べる。

図4 異なる周期の周期構造を同時に作製する干渉露光装置の概要

円柱ミラーを用いて、グレーティング周期をチャープさせ、マスクを用いて分割して異周期DBR を集 積する。結合中心波長を850nm 近辺とし、SiO₂ 系ガラス基板導波路を検討している。DBR は前進導波モ ードA と逆進導波モードB を結合する。干渉縞周期のチャープレートαを次式で定義する。

$$\frac{2\pi}{\Lambda(z)} = \frac{2\pi}{\Lambda(0)} + 2\alpha z \tag{1}$$

 $\Lambda(z)$ は、位置zでの干渉縞周期である。チャープレート α を含むモード結合方程式は次のように表される。

$$\frac{dA(z)}{dz} = -j\kappa B(z)\exp\{-2j(\Delta - \alpha z)z\}$$
(2)

$$-\frac{dB(z)}{dz} = -j\kappa^* A(z)\exp\{2j(\Delta - \alpha z)z\}$$
(3)
$$2\Delta = \left(N_0 + N_1\right) \left(\frac{2\pi}{\lambda} - \frac{2\pi}{\lambda_c}\right)$$
(4)

 $A(z) \geq B(z)$ は、入力導波モード振幅及び反射導波モード振幅、 κ は結合係数、 Δ はz=0 の時の位相不整合量である。DBR のデバイスパラメータは、 $\alpha \geq \kappa \geq L$ の3つである。結合効率の波長依存性についての各パラメータの影響について述べる。L が長いと結合効率は高いが、サイズが大きくなるので小型化の障害になる。逆に短いと、 結合効率が低下する。 チャープレート α を小さくとると、 結合効率は上がるが、 一方で異なる周期のDBR 間の距離が長くなり、定められた範囲で一回の露光で集積できるDBR の数が減少する。結合係数 κ を大きくすると、結合効率が高くなる代わりに、クロストーク雑音が増す。グレーティング周期の位置依存性の計算例を図5に示す。縦軸がグレーティング周期、横軸はその位置を表している。上の長波長側のラインは Λ (0)=288.9nm、 α =21.0nm⁻²で露光した場合のグレーティング周期と位置の関係で、4 つの異周期DBRが集積される。点線部はマスクに隠れて露光されない部分である。短波長側のラインは Λ (0)=284.3nm、 α =21.0mm⁻²で露光した場合のグレーティング周期と位置の関係である。 L は0.6mm、隣接するDBR との距離を0.9mm として2 回の露光で7.2mm 中に8 つのDBR の作製が可能である。

図5 グレーティング周期の位置依存性

 α =21.0mm⁻²、 κ =5.0mm⁻¹、 *L*=0.6mm としたとき、3つのDBR の結合効率の波長依存性を図6に示す。 結合中心波長は、845nm、848nm、851nm としている。これらは、 $N_0 + N_1$ =2.946 とした場合の、図 5の長波長側の4つのDBRに対応する。最大結合効率は90%以上、波長幅1nm の領域で結合効率80%以上で ある。あるDBR に着目したとき、隣のDBR の結合波長の消光比は-10dB 以下である。これは隣接チャネ ル間のクロストーク雑音となる。

波長244nm のレーザ光を直径30mm の平面波にコリメートした。円柱ミラーを用いることで、位置に よって入射角 $\gamma(z)$ は変化する。干渉縞の周期 $\Lambda_{ex}(z)$ は次の式(5)で表される。

$$\Lambda_{\rm ex}(z) = \frac{\lambda_{\rm ex}}{\sin\phi + \sin\gamma} \tag{5}$$

円柱ミラーの曲率半径をRとすると、式(1)、式(5)からチャープレートαは次式で表される。

$$\alpha = \frac{\pi}{z} \left(\frac{1}{\Lambda(z)} - \frac{1}{\Lambda(0)} \right) \cong \frac{\pi}{h \tan \gamma} \frac{\sin \gamma - \sin \phi}{\lambda_{\text{ex}}} \cong \frac{\pi}{h \tan \phi} \frac{\sin 2\delta \cos \phi}{\lambda_{\text{ex}}} \cong \frac{2\pi \cos^2 \phi}{\lambda_{\text{ex}} R \sin \phi}$$
(6)

 α =21.0mm-2 となるようにR=2300mm とした。 λ_{ex} =244nm、 ϕ =24.98° で、 Λ (0)= Λ_{ex} (0)= 288.9nm が得られる。 δ の回転精度は2.5×10⁻⁴ rad/div であり、グレーティング周期換算では、0.015 nm/div である。

図6 分割チャープDBRの反射特性

4チャネルの波長ドロップ素子を集積して、DBRの特性を評価した。ガラス基板上に真空熱蒸着でCr お よびAu を連続して堆積した。プラズマCVD で0.66μm厚のSiO₂ 第1 副導波コア層を堆積し、電子ビーム レジストをスピンコートした。FGC のグレーティングパターンを電子ビームで直接描画した。現像後、 反応性イオンエッチングでSiO₂副導波コア層を0.05 μm エッチングした。反応性DCスパッタリングで 0.05μm 厚のSi-N グレーティング層を堆積し、リフトオフした。プラズマCVD で0.6μm厚のSiO₂ 第2 副 導波コア層および0.7 μm 厚のGe-SiO₂ 主導波コア層を連続的に堆積した。Ge-SiO₂主導波コア層上に 0.14μmの厚さでKrFレジスト(KRFM151Y JSR社提供)を塗布した。その後、0.6mmの開口長を持った 1.8mm ピッチのマスクを用いて干渉露光を行った。干渉編ピーク位置のドーズ量は240mJ/cm²とした。現像を行 い、DBRを得た。

作製したDBRの結合効率を測定した。波長可変レーザからのビームをプリズムカップラによって、導波路内のTE₀モードに結合した。TE₀モードは主導波コア層に閉じ込められて伝播し、FGCを透過し、該当するDBRによってTE1モードに逆方向結合する。TE₁モードは主導波コア層と副導波コア層に界を持ち、副導波コア層中に設けられたFGCにより回折され、外部に取り出される。例えば、波長 λ_4 のTE₀モードは波長 $\lambda_1 \sim \lambda_3$ 用の3個のDBRおよび4個のFGCを通過し、対応する結合波長 λ_4 のDBRによりTE₁モードに反射されたのち、FGCによって空間光に出力結合され検出される。4つのDBRからのそれぞれの反射光をFGCにより取り出した出力光の波長依存性を図7に示す。測定した結合効率のピーク波長は、841.2nm、844.5nm、848.1nm、851.1nm であった。設計結合波長は842nm、845nm、848nm、851nm である。波長間隔は、設計値3.0nm に対して3.3nm であった。この違いの原因は、導波モード実効屈折率の面内分布であると考えている。ピーク値の不均一の原因は、露光の不均一によるDBRの結合係数に差があったためと考えている。

図7 集積したDBRの反射特性

(4)2波長多重ギガビット/秒信号伝送実験

2 波長多重信号伝送実験を行うにあたり、低損失な光配線を作製および2本の PMF を高精度で位置合わせするファイバナノアライナの開発を行った。作製した光配線の挿入損失は17dB、クロストークノイズは-11dB であった。また開発したファイバナノアライナの微動ステップは30nm である。ここでは、これらを用いた1.0 ギガビット/秒2 波長多重信号伝送実験について報告する。

光導波路は主導波コア層に GeO₂:SiO₂(屈折率 n=1。54)、副導波コア層に SiO₂(n=1.46)、反射膜に Au(n=0.2-i5.5)を用いる。主導波コア層上の電子ビーム(EB)レジスト(n=1.55)層には、DBR を形成する。 FGC は Si-N (n=2.01)を副導波コア層のほぼ中央に埋め込んで形成される。TE₀モードは主導波コア層 と EB レジスト層を導波コアとして、TE₁モードは主導波コア層と副導波コア層および EB レジスト層を 導波コアとして伝搬する。主導波コア層は導波光が単一モードとなるように膜厚を 0.7µm とし、副導波 コア層は金属反射膜による吸収損失を低減するバッファ層として機能させる為、その膜厚を 1.31µm と した。TE₀モードと TE₁モードの導波損失はそれぞれ 0.1dB/cm、15dB/cm と見積もられた。

TE₀モードの電界分布が小さく、TE₁モードの電界分布が大きくなる位置に FGC を設け、FGC の結合効率に大きな違いを持たせてある。また FGC は VCSEL からの発散球面波及び PD への収束球面波と導波路を伝搬する平面波を結合する為、グレーティングパターンに曲率と周期変化を持たせてある。FGC の開ロサイズは 100µm×300µm、焦点距離は 0.7mm とした。DBR は TE₀モードと TE₁モードを逆方向結合する素子である。DBR は波長選択性を持つ反射器であり、結合係数と結合長を大きくとることで結合波長において高い結合効率を得ることが出来る。結合長を 300µm、溝深さを 0.1µm とした場合、TE₀モードと TE₁モードの結合係数として 12mm⁻¹、結合波長での結合効率として 99%以上と見積もられた。また、結合効率の半値全幅は 2nm である。

光導波路はプレーナプロセスにて作製される。真空熱蒸着法で Au/Cr をコーティングしたガラス基板 上に、プラズマ CVD を用いて SiO₂を 0.71µm 堆積させた。ポジ型の EB レジストをスピンコーティングし、 FGC のグレーティングパターンを EB 描画した。反応性イオンエッチングにより SiO₂ 層に 0.05µm 溝深さ の FGC パターンを形成した後に、DC スパッタリングで Si-N を 0.05µm 堆積させた。リフトオフ法により、 不要なレジストや Si-N を除去することで Si-N の FGC を形成した。更にプラズマ CVD で SiO₂を 0.6µm、 GeO₂:SiO₂を 0.7µm 堆積させた。最上部に EB レジストを 0.1µm 厚でスピンコーティングし、DBR のグレ ーティングパターンを EB 描画で直接描画した。今回、波長 λ_1 と波長 λ_2 に対応する DBR の周期はそれぞ れ 289.4nm、291.1nm、導波距離は 15nm とし、チャネル間距離は 2本のファイバが干渉しないように 4nm とした。 FGC の開口サイズは 100µm×300µm、DBR の結合長は 300µm とした。光源として VCSEL の代わ

- 48 -

りに波長可変半導体レーザ(LD)を使用し、偏波保持ファイバ(PMF)に結合させ、その出射端を FGC の 焦点位置に合わせ入射させた。光導波路を伝搬した出射光はグレーデッドインデックス型マルチモード ファイバ(GI-MMF)に結合させ、接続された PD にてその光強度を測定した。波長可変 LD の波長を変化さ せ、挿入損失を測定した。 得られた挿入損失波長依存性の結果を図 8 に示す。

▲はチャネル1の信号光、○はチャネル1の信号光に対するクロストークノイズに相当する。同じく ●はチャネル2の信号光、△はチャネル2の信号光に対するクロストークノイズである。チャネル1で は波長 857nm、チャネル2では波長 852nm で挿入損失は最小値となり、それぞれ 17dB であった。理論値 6dB との過剰損失は GMS-FGC の結合効率が低いことが原因と考えている。

信号伝送実験の光学系概略図を図9に示す。光源は2つの波長可変半導体レーザ(LD)を用い、それぞれのレーザ光をPMFに結合させた。パルスパターンジェネレータ(PPG)からの1.0ギガビット/秒の擬似 乱数ビット列(PRBS)非ゼロ復帰(NRZ)信号で光強度変調器を駆動し、レーザ光強度を変調した。

図9 信号伝送実験の光学系概略図

2本のPMFは今回開発したファイバナノアライナ(コニカミノルタオプト社製)により位置合わせを行った。このツールはアライナベースに3軸ナノアクチュエータを搭載し、ベースを超精密ステージで微動する構造であり、2本のファイバ間隔の相対位置を範囲4mm、ステップ幅30nmで位置合わせが可能である。図10に作製した光配線基板と4本の入出力用ファイバを含む実験系の写真を示す。右側のPMF

はアライナベース部に固定されており超精密微動ステージで調整を行い、左側のPMFは3軸ナノアクチ ュエータを用いて調整を行う。PMF出力光パワーは約1.0mWとした。光導波路配線を伝搬した光信号は、 GI-MMFに結合させ、その波形をオシロスコープにて観測した。PPGの出力信号、光導波路配線への入力 光信号(PMF出力)と光導波路配線からの出力光信号(GI-MMF出力)を図11に示す。両信号チャネルにお いて、光配線からの出力波形にはノイズは増加しているものの、目立った波形の歪みもなく、良好なア イを確認することが出来た。また、単一チャネルで信号伝送させた場合の光信号波形との差異は見られ ず、クロストークノイズの影響も観測されなかった。

図 10 作製した光配線基板を含む実験系の写真

図 11 1.0 ギガビット/秒 PRBS-NRZ 信号のアイパターン; (a)PPG 出力, (b)PMF 出力, (c)GI-MMF 出力

【今後の展開と見通し】

薄膜導波路に FGC を集積する構成は、チャネル構造を必要としない、信号チャネルを自由に交差可能 である、VCSEL への光帰還が無視できる、などの長所を有する。他方で、回折拡がりのため伝送距離と チャネル幅は比例しチャネル密度が制限される、FGC の波長分散のため挿入損失は VCSEL 波長変動に敏 感である、などの短所も有する。そこで、より高密度配線を目指し、これらの長短を入れ替えたチャネ ル構造光配線回路も並行して検討している。いずれにしても、必要仕様の受発光素子の開発、高精度実 装技術の開発、LSI との集積実装など、実用化までにはまだ多くの解決すべき課題が残っている。