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SUMMARY 

The author has developed a method to find the direct solution of the Dirac equation. To solve 
the problem, first we determined the most general form of the successive Lorentz transformations. 
Then, we have found their corresponding representation matrix 𝑆𝑆�Λ� in the representation space 
of the Dirac spinors. The matrix 𝑆𝑆�Λ� is used for the purpose of both diagonalizing the Dirac 
operators and determining the Dirac spinors that give the solution of the Dirac equation.  

The present method also helps study the constitution of Dirac spinors and Dirac operators. 
Furthermore, we can make the most of the method to address the topics of matrix algebra such as 
the polar decomposition and projection operator.  
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1 Introduction 
 

The Dirac equation has been long investigated as one of the basic equations of quantum 
mechanics, especially in the area of quantum field theory.1) The Dirac equation is described by  

 
�𝑖𝑖𝛾𝛾�𝜕𝜕� � 𝑚𝑚���𝑥𝑥� = 0  (𝜇𝜇 = 0, 1, 2, 3),      (1) 

  
where 𝑖𝑖 is the imaginary unit; 𝑚𝑚 is the mass of an electron; 𝛾𝛾� are (4, 4) matrices called gamma 
matrices;1) 𝜕𝜕�  is an abbreviation of 𝜕𝜕/𝜕𝜕𝑥𝑥� ; 𝑥𝑥  is also an abbreviation of the space-time 
coordinates in the Minkowski space. The space-time coordinate of 𝑥𝑥 in Eq. (1) is expressed as  

 

 𝑥𝑥 𝑥 �
𝑥𝑥�
𝑥𝑥�
𝑥𝑥�
𝑥𝑥�
�,         (2) 
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where 𝑥𝑥� denotes the time coordinate; 𝑥𝑥�, 𝑥𝑥�, and 𝑥𝑥� are the space coordinates. The function 
𝜓𝜓(𝑥𝑥)  is represented by a (4, 1) matrix (i.e., column vector) and called a Dirac spinor.2) The 
representation of gamma matrices depends on how the Pauli matrices are defined. In this article, 
we adopt the Wigner’s representation3) for them. We list the gamma matrices and the Pauli spin 
matrices as follows:  

 

 𝛾𝛾� = �𝐸𝐸 𝐸𝐸
𝐸𝐸 𝟎𝐸𝐸�,  𝛾𝛾� = � 𝐸𝐸 𝟎𝟎�

𝟎𝟎𝟎� 𝐸𝐸 �   (𝑘𝑘 = 1, 2, 3),    (3) 

 
where each entry represents (2, 2) matrices with 𝐸𝐸  and 𝐸𝐸  being the identity matrix and zero 
matrix, respectively. Individual Pauli matrices 𝟎𝟎�  (𝑘𝑘 = 1, 2, 3) are given by3)  
 

𝟎𝟎� = �0 1
1 0�, 𝟎𝟎� = � 0 𝑖𝑖

𝟎𝑖𝑖 0�, 𝟎𝟎� = �𝟎1 0
0 1�.     (4) 

 
The two linearly-independent plane-wave solutions of 𝜓𝜓(𝑥𝑥) are expressed as  
 
 𝜙𝜙(𝑥𝑥) = 𝑢𝑢(𝒑𝒑,ℎ) 𝑒𝑒����,        (5) 
 

𝜒𝜒(𝑥𝑥) = 𝑣𝑣(𝒑𝒑,ℎ) 𝑒𝑒���,        (6) 
 
where ℎ denotes the helicity; 𝒑𝒑 and 𝑝𝑝 are momentum and four-momentum, respectively, with 𝑝𝑝 

defined as 𝑝𝑝 � ���𝒑𝒑 � with 𝑝𝑝� (> 0).  

Notice that the (4, 1) matrices 𝑢𝑢(𝒑𝒑,ℎ) and 𝑣𝑣(𝒑𝒑,ℎ) behave as a constant with respect to the 
space-time coordinate 𝑥𝑥 . In Eqs. (5) and (6), 𝜙𝜙(𝑥𝑥)  and 𝜒𝜒(𝑥𝑥)  are referred to as the positive-
energy solution and negative-energy solution, respectively. The energy of a particle (𝑝𝑝�) with its 
rest mass 𝑚𝑚 is given by  

 

 𝑝𝑝� = �𝒑𝒑� + 𝑚𝑚�.        (7) 

 
Substituting Eqs. (5) and (6) for Eq. (1), we obtain  
 
 �𝑝𝑝�𝛾𝛾� 𝟎 𝑚𝑚�𝑢𝑢(𝒑𝒑,ℎ) = 0,       (8) 
 
 �𝟎𝑝𝑝�𝛾𝛾� 𝟎 𝑚𝑚�𝑣𝑣(𝒑𝒑,ℎ) = 0.       (9) 
 
The full matrix representations for Eqs. (8) and (9) are given by  
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⎝
⎜
⎛

𝑝𝑝� − 𝑚𝑚        0 𝑝𝑝�     −𝑝𝑝� − 𝑖𝑖𝑝𝑝�
0 𝑝𝑝� − 𝑚𝑚
−𝑝𝑝�

𝑝𝑝� − 𝑖𝑖𝑝𝑝�
𝑝𝑝� + 𝑖𝑖𝑝𝑝�

𝑝𝑝�
−𝑝𝑝� + 𝑖𝑖𝑝𝑝� −𝑝𝑝�
−𝑝𝑝� − 𝑚𝑚

0
0

−𝑝𝑝� − 𝑚𝑚⎠
⎟
⎞𝑢𝑢(𝒑𝒑,ℎ) = 0    (10) 

 
and  

 

 

⎝
⎜
⎛

−𝑝𝑝� − 𝑚𝑚        0 −𝑝𝑝�     𝑝𝑝� + 𝑖𝑖𝑝𝑝�
0 −𝑝𝑝� − 𝑚𝑚
𝑝𝑝�

−𝑝𝑝� + 𝑖𝑖𝑝𝑝�
−𝑝𝑝� − 𝑖𝑖𝑝𝑝�

−𝑝𝑝�
𝑝𝑝� − 𝑖𝑖𝑝𝑝� 𝑝𝑝�
𝑝𝑝� − 𝑚𝑚

0
0

𝑝𝑝� − 𝑚𝑚⎠
⎟
⎞𝑣𝑣(𝒑𝒑,ℎ) = 0,    (11) 

 
respectively. In this article, we call the (4, 4) matrices of Eqs. (10) and (11) Dirac operators.4) 

Although the word “Dirac operator” is normally used for differential operator represented in Eq. 
(1), we use this word for (4, 4) matrices that are derived from the differential operators. For later 
use, we define the (4, 4) matrix operators of Eqs. (10) and (11) as  
 

 𝔊𝔊 𝔊

⎝
⎜
⎛

𝑝𝑝� − 𝑚𝑚        0 𝑝𝑝�     −𝑝𝑝� − 𝑖𝑖𝑝𝑝�
0 𝑝𝑝� − 𝑚𝑚
−𝑝𝑝�

𝑝𝑝� − 𝑖𝑖𝑝𝑝�
𝑝𝑝� + 𝑖𝑖𝑝𝑝�

𝑝𝑝�
−𝑝𝑝� + 𝑖𝑖𝑝𝑝� −𝑝𝑝�
−𝑝𝑝� − 𝑚𝑚

0
0

−𝑝𝑝� − 𝑚𝑚⎠
⎟
⎞

,    (12) 

 

 𝔊𝔊� 𝔊

⎝
⎜
⎛

−𝑝𝑝� − 𝑚𝑚        0 −𝑝𝑝�     𝑝𝑝� + 𝑖𝑖𝑝𝑝�
0 −𝑝𝑝� −𝑚𝑚
𝑝𝑝�

−𝑝𝑝� + 𝑖𝑖𝑝𝑝�
−𝑝𝑝� − 𝑖𝑖𝑝𝑝�

−𝑝𝑝�
𝑝𝑝� − 𝑖𝑖𝑝𝑝� 𝑝𝑝�
𝑝𝑝� − 𝑚𝑚

0
0

𝑝𝑝� − 𝑚𝑚⎠
⎟
⎞

.    (13) 

 
The properties of the Dirac spinors and Dirac operators have fully been explored to date. Yet, 

it was less popular to view Eqs. (10) and (11) as a standard eigenvalue problem.5) This is, however, 
not hard to imagine. It is because we immediately see that  

 
𝔊𝔊 + 𝔊𝔊� = −2𝑚𝑚𝑚𝑚,        (14) 

 
where 𝑚𝑚 is a (4, 4) identity matrix. We can at once obtain eigenvalues 0 and −2𝑚𝑚 (each number 
doubly degenerate) with both 𝔊𝔊 and 𝔊𝔊� . On top of it, neither 𝔊𝔊 nor 𝔊𝔊�  is a normal operator (i.e., 
neither Hermitian nor unitary). Hence, it is impossible to diagonalize 𝔊𝔊  and 𝔊𝔊�   through the 
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unitary similarity transformation.6) Thus, these matrices are a little bit difficult to deal with in terms 
of matrix algebra. More specifically, it would be intractable to construct the diagonalizing matrix 
of the Dirac operators 𝔊𝔊 and 𝔊𝔊�  by seeking the eigenvectors that belong to their eigenvalues.  

Furthermore, spatial rotations and boosts are intricately mingled together so as to constitute 
the collective and general Lorentz transformation. In fact, to the best of the author’s knowledge, to 
obtain direct solution of the Dirac equation by use of the matrix algebra has yet to be adequately 
investigated in a general form except for simple cases.2)  

In this article, the author wishes to show how the Dirac equation can be solved by directly 
transforming the matrices 𝔊𝔊 and 𝔊𝔊� . To this end, we determine the representation matrix 𝑆𝑆(Λ) 
associated with the Lorentz group in the most general form and diagonalize the Dirac operators via 
the similarity transformation using 𝑆𝑆(Λ). Their implications and significance are also discussed.  
 
2 Transformation of space-time vector and Dirac spinor 
 

Let us express a space-time vector 𝑋𝑋 in the Minkowski space as  
 

𝑋𝑋 = (𝑒𝑒� 𝑒𝑒� 𝑒𝑒� 𝑒𝑒�)�
��
��
��
��
�,        (15) 

 
where (𝑒𝑒� 𝑒𝑒� 𝑒𝑒� 𝑒𝑒�) are the set of basis vectors of the Minkowski space. In terms of the special 
theory of relativity, a vector 𝑋𝑋  is associated with a certain space-time point where a physical 
“event” has taken place. That event is observed and compared from the different inertial frames of 
reference that are connected to one another via the Lorentz transformations. To explicitly show this, 
we rewrite Eq. (15) as  

 

 𝑋𝑋 = (𝑒𝑒� 𝑒𝑒� 𝑒𝑒� 𝑒𝑒�)Λ�� ⋅ Λ�
��
��
��
��
� = (𝑒𝑒��  𝑒𝑒��  𝑒𝑒��  𝑒𝑒��)�

���
���
���
���
�,    (16) 

 
where Λ denotes a Lorentz transformation. Defining a shorthand notation in Eq. (16) such that  
 

 𝒆𝒆 𝒆 (𝑒𝑒� 𝑒𝑒� 𝑒𝑒� 𝑒𝑒�), 𝒆𝒆𝒆 𝒆 (𝑒𝑒��  𝑒𝑒��  𝑒𝑒��  𝑒𝑒��), 𝑥𝑥 𝒆 �
��
��
��
��
�, 𝑥𝑥𝒆 𝒆 �

���
���
���
���
�,   (17) 

 
we rewrite Eq. (16) as  
 

 𝑋𝑋 =  𝒆𝒆𝑥𝑥 =  𝒆𝒆Λ�� ⋅ Λ𝑥𝑥 = 𝒆𝒆𝒆𝑥𝑥𝒆.       (18) 
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The basis set 𝒆𝒆𝒆 = 𝒆𝒆𝒆��  represents the set of basis vectors obtained by the Lorentz 
transformation 𝒆. The coordinates 𝑥𝑥𝒆 = 𝒆𝑥𝑥 indicate those obtained by 𝒆 as well.  

Meanwhile, defining 𝔇𝔇 𝔇 𝔇𝔇𝔇𝔇�𝜕𝜕� − 𝑚𝑚, we rewrite Eq. (1) as  
 
 𝔇𝔇𝔇𝔇(𝑥𝑥) = 0.         (19) 
 
We assume that both the Dirac operator and Dirac spinor undergo some sort of transformation 

in connection with the Lorentz transformation.1) Operating 𝐷𝐷(𝒆) from the left on both sides of Eq. 
(19) and inserting �𝐷𝐷(𝒆)��� ⋅ 𝐷𝐷(𝒆) between 𝔇𝔇 and 𝔇𝔇(𝑥𝑥), we obtain  

 
𝐷𝐷(𝒆)𝔇𝔇�𝐷𝐷(𝒆)��� ⋅ 𝐷𝐷(𝒆)𝔇𝔇(𝑥𝑥) = 0,  

 
where 𝐷𝐷(𝒆) denotes a transformation operator associated with 𝒆. Further defining  
 
 𝔇𝔇� 𝔇 𝐷𝐷(𝒆)𝔇𝔇�𝐷𝐷(𝒆)���, 𝔇𝔇�(𝑥𝑥�) 𝔇 𝐷𝐷(𝒆)𝔇𝔇(𝒆��𝑥𝑥𝒆),     (20) 
 
the Dirac equation is expressed in reference to the 𝑥𝑥�-system as  
 
 𝔇𝔇�𝔇𝔇�(𝑥𝑥�) = 0.          
 

In Eq. (20) 𝔇𝔇�(𝑥𝑥�) denotes the change in the functional form accompanied by the coordinate 
transformation.1) The whole collection of the Lorentz transformations forms the Lorentz group and, 
hence, we assume that 𝐷𝐷(𝒆) gives a representation pertinent to the Lorentz group. According to 
the custom,1) we define 𝑆𝑆(𝒆) as  
 

 𝑆𝑆(𝒆) 𝔇 𝐷𝐷(𝒆).         (21) 
 
Regarding the plane waves, 𝔇𝔇(𝑥𝑥) is described by  

 
 𝔇𝔇(𝑥𝑥) = 𝑒𝑒±���𝑤𝑤(𝒑𝒑,ℎ),  

 
where 𝑤𝑤(𝒑𝒑,ℎ)  represents either 𝑢𝑢(𝒑𝒑,ℎ)  or 𝑣𝑣(𝒑𝒑,ℎ)  of Eqs. (5) and (6). The quantity 𝑝𝑝𝑥𝑥 (𝔇
𝑝𝑝�𝑥𝑥�) in 𝑒𝑒±��� is a scalar, and so invariant in relation to the Lorentz transformation with 𝑝𝑝𝒆𝑥𝑥𝒆 =
𝑝𝑝𝑥𝑥. Hence, it behaves as a constant in terms of the operation of 𝑆𝑆(𝒆).  

In what follows, we examine how the Dirac equation is transformed by the Lorentz 
transformation to find the direct solution of the Dirac equation. We choose two coordinate systems 
for the inertial frames of reference. One is a frame where an electron is at rest (the x-system). In 
the other frame (𝑥𝑥�-system), that electron is moving at a velocity 𝒗𝒗. In the x-system, we have  

 
 𝔇𝔇(𝑥𝑥) = 𝑤𝑤(𝟎𝟎,ℎ)𝑒𝑒±����� = 𝑤𝑤(𝟎𝟎,ℎ)𝑒𝑒±����.  

31



6 
 

 
In the 𝑥𝑥�-system, in turn, the Dirac spinor is described by  

 
𝜓𝜓�(𝑥𝑥�) = 𝑒𝑒±����𝑆𝑆(Λ)𝑤𝑤(𝟎𝟎,ℎ) = 𝑒𝑒±�����𝑤𝑤(𝒑𝒑�, ℎ) = 𝑆𝑆(Λ)𝜓𝜓(𝑥𝑥).   (22) 

 
3 Determination of general form of representation matrix S() 
 

The plane-wave solutions of the Dirac equations [Eqs. (10) and (11)] are specified by 
momentum (𝒑𝒑) and helicity (ℎ = ±1). To decide the direction of the normal to the wave front is 
our next task. It is easiest to solve the Dirac equation for an electron at rest. Let the inertial frame 
of reference to which the electron is at rest be O with the basis vectors given by 𝒆𝒆. Let another 
inertial frame of reference where the electron is moving at a velocity 𝒗𝒗  be O′  with the basis 
vectors of 𝒆𝒆′ and the coordinate 𝑥𝑥′ (see Figure 1). We assume that the propagation direction of 
the wave front parallels the direction of the electron motion. In Figure 1, the electron is moving in 
the direction specified by a zenithal angle 𝜃𝜃 (0 ≤ 𝜃𝜃 ≤ 𝜃𝜃) and azimuthal angle 𝜙𝜙 (0 ≤ 𝜙𝜙 ≤ 2𝜃𝜃). 
Then, the transformation from the frame O  to O′  is achieved via the following successive 
transformations:  

 
(i) A Lorentz boost with −𝒗𝒗 along the 𝑥𝑥�-axis,  
(ii) a rotation around the 𝑥𝑥�-axis by −𝜃𝜃,  
(iii) a rotation around the 𝑥𝑥��-axis by −𝜙𝜙.  
 
We adopt the “moving coordinate systems” with the different inertial frames of reference.7) 

Note that the direction of the Lorentz boost (−𝒗𝒗) is opposite to that of the electron motion (𝒗𝒗). 
Thus, with the total transformation we obtain 𝒆𝒆� = 𝒆𝒆Λ�� = 𝒆𝒆Λ�Λ���Λ���. Therefore, we have  

 
Λ�� = Λ�Λ���Λ���  i.e.,  Λ = Λ�Λ�Λ���.      (23) 

 
Finally, from Eq. (18) we get  
 

𝑥𝑥� = Λ𝑥𝑥 = Λ�Λ�Λ���𝑥𝑥.        (24) 
 
 
 
 
 
 
 
 
 

 

Figure 1 Geometry of the electron motion. 
The velocity of the electron is given by 𝒗𝒗 
and designated by a zenithal angle 𝜃𝜃 and 
azimuthal angle 𝜙𝜙 . The 𝑥𝑥�� -, 𝑥𝑥�� - and 
𝑥𝑥��-axes are the spatial components of the 
frame O′.  
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Since 𝑆𝑆(Λ) is the representation of the group, from Eqs. (21) and (23) we have  
 
 𝑆𝑆(Λ) = 𝑆𝑆�Λ��𝑆𝑆(Λ�)𝑆𝑆(Λ���) = 𝑆𝑆�Λ��𝑆𝑆(Λ�)[𝑆𝑆(Λ�)]��,    (25) 

 
where Λ�, Λ�, and Λ� are expressed as  
 

 Λ� = �
1   0 0           0

0 cos𝜙𝜙
0
0

sin𝜙𝜙
0

−sin𝜙𝜙 0
cos𝜙𝜙

0
0
1
�, Λ� = �

1     0 0       0
0 cos 𝜃𝜃
0
0

0
−sin𝜃𝜃

0 sin𝜃𝜃
1
0

0
cos 𝜃𝜃

�,  

 

 Λ� = �
cosh𝜔𝜔 0 0 − sinh𝜔𝜔

0 1
0

− sinh𝜔𝜔
0
0

0 0
1
0

0
cosh𝜔𝜔

�.      (26) 

 
In Eq. (26), 𝜔𝜔 is said to be rapidity and defined as  
 

tanh𝜔𝜔 𝜔 𝜔𝜔  (−∞ < 𝜔𝜔 < ∞⟺ −1 < 𝜔𝜔 < 1),       (27) 
 
where 𝜔𝜔  is a velocity measured in a natural unit of the particle (i.e., electron).  

As discussed in the previous section, to examine the constitution of the Dirac equation we wish 
to rewrite the Dirac equation and find the solutions with the electron at rest. Then, we construct the 
Dirac equation in the general case where the electron is moving as shown in Figure 1.  

The properties of 𝑆𝑆(Λ)  have been fully investigated, and so we borrow their matrix 
representations from literature.8) We have  

 

𝑆𝑆�Λ�� = exp(𝜙𝜙𝜙𝜙�) =�
𝑒𝑒��/� 0 0          0

0 𝑒𝑒���/�
0
0

0
0

0 0
𝑒𝑒��/�

0
0

𝑒𝑒���/�
�,    (28) 

 

𝑆𝑆(Λ�) = exp(𝜃𝜃𝜙𝜙�) =

⎝
⎜⎜
⎛

cos �� sin �
� 0          0

− sin �
� cos ��

0
0

0
0

0 0
cos ��
−sin �

�

sin �
�

cos ��⎠
⎟⎟
⎞

    (29) 

 
with 𝜙𝜙� given by  
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 𝜌𝜌� ≡ (−𝑖𝑖)𝐽𝐽��; 𝐽𝐽�� ≡ �
� [𝛾𝛾�,𝛾𝛾�] (𝑘𝑘, 𝑙𝑙,𝑚𝑚 = 1, 2, 3).     (30) 

 
In Eq. (30) 𝛾𝛾� (𝑘𝑘 = 1, 2, 3) are the gamma matrices and 𝑘𝑘, 𝑙𝑙, and 𝑚𝑚 change cyclic. We have  

 

 𝐽𝐽�� = �
� �
𝜎𝜎� 𝟎𝟎
𝟎𝟎 𝜎𝜎��,         

 
where 𝜎𝜎� is a Pauli spin matrix and 𝟎𝟎 denotes a (2, 2) zero matrix. Moreover, we have  
 

[𝑆𝑆(Λ�)]�� = exp(𝜔𝜔𝜔𝜔�) =

⎝
⎜
⎛

cosh �
�     0 −sinh�

�          0
0 cosh �

�
−sinh�

�
0

0
sinh�

�

0 sinh �
�

cosh �
�

0
0

cosh �
� ⎠
⎟
⎞

   (31) 

 

with 𝜔𝜔� given by 𝜔𝜔� ≡ (−𝑖𝑖) 𝐽𝐽��; 𝐽𝐽�� ≡ �
� 𝛾𝛾�𝛾𝛾�. Consequently, we get  

 
 𝑆𝑆(Λ) = 𝑆𝑆�Λ��𝑆𝑆(Λ�)[𝑆𝑆(Λ�)]�� =  
 

⎝
⎜⎜
⎜
⎛

𝑒𝑒��/�cos �� cosh �
� 𝑒𝑒��/� sin �

� cosh �
� −𝑒𝑒��/� cos �� sinh �

�          𝑒𝑒��/� sin �
� sinh�

�
−𝑒𝑒���/�sin �

� cosh �
� 𝑒𝑒���/�cos �� cosh �

�
−𝑒𝑒��/� cos �� sinh�

�
𝑒𝑒���/� sin �

� sinh �
�

𝑒𝑒��/� sin �
� sinh �

�
𝑒𝑒���/� cos �� sinh�

�

𝑒𝑒���/� sin �
� sinh�

� 𝑒𝑒���/� cos �� sinh�
�

𝑒𝑒��/�cos �� cosh �
�

−𝑒𝑒���/�sin �
� cosh �

�

𝑒𝑒��/�sin �
� cosh �

�
𝑒𝑒���/� cos �� cosh �

� ⎠
⎟⎟
⎟
⎞

.  

          (32) 
 

In the next section, we make the most of Eq. (32) to directly solve the Dirac equations Eqs. 
(10) and (11) to get their plane-wave solutions.  

 
4 Solutions of the Dirac equation 

 
In the frame O where the electron is at rest, Eqs. (10) and (11) take a particularly simple but 

important form. Since we have 𝒑𝒑 = 𝟎𝟎, from Eq. (7) we obtain 𝑝𝑝� = 𝑚𝑚 (> 0), and so Eqs. (10) 
and (11) are respectively reduced to  
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 �
0 0 0        0
0 0
0
0

0
0

0 0
−2𝑚𝑚

0
0

−2𝑚𝑚
�𝑢𝑢(𝟎𝟎,ℎ) = 0  with  𝐴𝐴 𝐴 �

0 0 0        0
0 0
0
0

0
0

0 0
−2𝑚𝑚

0
0

−2𝑚𝑚
�  (33) 

 
and 
 

 �
−2𝑚𝑚 0    0 0
0 −2𝑚𝑚
0
0

      0
      0

   0 0
   0
   0

0
0
�𝑣𝑣(𝟎𝟎,ℎ) = 0  with  𝐵𝐵 𝐴 �

−2𝑚𝑚 0    0 0
0 −2𝑚𝑚
0
0

      0
      0

   0 0
   0
   0

0
0
�.  (34) 

 
The matrices 𝐴𝐴 of Eq. (33) and 𝐵𝐵 of Eq. (34) correspond to the positive-energy or negative-

energy solution, respectively. Note that both 𝐴𝐴 and 𝐵𝐵 have been diagonalized. Consequently, if 
the Dirac operator 𝔊𝔊 of Eq. (12) and 𝔊𝔊�  of Eq. (13) are related to 𝐴𝐴 and 𝐵𝐵, respectively, this 
should lead to the desired solutions of the Dirac equation.  

Equations (33) and (34) are immediately solved to give1)  
  

𝑢𝑢(𝟎𝟎,−1) = �
1
0
0
0
�,  𝑢𝑢(𝟎𝟎, +1) = �

0
1
0
0
�;       (35) 

 

𝑣𝑣(𝟎𝟎, +1) = �
0
0
1
0
�,  𝑣𝑣(𝟎𝟎,−1) = �

0
0
0
−1

�.       (36) 

 
The minus sign of RHS for the second equation of Eq. (36) is due to the charge conjugation.1) 

Operating 𝑆𝑆(Λ) given in Eq. (32) from the left on both sides of Eq. (33) and inserting [𝑆𝑆(Λ)]�� ⋅
𝑆𝑆(Λ) between 𝐴𝐴 and 𝑢𝑢(𝟎𝟎,ℎ), we obtain  

 
 𝑆𝑆(Λ)𝐴𝐴[𝑆𝑆(Λ)]�� ⋅ 𝑆𝑆(Λ)𝑢𝑢(𝟎𝟎, ±1) = 0.      (37) 
 
Then, we should be able to get the Dirac operator 𝑆𝑆(Λ)𝐴𝐴[𝑆𝑆(Λ)]��  and the corresponding 

Dirac spinor solution 𝑆𝑆(Λ)𝑢𝑢(𝟎𝟎, ±1). We have 
 

[𝑆𝑆(Λ)]�� = 𝑆𝑆(Λ�)[𝑆𝑆(Λ�)]��[𝑆𝑆�Λ��]�� =  
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⎝
⎜⎜
⎜
⎛
𝑒𝑒���/�cos �� cosh �

� −𝑒𝑒��/� sin �
� cosh �

� 𝑒𝑒���/� cos �� sinh�
�          −𝑒𝑒��/� sin �

� sinh�
�

𝑒𝑒���/�sin �
� cosh �

� 𝑒𝑒��/�cos �� cosh �
�

𝑒𝑒���/� cos �� sinh �
�

−𝑒𝑒���/� sin �
� sinh�

�

−𝑒𝑒��/� sin �
� sinh�

�
−𝑒𝑒��/� cos �� sinh �

�

−𝑒𝑒���/� sin �
� sinh�

� −𝑒𝑒��/� cos �� sinh �
�

𝑒𝑒���/�cos �� cosh �
�

𝑒𝑒���/�sin �
� cosh �

�

−𝑒𝑒��/�sin �
� cosh �

�
𝑒𝑒��/� cos �� cosh �

� ⎠
⎟⎟
⎟
⎞

.  

          (38) 
Hence, we obtain  
 
 𝑆𝑆(Λ)𝐴𝐴[𝑆𝑆(Λ)]�� = (−2𝑚𝑚) ×  
 

⎝
⎜⎜
⎛

− sinh� ��                                        0 − cos𝜃𝜃 cosh �
� sinh�

� 𝑒𝑒�� sin 𝜃𝜃 cosh �
� sinh�

�
0 −sinh� ��

cos 𝜃𝜃 cosh �
� sinh�

�
−𝑒𝑒��� sin𝜃𝜃 cosh �

� sinh�
�

−𝑒𝑒�� sin 𝜃𝜃 cosh �
� sinh�

�
− cos𝜃𝜃 cosh �

� sinh�
�

𝑒𝑒��� sin𝜃𝜃 cosh �
� sinh �

� cos𝜃𝜃 cosh �
� sinh �

�
cosh� ��

0
0

cosh� �� ⎠
⎟⎟
⎞

.  

          (39) 
 
Now, using the formulae of the hyperbolic functions  

 

cosh𝜔𝜔 = �
√������� �,        (40) 

 
we have  
 

 cosh𝜔𝜔 = 1/√1 − 𝑣𝑣� ≡  𝛾𝛾.       (41) 
 
Meanwhile, we have9)  
 

𝑝𝑝𝑝� = 𝑚𝑚𝛾𝛾 = 𝑚𝑚 cosh𝜔𝜔, 𝒑𝒑𝑝 = 𝑚𝑚𝛾𝛾𝑚𝑚,       (42) 
 
the first equation of which represents the equivalence theorem of mass and energy due to Einstein. 
Also, using formulae of the hyperbolic functions we have  

 

 cosh �
� = ��������

� = ������
�� , sinh �

� = ���������
� = ������

�� ,    

 

 tanh�
� = sinh𝜔𝜔2

cosh𝜔𝜔2
= �(𝑝𝑝𝑝0 −𝑚𝑚)/(𝑝𝑝𝑝0 +𝑚𝑚) = |𝒑𝒑𝑝|/(𝑝𝑝𝑝0 +𝑚𝑚).    (43) 
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From Eqs. (7) and (43), we obtain  
 

 cosh �
� sinh�

� = �
���(𝑝𝑝�� + 𝑚𝑚)(𝑝𝑝�� − 𝑚𝑚) = �

�� |𝒑𝒑𝒑|.    (44) 

 
Using the relations Eqs. (40)−(44), finally we get  
 

 𝑆𝑆(Λ)𝐴𝐴[𝑆𝑆(Λ)]�� =

⎝
⎜
⎛

𝑝𝑝𝒑� − 𝑚𝑚       0 |𝒑𝒑𝒑| cos 𝜃𝜃 −|𝒑𝒑𝒑|𝑒𝑒�� sin 𝜃𝜃
0    𝑝𝑝𝒑� − 𝑚𝑚

−|𝒑𝒑𝒑| cos 𝜃𝜃
|𝒑𝒑𝒑|𝑒𝑒��� sin𝜃𝜃

|𝒑𝒑𝒑|𝑒𝑒�� sin𝜃𝜃
|𝒑𝒑𝒑| cos 𝜃𝜃

−|𝒑𝒑𝒑|𝑒𝑒��� sin𝜃𝜃 −|𝒑𝒑𝒑| cos 𝜃𝜃
−𝑝𝑝𝒑� − 𝑚𝑚

0
0

−𝑝𝑝𝒑� − 𝑚𝑚 ⎠
⎟
⎞

.  

          (45) 
 
Converting the polar coordinate into the Cartesian coordinate, we find that Eq. (45) is identical 

with 𝔊𝔊 defined in Eq. (12). That is, we have  
 
 𝑆𝑆(Λ)𝐴𝐴[𝑆𝑆(Λ)]�� = 𝔊𝔊.        (46) 
 
From Eq. (37), in turn, we obtain  
 

 𝑆𝑆(Λ)𝑢𝑢(𝟎𝟎,−1) =

⎝
⎜⎜
⎜
⎛

𝑒𝑒��/�cos �� cosh �
�

−𝑒𝑒���/�sin �
� cosh �

�
−𝑒𝑒��/� cos �� sinh �

�
𝑒𝑒���/� sin �

� sinh�
� ⎠
⎟⎟
⎟
⎞

= ������
��

⎝
⎜⎜
⎜
⎛

𝑒𝑒��/�cos ��
− 𝑒𝑒���/�sin �

�
−𝒮𝒮𝑒𝑒��/� cos ��
𝒮𝒮𝑒𝑒���/� sin �

� ⎠
⎟⎟
⎟
⎞

,    (47) 

 
where we define 𝒮𝒮 as  
 

 𝒮𝒮 𝒮 |𝒑𝒑𝒑|/(𝑝𝑝𝒑� + 𝑚𝑚) = tanh 𝜔𝜔
2.        (48) 

 
Thus, as the full description of the plane-wave solution we get e.g.,  
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𝜓𝜓��(𝑥𝑥𝑥) ≡ 𝑒𝑒������𝑆𝑆(Λ)𝑢𝑢(𝟎𝟎,−1) = 𝑒𝑒������������
��

⎝
⎜⎜
⎜
⎛

𝑒𝑒��/�cos ��
− 𝑒𝑒���/�sin �

�
−𝒮𝒮𝑒𝑒��/� cos ��
𝒮𝒮𝑒𝑒���/� sin �

� ⎠
⎟⎟
⎟
⎞

.   (49) 

 
Similarly, we have  
 

 𝜓𝜓��(𝑥𝑥𝑥) ≡ 𝑒𝑒��𝑝𝑝𝑥𝑥𝑥𝑥𝑆𝑆(Λ)𝑢𝑢(𝟎𝟎, +1) = 𝑒𝑒��𝑝𝑝𝑥𝑥𝑥𝑥

⎝
⎜⎜
⎜
⎛
𝑒𝑒��/�sin �� cosh

�
�

𝑒𝑒���/�cos �� cosh
�
�

𝑒𝑒��/� sin �� sinh
�
�

𝑒𝑒���/� cos �� sinh
�
�⎠
⎟⎟
⎟
⎞
= 𝑒𝑒��𝑝𝑝𝑥𝑥𝑥𝑥������

��

⎝
⎜
⎛

���/� �����
����/� �����
𝒮𝒮���/� �����
𝒮𝒮����/� �����⎠

⎟
⎞

 .   

            (50) 
 
Also, from Eqs. (14), (33), and (34), we readily confirm that  
 
 𝑆𝑆(Λ)𝐵𝐵[𝑆𝑆(Λ)]�� = 𝔊𝔊� .        (51) 
 
Similarly to Eq. (37), we have  
 
 𝑆𝑆(Λ)𝐵𝐵[𝑆𝑆(Λ)]�� ⋅ 𝑆𝑆(Λ)𝑣𝑣(𝟎𝟎,∓1) = 0.      (52) 
 
Consequently, we obtain  
 

 𝜓𝜓��(𝑥𝑥𝑥) ≡ 𝑒𝑒�����𝑆𝑆(Λ)𝑣𝑣(𝟎𝟎, +1) = 𝑒𝑒�����

⎝
⎜⎜
⎜
⎛
−𝑒𝑒��/�cos �� sinh

�
�

𝑒𝑒���/�sin �� sinh
�
�

𝑒𝑒��/� cos �� cosh
�
�

−𝑒𝑒���/� sin �� cosh
�
�⎠
⎟⎟
⎟
⎞
= 𝑒𝑒�����������

��

⎝
⎜
⎛
�𝒮𝒮���/� �����
𝒮𝒮����/� �����
���/� �����
�����/� �����⎠

⎟
⎞

 ,   

          (53) 
 

𝜓𝜓��(𝑥𝑥𝑥) ≡ 𝑒𝑒�𝑝𝑝𝑥𝑥𝑥𝑥𝑆𝑆(Λ)𝑣𝑣(𝟎𝟎,−1) = 𝑒𝑒�𝑝𝑝𝑥𝑥𝑥𝑥

⎝
⎜⎜
⎜
⎛
−𝑒𝑒��/�sin �� sinh

�
�

−𝑒𝑒���/�cos �� sinh
�
�

−𝑒𝑒��/� sin �� cosh
�
�

−𝑒𝑒���/� cos �� cosh
�
�⎠
⎟⎟
⎟
⎞
= 𝑒𝑒�𝑝𝑝𝑥𝑥𝑥𝑥������

��

⎝
⎜
⎛

�𝒮𝒮���/� �����
�𝒮𝒮����/� �����
����/� �����
�����/� ����� ⎠

⎟
⎞

 .

          (54) 
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The above results shown in Eqs. (49), (50), (53), and (54) are consistent with those described 
in the literature.10) This implies that Eqs. (37) and (52) properly express the Dirac equation in the 
representation space related to the frame O′ . On the basis of the discussion developed in this 
section, we conclude that Eqs. (37) and (52) are equivalent to Eqs. (10) and (11), respectively. 
Hence, we obtain  

 
𝑆𝑆(Λ)𝑢𝑢(𝟎𝟎,ℎ) = 𝑢𝑢(𝒑𝒑′,ℎ), 𝑆𝑆(Λ)𝑣𝑣(𝟎𝟎,ℎ) = 𝑣𝑣(𝒑𝒑′,ℎ).     (55) 
 

Multiplying the exponential term 𝑒𝑒����� on both sides of Eq. (37) or 𝑒𝑒���� on both sides of 
Eq. (52) and using the notation of Eq. (22), we get a succinct form expressed as  

 
 𝔊𝔊�𝜓𝜓�(𝑥𝑥�) = 0,          (56) 
 

where 𝔊𝔊�   represents either 𝔊𝔊  of Eq. (46) or 𝔊𝔊�   of Eq. (51); 𝜓𝜓�(𝑥𝑥�)  is chosen from among 
𝜓𝜓��(𝑥𝑥′), 𝜓𝜓��(𝑥𝑥′), 𝜓𝜓��(𝑥𝑥′), and 𝜓𝜓��(𝑥𝑥′) obtained above.  

Rewriting Eq. (46), we have  
 

 [𝑆𝑆(Λ)]��𝔊𝔊𝑆𝑆(Λ) = 𝐴𝐴 = �
0 0 0        0
0 0
0
0

0
0

0 0
−2𝑚𝑚

0
0

−2𝑚𝑚
�.     (57) 

 
Also, rewriting Eq. (51) we have  
 

 [𝑆𝑆(Λ)]��𝔊𝔊�𝑆𝑆(Λ) = 𝐵𝐵 = �
−2𝑚𝑚 0    0 0
0 −2𝑚𝑚
0
0

      0
      0

   0 0
   0
   0

0
0
�.     (58) 

 
Equations (57) and (58) clearly indicate that 𝔊𝔊 and 𝔊𝔊�  have been diagonalized through the 

similarity transformation using 𝑆𝑆(Λ) to produce 𝐴𝐴 and 𝐵𝐵, respectively. Namely, the matrices 𝔊𝔊 
and 𝔊𝔊�  are semi-simple (or diagonalizable).11) At the same time, the diagonalizing matrix 𝑆𝑆(Λ) 
yields the desired solutions of the Dirac equation as can be seen in Eq. (55).  

In summary, once we can find the proper representation matrix 𝑆𝑆(Λ) by calculating Eq. (32), 
the Dirac operators can automatically be diagonalized and we are able to determine the 
“eigenspinors” of the Dirac equation.  

In terms of the group theory, Eq. (46) indicates that the Dirac operators 𝔊𝔊  and 𝐴𝐴  are 
conjugate to each other.12) In turn, Eq. (51) implies that 𝔊𝔊�  and 𝐵𝐵 are conjugate to each other. 
Correspondingly, Eq. (55) represents the transformation between the Dirac spinors. Thus, the Dirac 
equation of Eq. (56) that describes the plane wave in the frame O′ is connected to Eq. (33) or (34) 
that is pertinent to the plane wave in O (i.e., the rest frame) through the medium of the matrix 
𝑆𝑆(Λ).  
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In the discussions made thus far, we have dealt with the Dirac equation in the relationship 
between the rest frame of the electron (the frame O) and the moving frame O′. Next, we wish to 
generalize the situation by considering the relationship between two moving frames. Suppose that 
we have another inertial frame of reference O� where the electron is moving at a velocity 𝒗𝒗� with 
a zenithal angle 𝜃𝜃� and azimuthal angle 𝜙𝜙� (see Figure 1).  

To address the issue appropriately, we break down the problem again into the relationship 
between the rest frame and the moving frame of the electron. In other words, considering the 
relationship between O and O� as well as that between O and O′, we relate the moving frame O� 
to the other moving frame O′ through the medium of the rest frame O. Let  

 

 𝑥𝑥� � �
���
���
���
���
�  

 
be the coordinates of the frame O�. Defining Λ� as below and following Eq. (24), 𝑥𝑥� is given by  
 

 𝑥𝑥� = Λ�𝑥𝑥 = Λ��Λ��Λ����𝑥𝑥,  

 

where Λ�� , Λ�� , and Λ��  can be obtained by replacing 𝜙𝜙, 𝜃𝜃, and 𝜔𝜔 of Eq. (26) with 𝜙𝜙�, 𝜃𝜃�, and 

𝜔𝜔� , respectively. The rapidity 𝜔𝜔�  is defined as in Eq. (27) from the velocity 𝒗𝒗�  of the electron 
measured in the frame O� (also, see Figure 1). Using Eq. (24), we get  

 
𝑥𝑥� = Λ�Λ��𝑥𝑥′.         (59) 

 
Thus, the Lorentz transformation that links the frame O� to O′ is described by Λ�Λ�� through 

the mediation of the rest frame O. Meanwhile, using the notation of Eq. (22) we have  
 

 𝜓𝜓�(𝑥𝑥�) = 𝑆𝑆�Λ��𝜓𝜓(𝑥𝑥) = 𝑒𝑒±����𝑆𝑆�Λ��𝑤𝑤(𝟎𝟎,ℎ) = 𝑒𝑒±����𝑆𝑆�Λ��[𝑆𝑆(Λ)]��𝑆𝑆(Λ)𝑤𝑤(𝟎𝟎,ℎ)  

 

     = 𝑒𝑒±����𝑆𝑆�Λ��𝑆𝑆(Λ��)𝑆𝑆(Λ)𝑤𝑤(𝟎𝟎,ℎ) = 𝑒𝑒±����𝑆𝑆�Λ�Λ���𝑆𝑆(Λ)𝑤𝑤(𝟎𝟎,ℎ)  

 
     = 𝑆𝑆�Λ�Λ���𝜓𝜓�(𝑥𝑥�),         (60) 

 
where with the fourth and fifth equalities we used the fact that 𝑆𝑆(Λ) is the representation of the 
group; the last equality resulted from Eq. (22). The function 𝜓𝜓�(𝑥𝑥�) is the Dirac spinor defined in 
the moving frame O�. Since Λ� and Λ are the elements of the Lorentz group, so is Λ�Λ��.  
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In Eq. (60), 𝑆𝑆�Λ��  is obtained by replacing 𝜙𝜙 , 𝜃𝜃 , and 𝜔𝜔  of Eq. (32) with 𝜙𝜙� , 𝜃𝜃� , and 𝜔𝜔� , 
respectively. Thus, the Dirac spinor is transformed according to 𝑆𝑆�Λ�Λ��� in correspondence to 
the Lorentz transformation Λ�Λ�� described in Eq. (59). More importantly, Eq. (60) represents the 
transformation of the Dirac spinor between two arbitrarily chosen inertial frames of reference. Note, 
at the same time, that Eqs. (59) and (60) can be rewritten in a complementary way as 𝑥𝑥𝑥 = Λ(Λ�)��𝑥𝑥� 
and 𝜓𝜓�(𝑥𝑥�) = 𝑆𝑆[Λ(Λ�)��]𝜓𝜓�(𝑥𝑥�), respectively.  

Explicit matrix representations of Λ�Λ�� of Eq. (59) and 𝑆𝑆�Λ�Λ��� of Eq. (60) are listed at the 
end of the present article (see Appendix). In Appendix, if we put 𝜙𝜙 = 𝜃𝜃 = 𝜔𝜔 = 0, 𝑆𝑆�Λ�Λ��� is 
identical with a matrix obtained by replacing 𝜙𝜙, 𝜃𝜃, and 𝜔𝜔 with 𝜙𝜙�, 𝜃𝜃�, and 𝜔𝜔�, respectively, in 
RHS of Eq. (32). If we put 𝜙𝜙� = 𝜃𝜃� = 𝜔𝜔� = 0, in turn, 𝑆𝑆�Λ�Λ��� is identical to RHS of Eq. (38).  

In accordance with Eqs. (46) and (56), the Dirac equation in the frame O� is expressed as  
 
 𝔊𝔊�𝜓𝜓�(𝑥𝑥�) = 0,          (61) 

 
where 𝔊𝔊�  is given by either 𝔊𝔊� = 𝑆𝑆�Λ��𝐴𝐴[𝑆𝑆�Λ��]�� or 𝔊𝔊� = 𝑆𝑆�Λ��𝐵𝐵[𝑆𝑆�Λ��]��. Using Eqs. (57) and 
(58) along with Eq. (60), Eq. (61) can be rewritten as  
 
 𝑆𝑆�Λ��[𝑆𝑆(Λ)]��𝔊𝔊�𝑆𝑆(Λ)[𝑆𝑆�Λ��]�� � 𝑆𝑆�Λ��[𝑆𝑆(Λ)]��𝜓𝜓�(𝑥𝑥�) = 𝑆𝑆�Λ��[𝑆𝑆(Λ)]��𝔊𝔊�𝜓𝜓�(𝑥𝑥�) = 0,  
          (62) 
 
where with the LHS once again we used the fact that 𝑆𝑆(Λ) is the representation of the group. Thus, 
we find that Eq. (62) is equivalent to Eq. (56).  

Equations (56) and (61) clearly indicate that the Dirac equation is transformed between two 
arbitrarily chosen inertial frames of reference via 𝑆𝑆(Ξ)  in which Ξ  denotes a Lorentz 
transformation that links the said two frames. As a special case, one out of the two inertial frames 
of reference can be the frame where the electron stays at rest. In that case, 𝑆𝑆(Ξ) is a diagonalizing 
matrix of the Dirac operator. Namely, the Dirac operator can be diagonalized through the similarity 
transformation based on 𝑆𝑆(Ξ).  

Meanwhile, we have  
 

𝔊𝔊� = 𝑆𝑆�Λ�Λ���𝔊𝔊�[𝑆𝑆�Λ�Λ���]��.       (63) 
 

This gives the transformation of the Dirac operator between the moving frames O� and O𝑥. If 
Λ is the identity operator, the frame O𝑥 is identical to the rest frame O and Eq. (63) is reduced to  

 
 𝔊𝔊� = 𝑆𝑆�Λ��𝔊𝔊�[𝑆𝑆�Λ��]��        (64) 

 
with 𝔊𝔊� = 𝐴𝐴 or 𝔊𝔊� = 𝐵𝐵. Then, Eq. (64) is virtually the same as Eq. (46) or Eq. (51). If Λ� is the 
identity operator, in turn, the frame O� is identical to the frame O, and so Eq. (63) can be rewritten 
as 𝔊𝔊� = [𝑆𝑆(Λ)]��𝔊𝔊�𝑆𝑆(Λ) with 𝔊𝔊� = 𝐴𝐴 or 𝔊𝔊� = 𝐵𝐵 so as to be reduced to Eq. (57) or Eq. (58).  
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5 Polar decomposition of the Dirac operators and related matrix algebra 
 
So far, we have examined the transformation properties of the Dirac equation in terms of the 

Dirac spinors and Dirac operators. These spinors and operators provide a unique opportunity to 
study further important aspects from the point of view of matrix algebra.  

One of interesting topics lies in the polar decomposition of a matrix. For this, we have a 
following theorem.6)  
 
Theorem 16) 

 
Let 𝐴𝐴 be a non-singular matrix. Then, there exist positive definite Hermitian matrices 𝐻𝐻� 

and 𝐻𝐻� as well as a unitary matrix 𝑈𝑈 such that  
 
 𝐴𝐴 = 𝑈𝑈𝐻𝐻� = 𝐻𝐻�𝑈𝑈.        (65) 
 
If and only if 𝐴𝐴 is a normal matrix, then we have 𝐻𝐻� = 𝐻𝐻�. (That is, 𝐻𝐻� = 𝐻𝐻� and 𝑈𝑈 are 

commutative.)  
 
Equation (65) is said to be a polar decomposition and Theorem 1 implies that the 

decomposition of Eq. (65) is unique. Regarding the polar decomposition, we have a good example 
with the representation matrix 𝑆𝑆(Λ). Using Eqs. (28), (29), and (31), we describe 𝑆𝑆(Λ) of Eq. 
(32) in such a way that  

 
𝑆𝑆(Λ) =  
 

⎝
⎜⎜
⎛

𝑒𝑒��/�cos �� 𝑒𝑒��/� sin �
� 0                     0

−𝑒𝑒���/� sin �
� 𝑒𝑒���/� cos ��

0
0

0
0

0 0
𝑒𝑒��/�cos ��
−𝑒𝑒���/�sin �

�

𝑒𝑒��/� sin �
�

𝑒𝑒���/�cos ��⎠
⎟⎟
⎞

⎝
⎜
⎛

cosh�
�     0 −sinh�

�          0
0 cosh�

�
−sinh�

�
0

0
sinh�

�

0 sinh�
�

cosh�
�

0
0

cosh�
� ⎠
⎟
⎞

.  

          (66) 
 
Putting 𝑆𝑆(Λ�) � 𝑆𝑆�Λ��𝑆𝑆(Λ�) = 𝑆𝑆(Λ�Λ�) , with the polar decomposition of Eq. (66) we 

obtain  
 
 𝑆𝑆(Λ) = 𝑆𝑆(Λ�)[𝑆𝑆(Λ�)]��.       (67) 
 
In RHS of Eq. (66), the first matrix 𝑆𝑆(Λ�) is unitary and the second matrix [𝑆𝑆(Λ�)]�� is 

Hermitian. The eigenvalues of [𝑆𝑆(Λ�)]�� are  
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 cosh �
� + sinh �

�  (doubly degenerate), cosh �
� − sinh�

�  (doubly degenerate)  

 
with a determinant of 1 (> 0). Hence, the Hermitian matrix [𝑆𝑆(Λ�)]�� is indeed positive definite.  

Suppose that another decomposition is given by  
 
 𝑆𝑆(Λ) = 𝐻𝐻�𝑆𝑆(Λ�).          (68) 

 
Then, we have  

 
 𝐻𝐻� =  𝑆𝑆(Λ�)[𝑆𝑆(Λ�)]��[𝑆𝑆(Λ�)]�.       (69) 
 
Since the unitary similarity transformation of an Hermitian matrix retains the Hermiticity and 

holds eigenvalues of that matrix unchanged, from Eq. (69) 𝐻𝐻� is positive definite Hermitian as 
well. Hence, from the uniqueness of the polar decomposition we find that Eq. (68) is certainly 
another polar decomposition. The matrix 𝐻𝐻� is given by  

 

𝐻𝐻� =

⎝
⎜⎜
⎛

cosh �
�                         0 − cos 𝜃𝜃 sinh�

�          𝑒𝑒�� sin𝜃𝜃 sinh�
�

0 cosh �
�

− cos 𝜃𝜃 sinh �
�

𝑒𝑒��� sin𝜃𝜃 sinh�
�

𝑒𝑒�� sin𝜃𝜃 sinh�
�

cos𝜃𝜃 sinh �
�

𝑒𝑒��� sin𝜃𝜃 sinh�
� cos 𝜃𝜃 sinh�

�
cosh �

�
0

0
cosh �

� ⎠
⎟⎟
⎞

.  

          (70) 
 
Notice that we get the representation 𝐻𝐻�  as a result of viewing the operator [𝑆𝑆(Λ�)]��  in 

reference to the frame O′. The trace of 𝐻𝐻� is 4 cosh �
� , which is held unchanged after the unitary 

similarity transformation with 𝑆𝑆(Λ�). Let us think of the following simple example.  
 
Example 1 

 
In the general case of the representation matrix described by Eq. (32) of the previous section, 

consider a special case of 𝜃𝜃 = 0. In that case, from Eqs. (32) and (66) we obtain  
 

⎝
⎜
⎛

  𝑒𝑒��/� cosh �
�                0             −𝑒𝑒��/� sinh�

�               0          
0 𝑒𝑒���/� cosh �

�
−𝑒𝑒��/� sinh�

�
0

0
𝑒𝑒���/� sinh�

�

0 𝑒𝑒���/� sinh�
�

𝑒𝑒��/� cosh �
�

0
        0

𝑒𝑒���/� cosh �
� ⎠
⎟
⎞
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= �
𝑒𝑒��/� 0 0          0

0 𝑒𝑒���/�
0
0

     0
     0

0 0
𝑒𝑒��/�

0
0

𝑒𝑒���/�
�

⎝
⎜
⎛

cosh �
�     0 −sinh�

�          0
0 cosh �

�
−sinh�

�
0

0
sinh �

�

0 sinh�
�

cosh �
�

0
0

cosh �
� ⎠
⎟
⎞

.  (71) 

 
The LHS of Eq. (71) is a normal matrix and the two matrices of RHS are commutative as 

expected. As in this example, if an axis of the rotation and a direction of the Lorentz boost coincide, 
such successive operations of the rotation and boost are commutative and, hence, the relevant 
representation matrix 𝑆𝑆(Λ) is normal according to Theorem 1.  

 
Because of the presence of the Lorentz boost, 𝑆𝑆(Λ) is in general not unitary. As is evident 

from Eq. (27), the Lorentz group is non-compact. In such a case, the representation matrix cannot 
be made unitary. In this respect, the representation matrix 𝑆𝑆(Λ) is a typical illustration.  

Another interesting aspect of the Dirac operators lies in the fact that those operators act as 
projection operators. In fact, from Eq. (14) we have  

 

 𝔊𝔊
(���) + 𝔊𝔊�

(���) = 𝐸𝐸.        (72) 

 
Defining 𝔓𝔓 and 𝔔𝔔 as  
 

 𝔓𝔓 𝔓 𝔊𝔊�
(���), 𝔔𝔔 𝔓 𝔊𝔊

(���),        (73) 

 
we have  
 

 𝔓𝔓 + 𝔔𝔔 = 𝐸𝐸.         (74) 
 
Also, we obtain  
 

 𝔓𝔓� = �����
(���) ⋅

�����
(���) = ������

(���)� = (���)�����
(���)� = �����

(���) = 𝔊𝔊�
(���) = 𝔓𝔓,  

 

 𝔔𝔔� = �����
(���) ⋅

�����
(���) = ������

(���)� = (���)�����
(���)� = �����

(���) = 𝔊𝔊
(���) = 𝔔𝔔,  

 

 𝔓𝔓𝔔𝔔 = �����
(���) ⋅

�����
(���) = ������

(���)� = 0.      (75) 
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The properties represented by Eqs. (74) and (75) reflect the nature of 𝔓𝔓 and 𝔔𝔔 as projection 
operators.13) In connection with the Hermitian projection operators, various aspects have fully been 
explored in the literature.13) Nonetheless, as neither 𝔓𝔓 nor 𝔔𝔔 is an Hermitian operator, special 
care should be taken.  

 
6 Conclusion 

 
The author has developed a method to find the direct solution of the Dirac equation. The 

essential point rests upon the fact that we have determined the representation matrix 𝑆𝑆(Λ) in the 
most general form in the representation space of the Dirac spinors. The present method helps study 
the constitution and the transformation properties of the Dirac spinors and Dirac operators.  

Furthermore, we can make the most of the method to address the topics of matrix algebra such 
as the polar decomposition. The characteristics of the Dirac operators as the projection operators 
are of great importance and interest as well.  
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: 
 

  Λ� Λ
��

 of
 Eq

.(5
9)

= 
 

 ⎝⎜⎜⎜⎜⎜⎜⎜⎛
co

sh
(𝜔𝜔�

𝜃
𝜔𝜔)

co
s𝜙𝜙

sin
𝜃𝜃s

inh
(𝜔𝜔�

𝜃
𝜔𝜔)

     
     

     
     

     
  si

n𝜙𝜙
sin

𝜃𝜃s
inh

(𝜔𝜔�
𝜃
𝜔𝜔)

     
    

     
     

     
     

 co
s𝜃𝜃

sin
h(
𝜔𝜔�
𝜃
𝜔𝜔)

 

co
s𝜙𝜙�

sin
𝜃𝜃� s

inh
(𝜔𝜔�

𝜃
𝜔𝜔)

sin
𝜙𝜙� s

in
𝜃𝜃� s
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(𝜔𝜔�

𝜃
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𝜙𝜙s
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𝜃𝜃c

os
h(
𝜔𝜔�
𝜃
𝜔𝜔)

+
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s𝜙𝜙�
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s𝜃𝜃�
co

s𝜙𝜙
co

s𝜃𝜃
+

sin
𝜙𝜙� s
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𝜙𝜙

co
s𝜙𝜙�

sin
𝜃𝜃� s
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𝜃
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+
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s𝜃𝜃�
sin

𝜙𝜙c
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𝜃𝜃𝜃
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𝜙𝜙
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𝜃𝜃c
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𝜃
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𝜃
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𝜃𝜃
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𝜃𝜃c

os
h(
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𝜃
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+
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𝜃𝜃𝜃
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+
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⎠⎟⎟⎟⎟⎟⎟⎟⎞  

  ��
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