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Abstract
For two finite compact bordered Riemann surfaces of the same

type, assuming the possibility of an embedding one into the other,
we consider a preferable embedding. As the one way, we take a sub-
region which has the minimum capacity among subregions with the
same type whose boundaries are homotopic to the boundary of the
Riemann surface. It is given as a subregion whose boundary con-
sists of trajectories of a quadratic holomorphic differential; hence the
boundary is analytic.

1 Introduction

Let R0 be a finite compact bordered Riemann surface of genus p with m
boundary components. Suppose a marking of R0 is specified. We assume
that R0 is not simply connected and m ≥ 1. Take the reduced Teichmüller
space of R0;

T (R0) = {(R, g); R is a finite compact bordered Riemann surface which

is mapped by a quasiconformal mapping g from R0 to R}/ ∼,

where (R1, g1) is equivalent to (R2, g2) if there is a conformal mapping h from
R1 onto R2 such that g−1

2 ◦ h ◦ g1 is homotopic to the identity mapping. For
R1 = (R1, g1) ∈ T (R0), set

T (R0; R1) = {R2 = (R2, g2) ∈ T (R0); there is a conformal mapping f from
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R1 into R2 such that g−1
2 ◦ f ◦ g1 is homotopic to the identity mapping},

and for (R2, g2) ∈ T (R0; R1), set

CE(R1, R2) = {f ; f is a conformal mapping from R◦
1 into R◦

2 such that

g−1
2 ◦ f ◦ g1 is homotopic to the identity mapping},

where R◦
i denotes the interior of Ri. Let R′

2 be a subregion of R◦
2 such that

the boundary is contained in R◦
2 and every component of R◦

2 − R′
2 is doubly

connected. For R′
2, consider the following curve family;

Γ(R◦
2, R

′
2) = {γ; γ consists of a family of rectifiable closed Jordan curves

each of which divides the boundary components of a component of

R◦
2 −R′

2 from others and γ divides all the components}.
Denote the extremal length of Γ(R◦

2, R
′
2) by λ(Γ(R◦

2, R
′
2)), i.e.,

λ(Γ(R◦
2, R

′
2)) = supρ{

1

A(ρ)
; ρ is a Borel measurable conformal density

such that infγ∈Γ(R◦
2 ,R′

2){
∫

γ
ρ(z)|dz|} ≥ 1},

where A(ρ) =
∫ ∫

R2
ρ2(x + iy)dxdy. If (Ri, gi) ∼ (R′

i, g
′
i), there is a conformal

mapping hi such that g′−1
i ◦hi◦gi is homotopic to the identity mapping. Note

that for f ∈ CE(R1, R2),

λ(Γ(R◦
2, f(R◦

1))) = λ(Γ(R′◦
2 , h2 ◦ f ◦ h−1

1 (R′◦
1 ))).

Put
B(R1, R2) = inf{λ(Γ(R◦

2, f(R◦
1))); f ∈ CE(R1, R2)},

where B(R1, R2) = ∞ if CE(R1, R2) is empty. We have
Theorem. Suppose B(R1, R2) < ∞. There is an f0 ∈ CE(R1, R2) which

satisfies λ(Γ(R◦
2, f0(R◦

1))) = B(R1, R2). The boundary of f0(R◦
1) consists of

trajectories of a quadratic holomorphic differential on R2; hence the boundary
is analytic.

There is a sequence {fn} ⊂ CE(R1, R2) such that λ(Γ(R◦
2, fn(R◦

1))) de-
creases to B(R1, R2). For a bounded analytic function F on R2, {F ◦fn} is a
normal family. Since λ(Γ(R◦

2, fn(R◦
1))) is bounded, fn(R◦

1) does not get close
to the boundary ∂R2 of R2. Since R1 is not simply connected and g−1

2 ◦fn◦g1

is homotopic to the identity mapping, fn(R◦
1) can not converge to a point. We

may assume that {fn} converges to a conformal mapping f0 from R◦
1 into R◦

2.
Since λ(Γ(R◦

2, f0(R◦
1))) ≤ B(R1, R2), we get λ(Γ(R◦

2, f0(R◦
1))) = B(R1, R2).

In the next section we consider the boundary of f0(R◦
1).
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2 Variational method

At first we note that λ(Γ(R◦
2, f0(R◦

1))) gives the capacity of f0(R◦
1) in R◦

2. Let
f be a conformal embedding of R◦

1 into R◦
2 and H(f) be a harmonic function

on R◦
2−f(R◦

1) such that H(f) takes value one on the boundary of f(R1) and
vanishes on the boundary of R2. Then

λ(Γ(R◦
2, f0(R

◦
1))) = ‖dH(f0)‖2 =

∫ ∫

R0
2−f0(R0

1)
dH(f0)

∧
∗dH(f0).

Now take an infinitesimally trivial dilatation µ on R2 whose support is con-
tained in R◦

2 − f0(R◦
1). That is

∫ ∫

R2

ϕµ
dz̄

dz
= 0

for ϕ in the space A1
2(R̂2) of anti-symmetric analytic quadratic differentials

with finite L1-norm on the double of R̂2 of R2 and supp µ ⊂ R◦
2 − f0(R◦

1).
Let R2(t) be the Riemann surface with the conformal structure introduced
by tµ. Let

‖µ‖∞ = esssup |µ| < 2.

Then for 0 ≤ t ≤ 1
4 there is a complex dilatation σ(t) ∈ [tµ] for which

‖σ(t)‖∞ ≤ 12t2. (cf.[L] p.227)

Since the part f0(R◦
1) of R2(t) has the same conformal structure as that of

R2, the region f0(R◦
1) can be regarded as a conformal embedding in R2(t).

Denote it by ft(R1). We have the following variational formula (cf. [M]);

d

dt
‖dH(ft)‖2 = +− i

∫ ∫

R2

(
∂

∂ζ
H(f0))

2µζ2
z dzdz̄,

where ζ is a local parameter on R2(t) which satisfies

ζz̄

ζz
= tµ.

Particularly for t = 0,

d

dt
‖dH(ft)‖2|t=0 = +− i

∫ ∫

R2

(
∂

∂z
H(f0))

2µdzdz̄.
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Suppose
d

dt
‖dH(ft)‖2|t=0 = k ,= 0.

Then
‖dH(ft)‖2 = ‖dH(f0)‖2 + kt + O(t2).

On the other hand, the Teichmüller distance between R2 and R2(t) is at most
12t2. So we can hope that there exists another embedding f∗ such that

λ(Γ(R◦
2, f∗(R

◦
1)) < λ(Γ(R◦

2, f0(R
◦
1)).

Although we postpone the proof, this gives a contradiction. It follows that
∫ ∫

R2

(
∂

∂z
H(f0))

2µdzdz̄ = 0,

for µ such that support of µ ⊂ R◦
2 − f0(R◦

1) and

∫ ∫

R2

ϕµ
dz̄

dz
= 0 for ϕ ∈ A1

2(R̂2).

Hence ( ∂
∂zH(f0))2dz2 coincides with a ϕ0 ∈ A1

2(R̂2) on R◦
2 − f0(R◦

1). The
function H(f0) has an analytic extension across the boundary of ∂f0(R1).
Therefore ∂f0(R1) consists of analytic curves in R2. We remark that the
embedding is uniquely determined for ϕ0. For the check of above assertion,
take a closed disk K which contained in R◦

2−f0(R◦
1). Let ϕ1, ..., ϕn (n = 6p+

3m−6) be a basis of A1
2(R̂2). There exist Beltrami differentials µ1

dz̄
dz , ..., µn

dz̄
dz

such that
i) the support of µi is contained in K,
ii)

∫ ∫
ϕiµj

dz̄
dz = aij, det(aij) ,= 0.

Let Rs be the Riemann surface with the conformal structure introduced by

n∑

j=1

sjµj
dz̄

dz
on K, s = (s1, ..., sn)

and the same conformal structure as that of R2 on R2 − K. Then s =
(s1, ..., sn) becomes a local parameter about R0 = R2 (cf. [IT]). For a small
t, there exists a s(t) = (s1, ..., sn) such that Rs(t) is conformally equivalent to
R2(t). Let ht be the quasiconformal mapping from R2 to R2(t) such that

(ht)z̄dz̄

(ht)zdz
=

{
tµdz̄

dz on R◦
2 − f0(R◦

1)
0 on f0(R◦

1),
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fs(t) be the quasiconformal mapping from R2 to Rs(t) such that

(fs(t))z̄dz̄

(fs(t))zdz
=

{ ∑
sjµj

dz̄
dz on K

0 on R◦
2 −K,

and ft,s be the conformal mapping from R2(t) to Rs(t) such that the quasicon-
formal mapping gt = f−1

s(t)◦ft,s◦ht is homotopic to the identity mapping. The
Beltrami coefficient of gt converges to 0 as t converges to 0. We can assume
that gt ◦ f0(R1)

⋂
K = ∅. Hence gt is conformal on f0(R◦

1), and gt ◦ f0(R1)
becomes an embedding from R1 into R2. Since the order of s depends on the
order t2, we have

‖dH(gt ◦ f0)‖2 = ‖dH(f0)‖2 + kt + O(t2).

Therefore there exists τ such that

‖dH(gτ ◦ f0)‖2 < ‖dH(f0)‖2.

This contradicts the minimal property of ‖dH(f0)‖2.
Remark. We believe the uniqueness of this embedding but do not have a

proof. We note a certain kind of uniqueness. Let ϕ0 coincide with

c(
dzi

azi(log bi − log ai)
)2

on the boundary component {zi; |zi| = bi} of R2. Then minimum value is

B(R1, R2) =
∑

i

2π

log bi − log ai
.

Take real numbers ci such that

log ci − log ai

log bi − log ai
= 1 + t.

The local parameter zi is regarded as a local parameter of a neighborhood of
the boundary component. For a sufficiently small t, let R(t) be a Riemann
surface whose boundary is given by {zi; |zi| = ci}. Then R(0) = R2, R(t) ∈
T (R0; R1) for t > −1. Then ϕ0 coincides with

c(
(1 + t)dzi

azi(log ci − log ai)
)2
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on the boundary component {zi; |zi| = ci} of R(t). The function f0(R1) is
an embedding into R(t).

For −1 < t < 0, suppose that there is another embedding f1(R◦
1) into

R(t) such that

λ(Γ(R(t)◦, f1(R
◦
1))) ≤ λ(Γ(R(t)◦, f0(R

◦
1))).

Then

λ(Γ(R◦
2, f1(R

◦
1)))

−1 > λ(Γ(R◦
2, R(t)◦)))−1 + λ(Γ(R(t)◦, f1(R

◦
1)))

−1

≥ λ(Γ(R◦
2, R(t)◦)))−1 + λ(Γ(R(t)◦, f0(R

◦
1)))

−1

= λ(Γ(R◦
2, f0(R

◦
1)))

−1.

Hence
λ(Γ(R◦

2, f1(R
◦
1))) < λ(Γ(R◦

2, f0(R
◦
1))) = B(R1, R2).

This is a contradiction. Therefore f0(R1) is the unique embedding into R(t)
which attains the value B(R1, R2(t)).

Similarly, we know that R(t) is considered as the unique embedding into
R2 which attains the value B(R(t), R2).

3 Example

Let R1 and R2 be two annuli {z; a1 < |z| < b1}, {w; a2 < |w| < b2},
(a2 < a1 < b1 < b2). For f ∈ CE(R1, R2), let

Γ1(f) = {γ; γ is a Jordan curve which divides {f(z); |z| = a1} and

{f(z); |z| = b1} in f(R1)},

Γ2 = {γ; γ is a Jordan curve which divides {w; |w| = a2} and

{w; |w| = b2} in R2},

Γ3(f) = {γ; γ is a Jordan curve which divides {f(z); |z| = a1} and

{w; |w| = a2} in a component of R2 − f(R1)},

Γ4(f) = {γ; γ is a Jordan curve which divides {f(z); |z| = b1} and

{w; |w| = b2} in a component of R2 − f(R1)},
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and
Γ(f) = {γ3

⋃
γ4; γ3 ∈ Γ3(f), γ4 ∈ Γ4(f)}.

Since Γ2 ⊃ Γ1(f)
⋃

Γ3(f)
⋃

Γ4(f), by a property of extremal length

λ(Γ2)
−1 ≥ λ(Γ1(f))−1 + λ(Γ3(f))−1 + λ(Γ4(f))−1.

We have
1

2π
(log

b2

a2
− log

b1

a1
) = λ(Γ2)

−1 − λ(Γ1(f))−1

≥ λ(Γ3(f))−1 + λ(Γ4(f))−1.

We remark that

1

2π
(log

b2

a2
− log

b1

a1
) = λ(Γ3(f))−1 + λ(Γ4(f))−1,

iff f(R1) becomes an annulus with the same center as that of R2. There is
an f1 ∈ CE(R1, R2) such that
i) f1(R1) becomes an annulus with the same center as that of R2,
ii) λ(Γ3(f1)) = λ(Γ3(f)).
Then

λ(Γ3(f1))
−1 + λ(Γ4(f1))

−1 ≥ λ(Γ3(f))−1 + λ(Γ4(f))−1

and λ(Γ4(f1)) ≤ λ(Γ4(f)). Hence we have

λ(Γ3(f1)) + λ(Γ4(f1)) ≤ λ(Γ3(f)) + λ(Γ4(f)).

So we may consider the case that the embeddings are annuli with the same
center. Let f(R1) = {w; a′1 < |w| < b′1}. Then

λ(Γ(f)) = λ(Γ3(f)) + λ(Γ4(f))

= 2π{ 1

log a′1 − log a2
+

1

log b1 − log b′1
}.

Put t = b′1/a
′
1, s = b2/a2, p = log a2, q = log(b2/t) and x = log a′1. We can

write

λ(Γ(f)) = 2π
q − p

(x− p)(q − x)

=
2π(q − p)

−(x− p+q
2 )2 + (p−q

2 )2
≥ 8π

q − p
.
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Therefore when x = (p+q)/2, λ(Γ(f)) attains the minimum value 8π/(q−p).
This condition means a′1/a2 = b2/b′1. Only this case attains the minimum
value B(R1, R2) of λ(Γ).

Remark. In this case we refer to the quadratic differential in the state-
ment. Let A = {z; a < |z| < b} and H(z) = (log |z| − log a)/(log b − log a).
Then H is called a harmonic measure for {z; |z| = b} on A. We have

‖dH‖2 =
∫ ∫

A
dH

∧
∗dH

=
1

(log b− log a)2

∫ 2π

0

∫ b

a

drdθ

r
=

2π

log b− log a
.

Take a complex dilatation µ and let A(t) be the Riemann surface with the
conformal structure induced by tµ. Let Ht be the harmonic measure for the
outer boundary on A(t), that is, Ht is harmonic in A(t) and

Ht =

{
0 on the inner boundary of A(t)
1 on the outer boundary of A(t).

Since
∂H

∂z
=

1

2(log b− log a)

∂

∂z
log

zz̄

a2

=
1

2z(log b− log a)
,

we have
d

dt
‖dHt‖2

t=0 = +− i
∫ ∫

A
(
∂H

∂z
)2µdzdz̄

=
1

4(log b− log a)2
+− i

∫ ∫

A

µ

z2
dzdz̄.

For the embedding f which attains the minimum value,

{ 1

log a′1 − log a2

∂

∂z
log

|z|
a2

dz}2 on {z; a2 < |z| < a′1}

and

{ 1

log b2 − log b′1

∂

∂z
log

|z|
b′1

dz}2 on {z; b′1 < |z| < b2}

coincide with a quadratic differential c(dz/z)2 on the double of A, because of
a′1/a2 = b2/b′1 = exp

√
c. From previous theory, we know that only this case

attains the minimum value.
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4 Schiffer’s interior variation via [IT]

Let R be a Riemann surface, (U, z) be a local coordinate about p in R;
z(p) = 0, z(U) = {z; |z| < 2} and Dρ be the inverse image of the disk
{z; |z| < ρ}. For a complex parameter ε, define a function from U to the
complex w-plane:

wε(z) = z +
ε

z
.

Delete Dρ, (1
2 < ρ < 1) from R and paste the image V 1

ρ
of D 1

ρ
by wε the

part of D 1
ρ
−Dρ such that z corresponds to wε(z). We get another Riemann

surface:
Rε = (R−Dρ)

⋃
V 1

ρ

whose conformal structure coincides with that of R−Dρ in the part R−Dρ

and that of V 1
ρ

in the part V 1
ρ
, particularly, in the pasted part they are

consistent, because wε is conformal. Consider the following mapping from R
to Rε;

fε(p) =

{
p p ∈ R−D1

w(z(p)) = z(p) + εz̄(p) p ∈ D1 .

Note that w(z(p)) = wε(z(p)), p ∈ ∂D1. The Beltrami coefficient µε of fε is

µε(p) =

{
0 p ∈ R−D1

εdz̄
dz p ∈ D1,

hence fε becomes a quasiconformal mapping from R to Rε. Now take n points
{pi}i=1...n and their disjoint local neighborhoods {Ui, zi}. For n complex
parameters ε = (ε1, ..., εn), we can deform R to Rε by the above mentioned
change of conformal structure on the part of

⋃
Ui and get the quasiconformal

mapping fε from R to Rε. Let n be the dimension of the reduced Teichmüller
space of R and {ϕi}i=1,...,n be a basis of the space A1

2(R̂). Consider a mapping
F from the unit ball about 0 ∈ Cn to the space B1(R) of Beltrami differentials
with finite supremum norm:

F (ε) =
(fε)z̄

(fε)z

dz̄

dz
=

{
εi

dz̄
dz Di = z−1

i ({zi; |zi| < 1})
0 R− ⋃

Di .

Then
∂F

∂εi
=

{
dz̄
dz Di

0 R− ⋃
Di,
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so F is holomorphic (cf. [L] p.206). For a ψ ∈ A1
2(R̂),

∫ ∫

R
ψ

∂F

∂εi
= −2πiψ(pi),

where ψ = ψ(zi)dz2
i , ψ(pi) = ψ(0). We can choose points {pi} such that

det(ϕk(pi)) ,= 0.

Then ( ∂F
∂ε1

, ..., ∂F
∂εn

) becomes a basis of the dual space A1∗
2 of A1

2(R̂) which is
regarded as the tangent space of the Teichmüller space. The function F is
biholomorphic. Therefore ε = (ε1, ..., εn) is regarded as a local parameter of
the Teichmüller space.
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