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Abstract

For two finite compact bordered Riemann surfaces of the same
type, assuming the possibility of an embedding one into the other,
we consider a preferable embedding. As the one way, we take a sub-
region which has the minimum capacity among subregions with the
same type whose boundaries are homotopic to the boundary of the
Riemann surface. It is given as a subregion whose boundary con-
sists of trajectories of a quadratic holomorphic differential; hence the
boundary is analytic.

1 Introduction

Let Ry be a finite compact bordered Riemann surface of genus p with m
boundary components. Suppose a marking of Ry is specified. We assume
that Ry is not simply connected and m > 1. Take the reduced Teichmiiller
space of Ry;

T(Ro) = {(R,g); R is a finite compact bordered Riemann surface which

is mapped by a quasiconformal mapping g from Ry to R}/ ~,

where (Ry, g1) is equivalent to (Ra, go) if there is a conformal mapping h from
R, onto R, such that g;' o ho gy is homotopic to the identity mapping. For
Rl = (Rhgl) S T(RO)v set

T(Ro; Ry) = {Rs = (R, g2) € T(Rp); there is a conformal mapping f from
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R, into R, such that g, ' o f o g; is homotopic to the identity mapping},
and for (R, g2) € T(Ro; Ry), set
CE(Ry, Re) = {f; f is a conformal mapping from Rj into R5 such that
gy ' o f o g is homotopic to the identity mapping},
where R; denotes the interior of R;. Let R) be a subregion of R such that

the boundary is contained in R§ and every component of R — R/, is doubly
connected. For R}, consider the following curve family;

(RS, R,) = {v; consists of a family of rectifiable closed Jordan curves

each of which divides the boundary components of a component of
R; — R), from others and ~ divides all the components}.
Denote the extremal length of I'(R3, R}) by A(I'(Rs, R5)), i.e.,

1
MI(Rs, RS)) = sup,{——; p is a Borel measurable conformal density

A(p)
such that Z'nf,yel“(R;Ré){/ p(z)|dz|} > 1},
il

where A(p) = [ [g, p*(x + iy)dady. If (R;, g;) ~ (R}, g;), there is a conformal
mapping h; such that g/~ oh;og; is homotopic to the identity mapping. Note
that for f € CE(R1, Rs),

MI(R3, f(RY))) = MT(R5, hy o f o hi (RY))).

Put
B(Ry, Rp) = inf{\I'(R3, f(RY))); f € CE(Ry, Rs)},
where B(Ry, Ry) = oo if CE(Ry, Ry) is empty. We have

Theorem. Suppose B(Ry, Ry) < co. There is an fy € CE(Ry, Ry) which
satisfies N(I'(R3, fo(R3))) = B(R1, R2). The boundary of fo(RS) consists of
trajectories of a quadratic holomorphic differential on Rsy; hence the boundary
18 analytic.

There is a sequence {f,} C CE(R;, Ry) such that AN(I'(R3, f.(RS))) de-
creases to B(Ry, Ry). For a bounded analytic function F' on Ry, {Fo f,} is a
normal family. Since A(I'(R3, f.(R7))) is bounded, f,(R]) does not get close
to the boundary OR, of R,. Since Ry is not simply connected and g5 ' o f, 0
is homotopic to the identity mapping, f,,(R{) can not converge to a point. We
may assume that {f,} converges to a conformal mapping f, from R into Rj.
Since A(I'(R3, fo(Ry))) < B(Ry, Rp), we get MI'(R3, fo(Ry))) = B(Ri, Ra).
In the next section we consider the boundary of fy(RY3).
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2 Variational method

At first we note that A(I'(R3, fo(R3))) gives the capacity of fo(RS) in RS. Let
f be a conformal embedding of R into RS and H(f) be a harmonic function
on Ry — f(R}) such that H(f) takes value one on the boundary of f(R;) and
vanishes on the boundary of Rs. Then

MBS, fo(B)) = [ dH(fo)|P = [ [ dH(fo) \=dH(fo)

fo(RY)

Now take an infinitesimally trivial dilatation p on Ry whose support is con-

tained in Ry — fo(R3). That is

dz
e
/ Rs gOualz

for ¢ in the space A%(}%Q) of anti-symmetric analytic quadratic differentials

with finite L'-norm on the double of Ry of Ry and supp u C Ry — fo(RS).
Let Ry(t) be the Riemann surface with the conformal structure introduced
by tu. Let

[1lloe = esssup || < 2.

Then for 0 < ¢ < ; there is a complex dilatation o(t) € [tx] for which
lo()]|ee < 1262 (cf.[L] p.227)

Since the part fo(RS) of Ra(t) has the same conformal structure as that of
Ry, the region fy(R]) can be regarded as a conformal embedding in Ry (t).
Denote it by f;(R;). We have the following variational formula (cf. [M]);

d 5 . 0 o
GIAHI =R =i [ | (GH (o) ez,
where ( is a local parameter on Ry(t) which satisfies

G

= tu.
G

Particularly for ¢ = 0,

d B
A ldH ()0 = R i//&(&H(fo))dezdz.
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Suppose
d
T AH (f)lPi=o = k # 0.

Then
[dH (f)II? = [|[dH (fo)l|* + kt + O(t*).

On the other hand, the Teichmiiller distance between Ry and Rs(t) is at most
12¢2. So we can hope that there exists another embedding f, such that

A(Rs, f+(RY)) < A(T(R3, fo(RY))-

Although we postpone the proof, this gives a contradiction. It follows that

//fzz(%H(fO))2udzdz —0,

for p such that support of  C RS — fo(RS) and

/ . gouiZ =0 for o € A5(Ry).
Hence (2 H(fy))?d=? coincides with a ¢y € A}(Ry) on RS — fo(R$). The
function H(fy) has an analytic extension across the boundary of dfy(R;).
Therefore 0fy(Ry) consists of analytic curves in Ry. We remark that the
embedding is uniquely determined for ¢y. For the check of above assertion,
take a closed disk K which contained in R$ — fo(RS). Let @1, ..., ¢, (n = 6p+
3m —6) be a basis of AL(R,). There exist Beltrami differentials I, . s
such that
i) the support of u; is contained in K,
i) [ [ iy = aij, det(ay;) # 0.
Let R, be the Riemann surface with the conformal structure introduced by

" dz
Zsjuj£ on K,;s = (S1,...,8n)

j=1

and the same conformal structure as that of Ry on Ry — K. Then s =
(S1, ..., 8n) becomes a local parameter about Ry = Ry (cf. [IT]). For a small
t, there exists a s(t) = (s1, ..., sp) such that Ry is conformally equivalent to
Ry(t). Let hy be the quasiconformal mapping from Ry to Ra(t) such that

(ht)zdz _ tn on RS — fo(RY)
(hy).dz 0 on fo(RY),




fs@) be the quasiconformal mapping from R, to R, such that

(fs(t))édg o { ZSJ'/JJ]'% on K

(fs(t))zdz B 0 on R; - K7

and f; ; be the conformal mapping from Ry(t) to Ry such that the quasicon-
formal mapping g, = f;(tl) o fi.soh; is homotopic to the identity mapping. The
Beltrami coefficient of g; converges to 0 as t converges to 0. We can assume
that g, o fo(R1) N K = ). Hence g, is conformal on fo(R]), and g; o fo(Ry)
becomes an embedding from R; into Ry. Since the order of s depends on the
order 2, we have

ldH (g¢ 0 fo)lI* = |dH (fo)|I* + kt + O(t*).

Therefore there exists 7 such that

ldH (g o fo)I* < lldH (fo)lI*

This contradicts the minimal property of ||dH (fo)]|?.
Remark. We believe the uniqueness of this embedding but do not have a

proof. We note a certain kind of uniqueness. Let ¢, coincide with

dZi
az;(log b; — log a;)

( )*

on the boundary component {z; |z;| = b;} of Re. Then minimum value is

2T

B(Ri,Ry) =) log b — loga,”

Take real numbers ¢; such that
log ¢; — log a;
— =1+t
log b; — log a; +
The local parameter z; is regarded as a local parameter of a neighborhood of
the boundary component. For a sufficiently small ¢, let R(¢) be a Riemann
surface whose boundary is given by {z;; |z;| = ¢;}. Then R(0) = Ry, R(t) €
T(Ry; Ry) for t > —1. Then ¢y coincides with

az;(logc; — log a;)

)2
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on the boundary component {z;|z;| = ¢;} of R(t). The function fyo(R;) is
an embedding into R(t).

For —1 < t < 0, suppose that there is another embedding f;(RS) into
R(t) such that

AT(R()°, f1(RY))) < MI(R(2)°, fo(RY)))-
Then
AMT(Rs, f1(R)) ™ > MT(R3, R(1)°))) ™" + MT(R(1)%, f(RY))™

> MI(Ry, R()°) ™ + AT (R®)°, fo(R))) ™!
= MD(Rs, fo(RS))) ™.

Hence
AL(R3, fi(RY))) < MI(R3, fo(RY))) = B(R1, Ra).

This is a contradiction. Therefore fo(R;) is the unique embedding into R(t)
which attains the value B(Ry, Ry(t)).
Similarly, we know that R(t) is considered as the unique embedding into

Ry which attains the value B(R(t), Rs).

3 Example

Let Ry and Ry be two annuli {z;a1 < |2| < b1}, {w;as < |w| < by},
(ay < ay < by < by). For f € CE(Ry, Ry), let

['y(f) = {7;~ is a Jordan curve which divides {f(2); |z| = a1} and

{f(2);lz] = bi} in f(R1)},
[y = {7;~ is a Jordan curve which divides {w;|w| = as} and
{w; [w]| = bs} in Ro},
Is(f) = {v;~ is a Jordan curve which divides {f(2); |z| = a1} and
{w; |w| = az} in a component of Ry — f(Ry)},
L4(f) = {7;~ is a Jordan curve which divides {f(2);|z| = b1} and
{w;|w| = by} in a component of Ry — f(Ry)},



and
L(f) = {Uravs € Ts(f), v € Tu(f)}-
Since 'y D T (f)UT3(f)UTL4(f), by a property of extremal length

AT2) ™ = MT1()) ™+ ATs() ™+ ATa(f)

We have

We remark that

Ltog 2 “10g Py = AM(1) "+ AT

2 a9 ai

iff f(R;) becomes an annulus with the same center as that of Ry. There is
an f; € CE(Ry, Ry) such that
i) fi(R1) becomes an annulus with the same center as that of Ry,

i) MIs(f1)) = MTs(f)).
Then

MT3(f1)) ™+ MTa(f1) ™ = MTs(f) ™+ ATa ()™
and MT'4(f1)) < AM(4(f)). Hence we have

AT3(f1) + AMTa(f1)) < ATs(f)) + ATa(f)).
So we may consider the case that the embeddings are annuli with the same
center. Let f(Ry) = {w;a) < |w| <¥,}. Then
AT(F) = ATs(f)) + ATa(f))

1 1
log a} — log as + log by — log

= 27{ }.

Put t = b /ad},s = by/as,p = logay,q = log(be/t) and = = loga). We can
write

P
M) =2 (x —p)(q — )

27(q —p) 8w
_ _ p*q)y2 MZZ - n
(=512 + (51 ~q—p
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Therefore when x = (p+¢q)/2, AM(I'(f)) attains the minimum value 87 /(¢—p).
This condition means aj/as = by/bj. Only this case attains the minimum
value B(Ry, Ry) of A(T').

Remark. In this case we refer to the quadratic differential in the state-
ment. Let A = {z;a < |z| < b} and H(z) = (log|z| — loga)/(logb — loga).
Then H is called a harmonic measure for {z;|z| = b} on A. We have

||dH|]2://AdH/\*dH

B 1 /27r /b drdf 2m
~ (logb—loga)Jo Ja r  logb—loga

Take a complex dilatation p and let A(t) be the Riemann surface with the
conformal structure induced by tu. Let H; be the harmonic measure for the
outer boundary on A(t), that is, H, is harmonic in A(t) and

I 0 on the inner boundary of A(t)
"7 1 1 on the outer boundary of A(t).

Since
0H 1 0 2Z
0z  2(logb—loga)0dz ~ a?
B 1
~ 22(logbh —loga)’
we have g SH
SlaH |y =%~ / [ udzaz
1 Iz
dzdz
4(10gb—10ga //Az2 s
For the embedding f which attains the minimum value,
1 0. 2l 1o
— 1 —d <zl <
{logal loga2az og Z} on {Z az ’ ‘ al}
and

1 0 2|

_— 1
{log by — log b} 0z 8y b}

coincide with a quadratic differential ¢(dz/z)? on the double of A, because of
ay/as = by /b = exp+/c. From previous theory, we know that only this case
attains the minimum value.

Tldz}? on {z;b) < |2| < by}



4 Schiffer’s interior variation via [IT]

Let R be a Riemann surface, (U,z) be a local coordinate about p in R;
z(p) = 0,2(U) = {z;]2] < 2} and D, be the inverse image of the disk
{z;|z| < p}. For a complex parameter €, define a function from U to the
complex w-plane: .

we(z) =2z + e
Delete D, (% < p < 1) from R and paste the image V% of D% by w, the
part of D 1= D, such that z corresponds to w.(z). We get another Riemann

surface:
R. = (R_Dp)UVl

whose conformal structure coincides with that of R — D, in the part R — D,
and that of V1 in the part V1 particularly, in the pasted part they are
consistent, because W, 1S conformal. Consider the following mapping from R
to Re;

ﬂ)—{ " pelio b
P wp) = 2(p) +ex(p)  peDr

Note that w(z(p)) = we(2(p)), p € dD;. The Beltrami coefficient p. of f, is

. 0 pER—D1
'LLE(p)_{ 6% pEDh

hence f, becomes a quasiconformal mapping from R to R.. Now take n points
{pi}ti=1..n and their disjoint local neighborhoods {Uj;, z;}. For n complex
parameters € = (€, ..., €,), we can deform R to R. by the above mentioned
change of conformal structure on the part of |J U; and get the quasiconformal
mapping f. from R to R.. Let n be the dimension of the reduced Teichmiiller
space of R and {¢; }i=1,..., be a basis of the space A%(R) Consider a mapping
F from the unit ball about 0 € C" to the space B*(R) of Beltrami differentials
with finite supremum norm:

( e)Z@ o Ezdj D' = Zi_l({zi§ || < 1})
F<€>_(fe)zd,z_{ 0 R—UD'.

Then ) .
aF_{% D

- dz .
862‘ n 0 R—Ul)z7



so F is holomorphic (cf. [L] p.206). For a ¢ € AL(R),

[ [ w5 = —2rivie),

where ¢ = ¢(z;)dz7, ¥ (p;) = 1(0). We can choose points {p;} such that

det(r(pi)) # 0.

Then (g—i, o gTI;) becomes a basis of the dual space AL* of AL(R) which is
regarded as the tangent space of the Teichmiiller space. The function F' is
biholomorphic. Therefore € = (e, ..., €,) is regarded as a local parameter of

the Teichmiiller space.
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