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Abstract—A new sufficient condition for a polytope of matrices to be
Hurwitz-stable is presented. The stability is a consequence of the existence
of a parameter-dependent quadratic Lyapunov function, which is assured
by a certain linear constraint for generating extreme matrices of the poly-
tope. The condition can be regarded as a duality of the known extreme point
result on quadratic stability of matrix polytopes, where a fixed quadratic
Lyapunov function plays the role. The obtained results are applied to a
polytope of second-degree polynomials for illustration.

Index Terms—Hurwitz-stability, parameter-dependent Lyapunov func-
tion, polytope of matrices, quadratic stability.

I. INTRODUCTION

Polytopes of matrices are now established as one of standard rep-
resentations of uncertainties involved in state-space models of control
systems [1], [2]. When the system matrices of uncertain systems are
formulated by a polytope of matrices, a stability problem of the poly-
tope naturally arises. It is known that one generally cannot expect the
extreme point result on stability, Hurwitz or Schur alike, of polytopes
of matrices. That is, stability of the generating extreme matrices does
not necessarily imply that of every matrix in the polytope. This means
that in order to assure stability of a polytope we have to impose addi-
tional constraints to the stability condition or stricter conditions than
that for each extreme matrix. Considerable numbers of such conditions
are currently in hand (see, e.g., the references in [3]), but each of them
has its own demerit. For example, diagonal dominance-type conditions
for Hurwitz stability require negativity of diagonal entries of the ex-
treme matrices, an apparent restriction to their applicability.

This paper presents a new sufficient condition for Hurwitz-stability
of a polytope of matrices, thus providing an alternative to the existing
tools. The stability comes from a parameter-dependent quadratic Lya-
punov function, the existence of which is ensured by a linear constraint
for the extreme matrices. The obtained condition can be considered as
akind of dual of the quadratic stability result on a polytope of matrices,
where, by contrast, a fixed quadratic Lyapunov function plays the role.
As an illustrative example, we look into the Lyapunov function prob-
lems of a polytope of polynomials, which are connected to the matrix
counterpart with a companion form. The contents of the paper are laid
out as follows. In the next section, the main result is stated along with
the quadratic stability result, which is known, but can also be proved
in the context of the present approach. Section III includes an appli-
cation of the results to a Lyapunov function problem for a polytope
of second-degree polynomials. Discussions are given on which type
of Lyapunov functions can cover the polytopes of the polynomials in
the coefficient plane. Some comments are also made on the differences
between the present results and existing analysis methods that utilize
parameter-dependent Lyapunov functions. Finally, inSection IV, sev-
eral remarks are given to conclude the paper.
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1. MAIN RESULTS

Throughout the paper, we identify a linear constant continuous-time
system & = Az and a quadratic Lyapunov function «' Px, (’): trans-
pose with their coefficient matrices .4 and P, respectively. We say P
covers A, when P is a Lyapunov function that guarantees Hurwitz-sta-
bility of the system A. Let I1, be a set of m-tuple of nonnegative num-
bers defined by

I, := {a:(a»l, e 0’7:1)

Z a; =1, 0; 20, 'em}

=1

where m. := {1. ---. m}. For given m matrices, X; € R"*",i € m,
we define a polytope of the matrices by

Xo = i a; Xi.a € Ho}.
i=1

Now, assume we are given a set of m Hurwitz-stable matrices {A;}
where A; € R"*". i € m. Our concern is to find an additional condi-
tion for ensuring Hurwitz-stability of the polytope of matrices P(.A;).
The following theorem is the main contribution of this paper.

Theorem 1: Suppose A;, i € m are Hurwitz-stable. If there exist
§=-5€R*andQ = Q' € R"™ with Q > 0 (positive
definite) satisfying

P(Xi):= {X(,

A(S-Q)+(S+Q@)4; =0, ()

i€m
then any member A, in the polytope P{4;) is Hurwitz-stable.

The stability follows from the fact that (1) guarantees the existence
of the parameter-dependent quadratic Lyapunov function of the form

m =1
P, = (Zﬂ'iﬁ_]>
i=1

which covers A, . In(2), P; are the solutions to the Lyapunov equations

3

2

AP+ P A = —2Q, i €m.
For the proof, the following lemma is crucial.

Lemma [4]: 1f amatrix A is Hurwitz-stable, then forany Q = Q' >
0 it can be written as

A=PH(5-Q) @
where P = P’ > 0 is the solution to the Lyapunov equation
A'P4+ PA=-2Q 5)
and § = -5’ is given by
§=3(PA-A'P). (6)

Remark 1: The expression (4) states that the symmetric part of 4’ P
is —Q and the antisymmetric one —.5. Furthermore, by eliminating P
from (5) and (6), we obtain
A'S+S4=4Q-0A )]
Equations (5) and (7) show that once Q is given, P and S can be deter-
mined uniquely through them, respectively. Thus, (4) has the freedom
of choosing an arbitrary positive definite matrix Q.
We are now able to give the proof of the theorem.
Proof of Theorem 1: Since (1) can be written as
AiS+54; = 4:Q — QA,, 8

i€Em
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the lemma underscores that .4; can be expressed as

Ai=P7N(S-Q). ®

With these relations, we see that any 4, € P(.4;) can take the form

of
As = f: a;d;
=)

where

i €m.

m

=) aPTU(S-Q)=PH(S-Q) (0
i=1

m -1
P = (Za';l’,-—]) . (1)
=1
Because P, = I, > 0, resorting again to the lemma, we can confirm
that A4 is Hurwitz-stable and P, satisfies the Lyapunov equation

ALP, + Pod, = =2Q. (12)

This shows the proof is complete. Q.E.D.

Remark 2: Condition (1) is indeed a necessary and sufficient con-
dition for the existence of the Lyapunov function of the form (2) where
P; given by (3) satisfies P; A; —A:P, = 25, i € m. To figure this out,
note that the sufficiency part is just the foregoing proof. On the other
hand, the lemma and Remark 1 indicate that the conditions imposed
upon P; result in (1), giving the necessity part. It thus turns out that (1)
is an exact existence condition for the parameter-dependent Lyapunov
function.

Note that (8) requires that ;. A;. / € m are all equal. This additional
constraint enables us to obtain an exact existence condition of the spe-
cific Lyapunov function of the form (11) as remarked above,

When €2 and S are given, the condition (1) of the theorem specifies
a linear set in n?-dimensional matrix entry space. The set, denoted by
(@, §), includes the given polyope of matrices. With the constraints,
Q@=@Q >0and S = -5, (1) gives a family of parameterized
linear sets Ug, sT'(Q, S) in the entry space of the system matrix A.
Every polytope within the intersection of any one of the sets and of the
Hurwitz-stability regions in the entry space has a parameter-dependent
Lyapunov function. An important observation is that the whole Hur-
witz-stability regions in the entry space are also covered by families of
the set. I'(Q. S).

The theorem owes its result to the linearity of the representation of a
Hurwitz matrix 4 with respect to P~ for a given S and Q as in (4). If
the setting of these matrices is interchanged, i.e., with P being fixed, we
arrive at another stability condition, which turns out to be a well-known
extreme point result on quadratic stability of polytopes of matrices. We
are reminded that a set of systems is said to be quadratically stable,
if there exists a fixed quadratic Lyapunov function which covers the
systems [10].

Quadratic Siability Condition for Matrix Polytopes (see [2, pp.
343-346]).

A necessary and sufficient condition for a polytope P(A;) to be
quadratically stable is the existence of a fixed solution P = P’ > 0
to the equations

' (13)

where Q: = Q! are some positive definite matrices. In other words,
(13) is the quadratic stability conditions for the set of the extreme ma-
trices. Under these conditions, any 4. € P(.4;) can also be repre-
sented by

A:-P-l— P4; = =-2Q;. i€Em

Ao = P—](Sa _Qo)

where Qo = 370, aiQi € P(Q:),Sa = X, a:iS: € P(S:),and
5; are solutions to (8) with @ replaced by Q..

14)
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Notice that exact conditions are also obtained by strengthening the
stability concept. Because both the outcomes of the theorem and the
above result originate from the bilinearity of the same matrix expres-
sion (4), each of them can be regarded as a kind of dual of the other
with respect to (4). The quadratic stability condition boils down to the
problem of checking the existence of a common quadratic Lyapunov
function, a typical common Lyapunov function problem. Although a
complete analytical characterization of the set { 4, } having a Lyapunov
function is nonexistent, several its subclasses are found [6].

I1I. ILLUSTRATIVE EXAMPLE AND COMMENTS

In this section, the previous results are applied for illustration to a
Lyapunov function problem of a polytope of polynomials and some
comments are given on the results in connection with existing anal-
ysis tools that use parameter-dependent Lyapunov functions, We first
consider the Lyapunov function problem of a polytope of polynomials.
Polynomials are linked here to quadratic Lyapunov functions through a
corresponding companion form. Then the Lyapunov functions are ob-
tained as solutions to the Lyapunov inequalities with the coefficients in
the companion form. For example, a second-degree polynomial, s? 4+
a2s + ay, is related to the companion form

A= [ 0 ! ]
—daj —as

and this gives a quadratic Lyapunov function. Observe that through the
companion form polytopes of matrices have a one-to-one correspon-
dence with those of polynomials. Our concern is not the stability of
polytopes of polynomials but the existence of certain quadratic Lya-
punov functions which cover them. For the sake of simplicity, consider
the case of n = 2 and concentrate on the first quadrant of the coef-
ficient plane (a1, a2). This makes us free from the stability consider-
ation for the polynomials. With abuse of expressions, a region in the
coefficient plane is said to have a quadratic Lyapunov function (fixed
or otherwise), if a set of the corresponding matrices is covered by the
Lyapunov function. We are interested in the types of Lyapunov func-
tions that cover certain polytopes of polynomials, which are associated
with convex polygonal regions in (a1a2) plane.
Now, setting in (7)

(15)

Q:["1 q”]. 5:[ 0 s]. A=A, (16)
g3 g2 -5 0
and solving the equation, we obtain a scalar linear relation

@1 +a1q2 — a2{gs +5) = 0. 7

Since g1 > 0and g2 > O requiregz+s > 0, (17) represents a line with
slant ¢2 /(g3 +s) > 0 and intercept ¢1 /(g3 + s) > 0 in the coefficient
plane. To see the results concretely, we set g1 =g2=1, g2 =0. s =2
in (17), giving the line I: 1 4+ a; — 2a2 = 0in (a1, a2) plane which
passes through the points I/ = U, and Va2 (see Fig. 1). Due to the
theorem, the line segment U11 V32 is covered by a parameter-dependent
Lyapunov function determined at the two extreme points, U1, and V3.
In fact, in accordance with (9) we have at these points

B R i I (R A P
o a]=5e 2] ([ 2o 3))
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Fig. 1. Coefficient plane for 2nd-degree polynomials.

Due to the theorem, an internally dividing point of the segment U'y; V32
with the ratio a1 : o, admits a parameter-dependent Lyapunov function

(O] [:15 ;]_]+a2 [?g ;;g]-l)—l

(a1, a2) € 4.

P.=

(18)

>
Il

The situation is the same for any other segments (polytopes) on the
affine set [ and any of them is covered by a certain parameter-dependent
Lyapunov function determined at its extreme points. Moreover, in light
of (17), we see that the whole triangle UV I¥" where V' is any point
on ! can be filled with continuum of lines with the form of (17). In
this sense, the triangle is densely covered by a family of parameter-
dependent Lyapunov functions, whose member function corresponds
to some specified values of ¢1. ¢2. g3 and s.

Now, we pass to results that the quadratic stability condition yields
for the triangle. They are in fact available in recent literature, which
considers quadratic stability of interval polynomials [5]. The most rel-
evant fact among them is that while any a2 -axis-parallel segment is
quadratically stable, no a1 -axis counterpart can remain quadratically
stable as the segment length grows. Taking account of the continuity of
the quadratic stability property in the coefficient plane, things about the
stability for the triangle are as follows. If we choose 17 near enough to
U7, the triangle is quadratically stable. As V" moves away from U on/, it
reaches the point where the quadratic stability property can no longer be
sustained. For any 1" beyond that point on the line /, quadratic stability
holds no more for the resulting triangle. Note, however, any segments
in the first quadrant of (a;. a2) plane are quadratically stable so long
as they are az-axis-parallel. The comparison made thus far between
the outcomes of the two Lyapunov functions appears to illuminate a
rough contrast between their natures: global property v's, local one in
the matrix entry space. To sum up generally, both results do not have
any inclusion relations and can therefore supplement each other.

In the literature, we can find some results that analyze affinely per-
turbed linear systems with affine parameter-dependent Lyapunov func-
tions [7]-[9]. When the affine system expressions are rearranged in
polytopic forms, these results could provide an answer to the stability
questions of a polytope of system matrices using Lyapunov equations
at the generating matrices. The main difference of the theorem from the
results of [8] and [9] is that the theorem gives an exact existence condi-
tion of a specific Lyapunov function as stated in Remark 2, whereas in
(8] or [9] the condition is merely a sufficient one for the affine Lya-
punov function. The result in [7] is exact, but one has to construct
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augmented Lyapunov functions including parameters at the corner ma-
trices. Another apparent difference is the types of the Lyapunov func-
tions: in [7]-{9] affine and in the theroem “inverse affine.” As to sharp-
ness of the condition, however, the theorem would not be able to claim
superiority in general, because it stems from the same Hurwitz matrix .
expression as the quadratic stability result, a special case of the affine
type Lyapunov functions, and also because it imposes the condition that
the right-hand side of the Lyapunov equation being constant. Notwith-
standing, the theorem points out the condition under which a new type
of parameter-dependent Lyapunov function that covers the polyope of
matrices exists.

IV. CONCLUDING REMARKS

For a polytope of Hurwitz-stable matrices, a sufficient Hurwitz-sta-
bility condition is derived. The condition is a linear relation in the
matrix entry space for each generating extreme matrix. If the con-
ditions are met, there exists a parameter-dependent Lyapunov func-
tion which ensures the stability of the polytope. The result bears a
kind of dual relationship with the established extreme point result on
quadratic stability of a polytope of matrices in the sense that both come
from the bilinearity of the Hurwitz matrix expression. Applications to
Lyapunov function problems for polytopes of second-degree polyno-
mials are shown for illustration. A Schur-stability counterpart possibly
holds true and studies thereof are underway. Computational issues for
checking the obtained condition also remain to be examined.
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