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Scattering of TM Plane Wave from Periodic Grating with Single
Defect

Kazuhiro HATTORI†a), Junichi NAKAYAMA†b), and Yasuhiko TAMURA†c), Members

SUMMARY This paper deals with the scattering of a TM plane wave
from a periodic grating with single defect, of which position is known. The
surface is perfectly conductive and made up with a periodic array of rect-
angular grooves and a defect where a groove is not formed. The scattered
wave above grooves is written as a variation from the diffracted wave for
the perfectly periodic case. Then, an integral equation for the scattering
amplitude is obtained, which is solved numerically by use of truncation
and the iteration method. The differential scattering cross section and the
optical theorem are calculated in terms of the scattering amplitude and are
illustrated in figures. It is found that incoherent Wood’s anomaly appears at
critical angles of scattering. The physical mechanisms of Wood’s anomaly
and incoherent Wood’s anomaly are discussed in relation to the guided sur-
face wave excited by the incident plane wave. It is concluded that inco-
herent Wood’s anomaly is caused by the diffraction of the guided surface
wave.
key words: scattering, periodic grating, defect, TM plane wave, rectangu-
lar grooves, incoherent Wood’s anomaly, guided surface wave

1. Introduction

In electronics, there are many devices which have periodic
structure with rectangular parallel lines such as LCD elec-
trodes. Defects in such periodic structure have been a se-
rious problem for years. For developing an optical method
of measurement and inspection, this paper studies a simple
model, which is the wave scattering from a periodic array of
rectangular grooves with single defect shown in Fig. 1.

Although there are many works [1]–[7] on the scatter-
ing and diffraction by a single groove, a finite number of
grooves and an infinite periodic array of grooves without
any defects, the scattering from a periodic grating with de-
fects has not been studied extensively. However, we have
studied the scattering of a TE plane wave from a periodic
grating with single defect [8].

This paper deals with the TM case. The surface is per-
fectly conductive and made up with a periodic array of rect-
angular grooves and a defect at a known position, where a
groove is not formed. We write the wave field above the
grooves as a sum of the diffracted wave and the scattered
wave as a variation from a perfectly periodic case. On the
other hand, the field inside the grooves is expressed as a
sum of guided modes with unknown mode amplitudes by
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Fig. 1 Scattering of TM plane wave from a periodic grating with single
defect. The surface is a periodic array of rectangular grooves and has a de-
fect where a groove is not formed. ψi(x, z) is the incident wave and ψs(x, z)
is the scattered wave. θ is the angle of incidence, φ is the scattering angle,
L is the period of surface, w and d are the width and the depth of groove.

use of the modal expansion method [9]. We derive an inte-
gral equation for the scattering amplitude from the boundary
condition. Then, we numerically obtain the scattering am-
plitude by use of truncation and the iteration method starting
from the diagonal approximation solution as an initial value.
The differential scattering cross section and the optical the-
orem are calculated in terms of the scattering amplitude and
are illustrated in figures.

As is well known, in the perfectly periodic case,
Wood’s anomaly appears for critical angles of incidence as
rapid variations of the diffraction powers. In the case of a pe-
riodic grating with defect, however, another anomaly, which
we call incoherent Wood’s anomaly, appears at critical an-
gles of scattering as rapid variations in the angular distribu-
tion of the scattering. In this paper, we discuss the physi-
cal mechanisms of Wood’s anomaly and incoherent Wood’s
anomaly. Incoherent Wood’s anomaly has been found in
cases of periodic random surfaces [10], [11]. However, we
newly find that such anomaly appears in the case of a peri-
odic surface with single defect.

The time dependence e−i2π f0t is assumed and sup-
pressed throughout the paper.

2. Mathematical Formulation of the Problem

2.1 Periodic Grating with Single Defect

Let us consider a periodic array of rectangular grooves with
single defect at x = 0 (See Fig. 1). We write such an array
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as

z = f (x) = fp(x) + d · u(x|w), (1)

fp(x) = −d
∞∑

g=−∞
u(x−gL|w), (2)

where L is the period, w and d are the width and the depth of
a groove. fp(x) is a perfectly periodic surface without defect
and the second term in (1) expresses the defect. Here, u(x|w)
is a rectangular groove defined as

u(x|w) =

{
1, |x| ≤ w/2,
0, |x| > w/2. (3)

It has the orthogonal property such that

u(x − gL|w)u(x − g′L|w) = δgg′u(x − gL|w),

(g, g′ = 0,±1,±2, · · ·), (4)

where δgg′ is Kronecker’s delta. For convenience, we put kL

and kw as

kw = π/w, kL = 2π/L, (5)

and we define an auxiliary function cm(q) as follows.

cm(q) =
∫ ∞
−∞

u(x|w) cos(mkw(x + w/2))e−iqxdx, (6)

where m is integer. Note that cm(q) ∼ 1/q when |q| becomes
large.

We denote the y component of the magnetic field by
Ψ(x, z), which satisfies the Helmholtz equation[

∂2

∂x2
+
∂2

∂z2
+ k2

]
Ψ(x, z) = 0, (7)

in the region z > f (x). Here, k = 2π/λ is wavenumber and
λ is wavelength. On the surface z = f (x), the wave field
Ψ(x, z) satisfies the Neumann condition,

∂Ψ(x, z)
∂n

∣∣∣∣∣
z= f (x)

= 0. (8)

We write the incident plane wave ψi(x, z) as

ψi(x, z) = eipxe−iβ0(p)z, p = −k cos θ, (9)

βn(p) = β0(p+nkL) =
√

k2−(p+nkL)2, (10)

Im[βn(p)] ≥ 0, (n = 0,±1,±2, · · ·), (11)

where θ is the angle of incidence (See Fig. 1) and Im stands
for the imaginary part.

2.2 Diffraction by a Perfectly Periodic Grating

First, we consider a perfectly periodic case. For the re-
gion z ≥ 0, we write the y component of the magnetic
field Ψ̂1(x, z) as a sum of the incident wave ψi(x, z) and the
diffracted wave ψd(x, z) due to the periodicity of the surface,

Ψ̂1(x, z) = eipxe−iβ0(p)z+ ψd(x, z), (12)

ψd(x, z) = eipx
∞∑

n=−∞
An(p)einkL x+iβn(p)z. (13)

Here, An(p) is the amplitude of the nth order Floquet mode.
On the other hand, by use of the modal expansion method
[9], we write the y component of the magnetic field inside
the grooves Ψ̂2(x, z) as a sum of the guided modes,

Ψ̂2(x, z) =
∞∑

g=−∞
u(x − gL|w)eipgL

∞∑
m=0

Qc
m(p)

×cos(mkw(x+w/2−gL)) cos(γm(z+d)), (14)

γm =
√

k2 − (mkw)2, (15)

where Qc
m(p) is the amplitude of the guided mode which we

call the base component, and γm is the propagation constant
of the mth guided mode. Note that the guided mode number
starts from m = 0 in the TM case.

The energy conservation relation for the perfectly peri-
odic case can be obtained [8] as

1 =
∞∑

n=−∞
Re[βn(p)]|An(p)|2/β0(p). (16)

Here, Re denotes the real part and Re[βn(p)]|An(p)|2/β0(p)
is the nth order relative diffraction power, which will be il-
lustrated below.

2.3 Solution for a Perfectly Periodic Grating

Let us determine An(p) and Qc
m(p) from the continuity of

both the magnetic field and the electric field at z = 0.
We start with a boundary condition [∂Ψ̂1/∂z −

∂Ψ̂2/∂z]|z=0 = 0. Multiplying this by e−i(p+nkL)x and inte-
grating over one period L, we get

iβn(p)LAn(p) − iβ0(p)Lδn0

= −
∞∑

m=0

γmQc
m(p) sin(γmd)cm(p+nkL). (17)

Next, we have another boundary condition
∑∞
g=−∞ u(x −

gL|w)[Ψ̂1(x, 0) − Ψ̂2(x, 0)] = 0. Taking Fourier transform of
this after multiplying u(x− gL|w) × cos(mkw(x+w/2− gL)),
we obtain

∞∑
n=−∞

An(p)cm(−p−nkL) + cm(−p)

=
wQc

m(p)
2

cos(γmd)(1+δm0). (18)

Here, (17) and (18) are infinitely dimensional equations. By
use of truncation [9], [12], we will numerically solve (17)
and (18) to obtain An(p) and Qc

m(p).
In what follows, we always consider a non-resonance

case, that is, cos(γmd) � 0 for any m. Eliminating Qc
m(p)

from (17) and (18), we get an equation for An(p) as

∞∑
l=−∞

[iβn(p)δnl+kLM(p+nkL, p+lkL)]Al(p)
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= iβ0(p)δn0 − kLM(p+nkL, p), (19)

where kL is defined in (5), iβ0(p)δn0 is an excitation by the
incident wave and M(s, s′) is a coupling factor defined as

M(s, s′) =
∞∑

m=0

γm tan(γmd)
πw(1 + δm0)

cm(s)cm(−s′), (20)

where the difference s − s′ works as a Bragg vector. When
the depth of the grooves d is small, M(s, s′) becomes small.
We regard (19) as an infinitely dimensional matrix equation
for An(p). Thus, the inverse matrix of [iβn(p)δnl+kLM(p+
nkL, p+ lkL)] can be considered as Green’s function of the
periodic grating in the spectral domain. Since the periodic
surface fp(x) has a discrete spectrum, M(p + nkL, p + lkL)
represents the discrete Bragg coupling from Al(p) to An(p),
where (p+nkl)−(p+lkL) = (n−l)kL is the Bragg vector trans-
forming the wave vector p+ lkL of Al(p) to p+nkL of An(p).
When p = −k cos θ ≈ ±k + lkL (l = ±1,±2, · · ·) holds, i.e.,
θ ≈ cos−1(∓1− lkL/k), a well-known phenomenon, so-called
Wood’s anomaly [12], [13], occurs as a rapid variation of the
diffraction amplitude. However, as far as the authors know,
there have been few discussions on the physical mechanism
of Wood’s anomaly in the periodic cases. We will point out
that such an anomaly is caused by a coupling with guided
surface waves [11] in what follows.

In the single defect case, however, the surface f (x) has
a continuous component in the spectrum. Thus, a contin-
uous Bragg coupling appears in the case with defect, as is
discussed below.

2.4 Scattering from a Periodic Grating with Single Defect

The single defect in a periodic grating generates the scat-
tering. We express such scattering as a variation from the
diffracted wave for the perfectly periodic case. Thus, we
write for z > 0,

Ψ1(x, z)= Ψ̂1(x, z) + ψs(x, z), (21)

ψs(x, z)=eipx
∫ ∞
−∞

a(s|p)eisx+iβ0(p+s)zds, (22)

where ψs(x, z) is the scattered wave due to the defect and
a(s|p) is the scattering amplitude. Since ψs(x, z) is scattered
from the single defect, we assume that ψs(x, z) satisfies Som-
merfeld’s radiation condition, that is, ψs(r cos θ, r sin θ) ∼
f (θ)eikr/

√
kr (r =

√
x2 + z2) and is expected to decay at

kr → ∞.
On the other hand, we write the wave field inside the

grooves Ψ2(x, z) as a sum of the wave field for the perfectly
periodic grating and the fluctuated term ψG(x, z) due to the
defect.

Ψ2(x, z) = Ψ̂2(x, z) + ψG(x, z),

ψG(x, z)=
∞∑

g=−∞
u(x−gL|w)eipgL

∞∑
m=0

q(g)
m (p)

×cos(mkw(x+w/2−gL)) cos(γm(z+d))

− u(x|w)
∞∑

m=0

Qc
m(p)

× cos(mkw(x+w/2)) cos(γm(z+d)). (23)

Here, q(g)
m (p) is the perturbed amplitude of the mth guided

mode in the gth groove. Note that q(0)
m (p) ≡ 0 for all m since

a groove is not formed at g = 0.

2.5 Optical Theorem and Scattering Cross Section

The optical theorem for the single defect case can be ob-
tained from the identity Im[divΨ1gradΨ∗1] = 0 as [8]

Pc= Φs, (24)

Pc= −2
k

∞∑
n=−∞

Re[β∗n(p)]Re[a(kLn|p)A∗n(p)], (25)

Φs=
1
k

∫ ∞
−∞
Re[β0(p+s)]|a(s|p)|2ds=

L
2π

∫ π

0
σ(φ|θ)dφ, (26)

which is an extension of the forward scattering theorem
[14], [15]. Here, the asterisk denotes the complex conjugate,
Pc is related to the reduction of the scattering amplitude, Φs

expresses the total scattering cross section and σ(φ|θ) is the
differential scattering cross section per period

σ(φ|θ) = 2πk sin2 φ |a(−k cosφ − p|p)|2
L

, (27)

where φ = cos−1(−(p + s)/k) is a scattering angle (See
Fig. 1). Note that σ(φ|θ) has no dimension. The optical the-
orem (24) can be used to estimate accuracy of a numerical
solution.

2.6 Scattered Wave Field by Single Defect

Let us obtain equations for a(s|p) and q(g)
m (p) from the conti-

nuity of both the magnetic field and the electric field. From
[∂Ψ1/∂z−∂Ψ2/∂z]|z=0 = 0, we have [∂ψs/∂z−∂ψG/∂z]|z=0 =

0. Taking Fourier transform of this relation and multiplying
e−i(p+s)x/2π, we obtain an equation for a(s|p) and q(g)

m (p) as

iβ0(p+s)a(s|p)=
1

2π

∞∑
m=0

γmcm(p+s) sin(γmd)

×
⎡⎢⎢⎢⎢⎢⎢⎣Qc

m(p)−
∞∑

g=−∞
e−isgLq(g)

m (p)

⎤⎥⎥⎥⎥⎥⎥⎦. (28)

On the other hand, from
∑
g�0 u(x − gL|w)[Ψ1(x, 0) −

Ψ2(x, 0)] = 0, we obtain
∑
g�0 u(x − gL|w)[ψs(x, 0) −

ψG(x, 0)] = 0. Then, taking Fourier transform of this af-
ter multiplying u(x − gL|w) × cos(mkw(x + w/2 − gL)), we
obtain
(
1−δg0

)∫ ∞
−∞

cm(−p−s)eisgLa(s|p)ds

=
w

2
q(g)

m (p) cos(γmd)(1+δm0). (29)

Here, (28) and (29) are infinitely dimensional. However,
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these equations can be solved approximately by use of trun-
cation.

Substituting (29) into (28), we get

iβ0(p+s)a(s|p)=
1

2π

∞∑
m=0

γmcm(p+s) sin(γmd)

×
⎛⎜⎜⎜⎜⎜⎜⎝Qc

m(p)−
∞∑

g=−∞
e−isgL 1 − δg0

w
2 cos(γmd)(1+δm0)

×
∫ ∞
−∞

cm(−p−s′)eis′gLa(s|p)ds′
⎞⎟⎟⎟⎟⎟⎟⎠ . (30)

Taking the sum on g and using the Fourier series represen-
tation of delta pulse series

∞∑
g=−∞

eisgL = kL

∞∑
l=−∞

δ(s−lkL), (31)

then we get an integral equation for the scattering amplitude
a(s|p) as

∞∑
l=−∞

[iβ0(p+s)δl0+kLM(p+s, p+s+lkL)]a(s+lkL|p)

=

∞∑
m=0

γm

2π
cm(p+s) sin(γmd)Qc

m(p)

+

∫ ∞
−∞

M(p+s, p+s′)a(s′|p)ds′, (32)

which is analogous in form with (19). Here, M(p + s, p +
s + lkL) on the left-hand side represents a discrete Bragg
coupling due to the surface periodicity, whereas M(p+ s, p+
s′) on the right-hand side is a continuous coupling due to the
single defect.

We regard (32) as an infinitely dimensional matrix
equation for a(s|p). Thus, the inverse matrix of [iβ0(p+
s)δl0+kLM(p+ s, p+ s+ lkL)] may be considered as Green’s
function of the periodic grating with single defect. When
p + s = −k cosφ ≈ ±k + lkL (l = ±1,±2, · · ·) holds,
the amplitude of the scattered wave into the direction φ ≈
cos−1(∓1 − lkL/k) changes rapidly as a function of the scat-
tering angle φ, which we call incoherent Wood’s anomaly.
Such an anomaly may occur due to a strong coupling of the
scattered wave with guided surface waves. We will discuss
the physical mechanism of incoherent Wood’s anomaly and
show numerical examples of the anomaly in the angular dis-
tribution of the scattering below.

In what follows, we solve (32) by iteration.

2.7 Wood’s Anomaly and Incoherent Wood’s Anomaly

When βn(p) in (19) vanishes, the diffraction amplitude An(p)
may become large in a shallow case with d 
 λ. As is well
known, this causes Wood’s anomaly, which appears at criti-
cal angles of incidence as rapid variations of the diffraction
powers against the angle of incidence.

First, we point out a mathematical fact. In a flat

(a) Free guided waves along a flat surface.

(b) Guided surface waves on a periodic grating.

Fig. 2 (a) Free guided waves propagating into the x direction along a
perfectly conductive flat surface without any roughness. Such free guided
waves have the Rayleigh wavenumber +k and −k, and satisfy the Helmholtz
Eq. (7) and the Neumann boundary condition ∂Hy/∂z = 0 at z = 0. (b)
Guided surface waves propagating along the perfectly conductive grating.
Guided surface waves have complex propagation constants ±sp into the x
direction.

surface case without any roughness, TM plane waves
Hy = e±ikx±iβ0(±k)z = e±ikx are exact solutions of the
Helmholtz Eq. (7) and satisfy the Neumann boundary con-
dition ∂Hy/∂z = 0 at z = 0 (See Fig. 2(a)). Therefore, a
plane wave with the Rayleigh wavenumber +k or −k is a
free guided wave propagating along the flat surface [16],
[17]. Such a free guided wave does not exist in the TE case.
When the surface has a periodic structure, such a free guided
wave is scattered by the surface roughness and decays expo-
nentially with propagation distance. As a result, it becomes
a guided surface wave with a complex propagation constant
+sp or −sp into the x direction (See Fig. 2(b)). Mathemat-
ically, such ±sp are given as complex roots of the determi-
nant of [iβn(p)δnl + kLM(p + nkL, p + lkL)]. When the sur-
face roughness is sufficiently small, however, we may expect
that the complex propagation constant sp exists very close
to the Rayleigh wavenumber k†. In the case of a perfectly
periodic surface, the surface has a discrete spectrum, and
such a guided surface wave is excited by the incident wave
due to the discrete Bragg coupling. Therefore, such excita-
tion takes place only for the critical angles of incidence θ[l]

W ,
which are determined by

k2 − (−k cos θ[l]
W − lkL)2 = 0, (l = ±1,±2, · · ·). (33)

When the angle of incidence θ is critical, such a guided sur-
face wave is excited and may have a large amplitude. Then,
it is scattered by the periodic surface again. Thus, the mul-
tiple scattering takes place for a critical angle of incidence,
which causes Wood’s anomaly. As a result, Wood’s anomaly
appears as rapid variations of the diffraction powers. Note
that, at θ = θ[l]

W , the lth order Floquet mode becomes cutoff.
In the case of a periodic grating with single defect, an-

other anomaly, which we call incoherent Wood’s anomaly,
†Since this complex propagation constant sp should exist very

close to the Rayleigh wavenumber k in the shallow case, we as-
sume Re(sp) ≈ k and put such complex sp as real k in the following
discussion for simplicity.
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(a) Diffraction of the guided surface wave with the wavenumber near −k.

(b) Diffraction of the guided surface wave with the wavenumber near +k.

Fig. 3 Incoherent Wood’s anomaly at critical angles of scattering (a)
φ[+1]
− and φ[+2]

− and (b) φ[−1]
+ and φ[−2]

+ for L = 1.3λ.
(a) Guided surface wave with the wavenumber near −k is diffracted into
−k+kL and −k+2kL by the periodic grating. It is also diffracted to −k+3kL

in the evanescent region. (b) Guided surface wave with the wavenumber
near +k is diffracted into +k− kL and +k− 2kL by the periodic grating. It is
also diffracted to +k − 3kL in the evanescent region.

appears at several angles of scattering as rapid variations in
the angular distribution of the scattering. The surface spec-
trum has a discrete component due to the periodicity and
a continuous component due to the defect. Because of the
scattering by the continuous component, such a guided sur-
face wave is always excited by the incident plane wave with
any angle of incidence and then diffracted into discrete di-
rections by the discrete component. To describe these pro-
cesses, we introduce a critical wavenumber s[l]

± as

s[l]
± = ±k − p + lkL, (l = 0,±1,±2, · · ·). (34)

Let us consider the solution a(s|p) of (32). When β0(p+
s) = 0 and s = s[0]

± = ±k − p, the solution a(s|p) = a(s[0]
± |p)

has a large amplitude, because M(p+ s, p+ s+ lkL) is small
in the shallow case. We regard a(s[0]

± |p) as the amplitude
of the guided surface wave, which is diffracted into discrete
directions. This means that a(s[l]

± |p) = a(±k−p+lkL|p) could
have a large amplitude for any integer l, due to the discrete
Bragg coupling from s[0]

± = (±k − p) to s[l]
± = (±k − p +

lkL). Thus, we may observe incoherent Wood’s anomaly at
a critical angle of scattering φ[l]

± (See Fig. 3),

p + s[l]
± = ±k + lkL = −k cosφ[l]

± , (35)

φ[l]
± = cos−1

(
∓1 − l

λ

L

)
, (l = ±1,±2, · · ·), (36)

where the signs ± and ∓ go together in (36). In the numerical
results below, we will see that |a(s|p)| has a steep peak or dip
at s = s[l]

± = ±k + lkL. Note that s[l]
± and φ[l]

± only depend on

the period L and the wavelength λ and are independent of
the angle of incidence θ.

Incoherent Wood’s anomaly has been found in cases
of periodic random surfaces [10], [11]. However, we newly
show that it takes place in such a deterministic case as a peri-
odic surface with single defect. We also note that incoherent
Wood’s anomaly appears in the TM case but does not occur
in the TE case [8].

3. Numerical Examples

3.1 Perfectly Periodic Case

Here, we obtain some numerical examples for the perfectly
periodic case. We determine the diffraction amplitude An(p)
and the base component Qc

m(p) by introducing the truncation
numbers Nd and Nm. Nd is the truncation number of the
diffraction orders and Nm is that of the guided modes inside
the groove in the summation (17) and (18), which means
that we assume

An(p) = 0, |n| > Nd,

Qc
m(p) = 0, m > Nm. (37)

In this paper, we set

Nd = 10, Nm = 20. (38)

Thus, [An(p)] becomes a (2Nd+1)-vector, [Qc
m(p)] becomes

an (Nm+1)-vector in the calculation below.
Figure 4 illustrates the relative diffraction power

against the angle of incidence θ for the periods L = 1.3λ
(upper figure) and L = 1.7λ (lower figure) with the width
w = 0.7λ and the depth d = 0.1λ. The incident power is
normalized to 1. The line ‘(0)’ means the relative power of
the 0th order Floquet mode, i.e, Re[β0(p)]|A0|2/β0(p), and
the line ‘(1)’ that of the 1st order Floquet mode, and so on.
Since the energy error is always less than 10−10, the trunca-
tion numbers Nd and Nm in (38) are sufficient for the per-
fectly periodic case. For L = 1.3λ, the diffraction power
changes rapidly near the critical angles θ[−2]

W = 57.42◦ and
θ[1]

W = 76.66◦ given by (33). For L = 1.7λ, Wood’s anomaly
appears at critical angles θ[−3]

W = 40.12◦, θ[1]
W = 65.68◦ and

θ[−2]
W = 79.84◦.

3.2 Single Defect Case

Let us solve the integral Eq. (32) to obtain numerical exam-
ples for the single defect case. Here, we only consider the
case with w = 0.7λ.

Since (32) is an equation for infinitely many unknowns
and has an integral term including a(s′|p), it is still an open
question how to solve (32). In this paper, we attempt to solve
(32) approximately by the iteration method. However, we
introduce a single scattering approximation and a diagonal
approximation.

First, neglecting M(p + s, p + s + lkL) and the integral
term in (32), we obtain a single scattering solution aS (s|p)
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Fig. 4 Relative diffraction power against the angle of incidence θ for pe-
riods L = 1.3λ(upper figure), 1.7λ(lower figure) with depth d = 0.1λ and
width w = 0.7λ. Wood’s anomaly occurs at angles where one particular
diffraction mode disappears.

as

aS (s|p)=
1

2π

Nm∑
m=0

γmcm(p+s) sin(γmd)Qc
m(p)

iβ0(p+s)
, (39)

where
∑Nm

m=0γmcm(p+ s) sin(γmd)Qc
m(p) represents the effect

of the single defect, however, the discrete Bragg coupling
and the continuous Bragg coupling are neglected. Since the
factor 1/β0(p + s) is the free space Green’s function in the
spectral domain, (39) does not involve effects of the scatter-
ing by the periodic surface.

Next, neglecting the integral term in (32), we obtain
an equation for the diagonal approximation aD(s|p) with the
truncation numbers Nl and Nm as

Nl∑
l=−Nl

[
iβ0(p+s)δl0+kLM(p+s, p+s+lkL)

]
aD(s+lkL|p)

=

Nm∑
m=0

γm

2π
cm(p+s) sin(γmd)Qc

m(p), (40)

which is solved numerically. Such the diagonal approxima-
tion is analogous to the Gaussian random rough case dis-
cussed in [18]. The diagonal approximation aD(s|p) is then
used as an initial guess of the iterative solution below.

Fig. 5 Diagonal approximation aD(s|p) with L = 1.3λ, d = 0.1λ, w =
0.7λ and θ = 90◦ (p = 0). aD(s|p) has steep peaks and dips at s ≈ +k and
s ≈ s[l]

± = ±k + lkL (l = ±1,±2, · · ·).

To solve (32), however, we rewrite (32) as an iterative
form,

Nl∑
l=−Nl

[
iβ0(p+s)δl0+kLM(p+s, p+s+lkL)

]
a(N)(s+lkL|p)

=

Nm∑
m=0

γm

2π
cm(p+s) sin(γmd)Qc

m(p)

+

∫ ξ−p

−ξ−p
M(p+s, p+s′)a(N−1)(s′|p)ds′, (41)

where (N) is the iteration number and ξ is the truncated
bandwidth of a(s|p). We set the initial value as a(0)(s|p) =
aD(s|p) and iteration is repeated until N = Nite. In this paper,
we set Nl, Nite and ξ as

Nl = 11, Nite = 21, ξ = 3k. (42)

Figure 5 illustrates the diagonal approximation aD(s|p)
against wavenumber s with L = 1.3λ, d = 0.1λ, θ = 90◦
(p = −k cos θ = 0). As is discussed above, aD(s|p) be-
comes large at s ≈ −p + k = +k, which means the guided
surface wave propagating along the surface has a large am-
plitude at the Rayleigh wavenumber β0(p + s) = 0. Such
the guided surface wave is diffracted by the periodic sur-
face. As a result, aD(s|p) has several steep peaks and dips
at s ≈ s[l]

± = ±k + lkL (l = ±1,±2, · · ·) given by (35), and
incoherent Wood’s anomaly appears in the differential cross
section at φ ≈ φ[l]

± .
Figure 6 illustrates the differential scattering cross sec-

tion σ(φ|θ) with L = 1.3λ, d = 0.1λ and θ = 60◦. Here,
the iterative solution by (41) is compared with the single
scattering solution (39). We see that, in the differential
scattering cross section σ(φ|θ) by the iterative solution, in-
coherent Wood’s anomaly appears near the critical angles
of scattering, which are calculated by (36) with L = 1.3λ
as φ[−2]

+ = 57.42◦, φ[1]
− = 76.66◦, φ[−1]

+ = 103.34◦ and
φ[2]
− = 122.58◦. It is important to note that the iterative solu-

tion a(N)(s|p) gives σ(π|θ) = 0 and σ(0|θ) = 0, which mean
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Fig. 6 Comparison of differential scattering cross section σ(φ|θ) by nu-
merical solution and single scattering approximation with L = 1.3λ, d =
0.1λ and w = 0.7λ and θ = 60◦.

Fig. 7 Differential scattering cross section σ(φ|θ) for θ = 60◦ and 76◦
with L = 1.3λ, d = 0.1λ and w = 0.7λ.

that no scattering takes place into grazing directions due to
the periodic surface. On the other hand, the single scatter-
ing approximation aS (s|p) yields no peaks and dips in the
differential scattering cross section σ(φ|θ). But it gives non-
vanishing amplitudes for σ(π|θ) and σ(0|θ). This is because
the single scattering approximation neglects the scattering
by the periodic surface. In the following calculation, the
iterative solution a(N)(s|p) is used to evaluate σ(φ|θ).

Figure 7 illustrates σ(φ|θ) for θ = 76◦ and 60◦ with
L = 1.3λ and d = 0.1λ. This figure shows that the critical
scattering angles at which incoherent Wood’s anomaly ap-
pears are independent of the incident angles θ. For θ = 76◦,
however, the total scattering cross section becomes much
larger than that with θ = 60◦. This is because θ = 76◦ is
close to a critical angle of incidence θ[1]

W = 76.66◦. This
point will be shown later.

Figure 8 illustrates σ(φ|θ) for L = 1.3λ and L = 1.7λ
with d = 0.1λ and θ = 60◦. It can be seen that scattering
angles at which incoherent Wood’s anomaly appears depend
on the period L and the wavelength λ. This is because φ[l]

± is
dependent on the period. Figure 9 illustrates σ(φ|θ) for d =

Fig. 8 Differential scattering cross section σ(φ|θ) for L = 1.3λ and 1.7λ
with w = 0.7λ, d = 0.1λ and θ = 60◦.

Fig. 9 Differential scattering cross section σ(φ|θ) for d = 0.1λ and d =
0.05λ with L = 1.3λ, and θ = 60◦(upper figure), and the behavior of σ(φ|θ)
near φ[l]

W (lower figure). Widths of the peaks and dips are smaller for d =
0.05λ.

0.1λ and d = 0.05λ with L = 1.3λ and θ = 60◦. Behavior of
σ(φ|θ) near φ[−2]

+ and φ[1]
− is shown in the lower figure. It is

found that, in the shallow case with d = 0.05λ, anomalous
peaks and dips become narrow and steep.

Figure 10 illustrates the total scattering cross section
Φs and the reduction of the scattering amplitude Pc against
θ for L = 1.3λ, d = 0.1λ in the upper figure. The total
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Fig. 10 Optical theorem against θ for w = 0.7λ with L = 1.3λ, d =
0.1λ. Pc andΦs are shown in the upper figure, while the normalized optical
theorem Pc/Φs is shown in the lower figure.

scattering cross section Φs is drawn with dots, while the re-
duction of scattering amplitude Pc is shown with line. The
normalized optical theorem Pc/Φs is shown in the lower fig-
ure. However, Pc and Φs becomes large when the angle of
incidence θ is close to one of the critical angles of incidence
θ[1]

W = 76.66◦. From the lower figure of Fig. 10, it is found
that error |1 − Pc/Φs| is less than 0.1 for any angles of inci-
dence except for ones close to the critical angle of incidence
θ[l]

W and grazing angle incidence smaller than 10◦. For the
incident angles close to θ[l]

W , error become large, which sug-
gests that the iterative solution of the integral equation has
limitation to apply and other approaches might be necessary
to obtain a highly accurate solution.

4. Conclusions

We have considered the scattering of a TM plane wave from
a periodic grating with single defect. We wrote the scattered
wave above the grooves as a variation from the diffracted
wave for the perfectly periodic case. Then, we obtained
an integral equation for the scattering amplitude, which is
solved by the iteration method using the diagonal approxi-
mation solution as an initial guess.

We found that incoherent Wood’s anomaly appears in
the differential scattering cross section for the periodic grat-

ing with single defect. The critical angles of scattering
where incoherent Wood’s anomaly appears only depend on
the period of the grating and the wavelength, and are in-
dependent of the angle of incidence. We pointed out that
incoherent Wood’s anomaly is caused by the diffraction of
the guided surface waves.

When the angle of incidence becomes close to one of
the critical angles of incidence or close to a low grazing an-
gle, error with respect to the optical theorem becomes large.
This means that our iterative solution is not good enough
for such angles of incidence. Therefore, practical methods
of approximation must be studied to obtain a highly accurate
solution.

Our discussion was limited to the single defect case in
the periodic grating. However, there are other mathematical
models of periodic grating with defects: one is a case with
double or finite number of defects of which positions are
known. Another model is a case with random defects, that
is, the defect probability is known but their positions are un-
known. It is theoretically interesting to study such periodic
gratings with defects. Although it is practically important
to consider a metallic or dielectric grating with single defect
for the optical measurement or inspection, it is still difficult
to treat the cases with defects for such materials. However,
these problems are left for the future studies.
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