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PAPER

Wave Scattering from a Finite Periodic Surface:

Spectral Formalism for TE Wave

Junichi NAKAYAMA†a), Regular Member and Yoshinobu KITADA†, Nonmember

SUMMARY This paper deals with the wave scattering from
a periodic surface with finite extent. Modifying a spectral formal-
ism, we find that the spectral amplitude of the scattered wave can
be determined by the surface field on only the corrugated part of
the surface. The surface field on such a corrugated part is then
expanded into Fourier series with unknown Fourier coefficients.
A matrix equation for the Fourier coefficients is obtained and is
solved numerically for a sinusoidally corrugated surface. Then,
the angular distribution of the scattering, the relative power of
each diffraction beam and the optical theorem are calculated and
illustrated in figures. Also, the relative powers of diffraction are
calculated against the angle of incidence for a periodic surface
with infinite extent. By comparing a finite periodic case with
an infinite periodic case, it is pointed out that relative powers of
diffraction beam are much similar in these of diffraction for the
infinite periodic case.
key words: wave scattering, finite periodic surface, diffraction
beam, non-Rayleigh approach

1. Introduction

This paper deals with the scattering from a periodically
corrugated surface with finite extent (See Fig. 1). Such
a problem was studied by Maystre [1] by an integral
equation method, where the surface field on the entire
surface is determined in the coordinate domain. On the
other hand, we introduced the periodic Fourier trans-
form [2] and the diffraction beam [3] as new concepts
of analysis. In case of a sinusoidal surface with finite
extent we presented a wave solution to calculate the an-
gular distribution of the scattering and the optical theo-
rem. However, the solution is based on the Rayleigh hy-
pothesis and hence is applicable only when the surface
deformation is small compared with the wavelength.

This paper deals with a non-Rayleigh approach
based on the the spectral formalism [4], [5], where the
surface field is determined by an integral equation and
the spectral amplitude of the scattered wave is calcu-
lated from the surface field on the entire surface. Mod-
ifying the spectral formalism, however, we present a
formulation suitable for the scattering from a finite pe-
riodic surface. We first point out a fact that the spectral
amplitude can be obtained only by the surface field on
the corrugated part of the surface. Taking this fact,
we express the surface field on such a corrugation with
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Fig. 1 Scattering of a plane wave from a periodic surface. θi

is the angle of incidence and θs is a scattering angle. W is the
width of periodic corrugation.

finite extent into Fourier series with unknown Fourier
coefficients. Then, the integral equation for the surface
field is reduced to a matrix equation for the Fourier co-
efficients. We solve the matrix equation numerically for
a sinusoidally corrugated surface to obtain the spectral
amplitude of the scattered wave, from which the angu-
lar distribution of the scattering is calculated. We also
calculate the optical theorem and the relative power of
diffraction beam.

We have been looking for a relation between the
scattering from a finite periodic surface and the diffrac-
tion by a periodic surface with infinite extent [2], [3],
[6]. We have proposed an expectation such that the rel-
ative powers of diffraction beams are much similar to
the relative powers of diffraction by an infinite periodic
surface [3]. In terms of numerical results, we briefly
discuss the validity of such expectation.

2. Diffraction Beam and Optical Theorem

This section describes a mathematical formulation of
the problem. A brief description is given on the ex-
tended Floquet form, the diffraction beam and the rel-
ative power of diffraction beam, which were introduced
previously [2], [3].

Let us consider the wave scattering from a finite
periodic plane. We write the surface corrugation as

z = f(x) = u(x|W )fp(x), (1)

where fp(x) is a periodic function with the period L,

fp(x) = fp(x+ L), (2)
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and u(x|W ) is the rectangular pulse given by

u(x|W ) =
{

0, |x| > W/2
1, |x| < W/2 . (3)

For convenience, we put

kL =
2π
L
, kW =

2π
W
. (4)

We denote the y component of the electric field by
ψ(x, z), which satisfies Helmholtz equation[

∂2

∂x2
+
∂2

∂z2
+ k2

]
ψ(x, z) = 0, (5)

in the region z > f(x) and the Dirichlet condition

ψ(x, z)|z=f(x) = 0, (6)

on the surface z = f(x). Here, k = 2π/λ is wavenumber
and λ is the wavelength. We write the incident plane
wave ψi(x, z) as

ψi(x, z) = e−ipxe−iβ0(p)z, p = k · cos θi, (7)

βm(p) = β0(p+mkL) =
√
k2 − (p+mkL)2,

Im [βm(p)] � 0, (m = 0,±1,±2, · · ·), (8)

where θi is the angle of incidence and Im stands for
imaginary part. Since the surface is flat for |x| > W/2,
we put the y component of the electric field as

ψ(x, z) = e−ipx[e−iβ0(p)z − eiβ0(p)z] + ψs(x, z),
(9)

which is a sum of incident plane wave, the specularly
reflected wave and ψs(x, z) the scattered wave due to
surface deformation. By use of the periodic Fourier
transform [3], it was shown that the scattered wave
field has an extended Floquet form, which we write as

ψs(x, z) =
∞∑

m=−∞
ψm(x, z). (10)

=
∫ ∞

−∞
A(s)e−i(p+s)x+iβ0(p+s)zds, (11)

where (11) and (10) hold for z > max{f(x)}. Equa-
tion (11) is a Fourier spectrum representation and A(s)
is the spectral amplitude, However, (10) is the extended
Floquet form, where ψm(x, z) is the m-th order diffrac-
tion beam [3] given by

ψm(x, z) =
1
kL

∫ π/L

−π/L

Am(s)e−i(p+s+mkL)x

× eiβm(p+s)zds. (12)

Here, Am(s) is related with the spectral amplitude A(s)
as

Am(s) = kL ·A(s+mkL)u(s|kL), (13)

where u(s|kL) is the function defined by (3). The
diffraction beams are orthogonal in the sense that

Re

(∫ ∞

−∞

∂Ψm(x, z)
i∂z

Ψ∗
n(x, z)dx

)
= δmnΦm, (14)

where δmn is Kronecker’s delta, the asterisk and Re
stand for complex conjugate and real part, respectively.
Φm is the power carried by the m-th order diffraction
beam into the z direction,

Φm = 2π
∫ kL/2

−kL/2

Re

[
βm(p+ s)

k2L

]
|Am(s)|2ds, (15)

The optical theorem may be given by

4π
kL
β0(p)Re[A0(0)] =

kW

2π

∫ π

0

σ(θs|θi)dθs

=
∞∑

n=−∞
Φm, (16)

where 4πβ0(p)Re[A0(0)]/kL is the total power of scat-
tering, and σ(θs|θi) is the differential scattering cross
section divided by W ,

σ(θs|θi) =
(2π)2k
W

sin2 θs|A(−k cos θs − p)|2, (17)

where θs is a scattering angle (See Fig. 1). The relation
(16) means that the scattering takes place with the loss
of the specularly scattering component.

Assuming β0(p) = k sin(θi) �= 0, we rewrite the
optical theorem as

∞∑
m=−∞

Pm = 1, Pm =
kL · Φm

4πβ0(p)Re[A0(0)]
, (18)

where Pm is the relative power of the m-th order
diffraction beam divided by the total scattering power
4πβ0(p)Re[A0(0)]/kL. We will use (18) to check accu-
racy of numerical calculation below.

Roughly speaking, the total power of scattering
and the power Φm are proportional to W , because the
scattering takes place at the corrugated part of the
surface. Thus, the relative power Pm is expected to
become almost independent of W . This implies an ex-
pectation [3] such that the relative powers of diffraction
beams are much similar to the diffraction powers for an
infinite periodic surface with W → ∞. We will discuss
such an expectation below.

3. Equation in Spectral Domain

In the spectral formalism by DeSanto [4], [5], auxil-
iary functions were up-going and incoming plane waves.
Modifying them, however, we put auxiliary functions as

G(1)(p+ s, x, z) = ei(p+s)x+iβ0(p+s)z, (19)

G(2)(p+ s, x, z)
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= ei(p+s)x
[
eiβ0(p+s)z − e−iβ0(p+s)z

]
, (20)

which satisfy Helmholtz equation. Here, G(1)(p+s, x, z)
is an up-going plane wave andG(2)(p+s, x, z) is a stand-
ing wave vanishing at z = 0. Integrating the identity
div[G(j) · gradψ − ψ · gradG(j)] = 0, (j = 1, 2), over
a box area ABCDEA in Fig. 1 and applying Gauss’s
theorem, one easily finds

∫
ABCDEA

(
G(j)

∂ψ

∂n
− ψ∂G

(j)

∂n

)
dl = 0, (21)

where j = 1, 2. Applying the boundary condition (6)
and taking a limit C,D → ∞ and A,E → −∞, we
obtain

lim
D→∞

E→−∞

∫
ED

[
G(j)

∂ψ

∂z
− ψ∂G

(j)

∂z

]
dx

= lim
A→−∞
B→∞

∫
ABC

∂ψ

∂n
G(j)dl, (j = 1, 2), (22)

where dl =
√

1 + (df/dx)2dx is the arc length along
the surface†.

Substituting (9) and (20) into (22), we obtain a
relation determining A(s) from the surface field ∂ψ/∂n,

∫ W/2

−W/2

[
eiβ0(p+s)f(x) − e−iβ0(p+s)f(x)

]

× ei(p+s)x ∂ψ

∂n

dl

dx
dx = −4πiβ0(p+ s)A(s), (23)

which is the key equation in this paper. The relation
(23) differs from Maystre [1] and DeSanto [5], in which
the scattered wave is obtained from the surface field
on the entire surface. However, the left hand side of
(23) is an integral over [−W/2,W/2]. This means that
there is no need to determine the surface field ∂ψ/∂n on
the entire surface. To determine the spectral amplitude
A(s), we only need the surface field on the corrugated
portion of the surface. Taking this advantage of our
formulation, we will obtain an equation determining
∂ψ/∂n for |x| < W/2.

On the other hand, one finds from (19) and (22),
∫ W/2

−W/2

[
eiβ0(p+s)f(x) − 1

]
ei(p+s)x ∂ψ

∂n

dl

dx
dx

+
∫ ∞

−∞
ei(p+s)x ∂ψ

∂n

dl

dx
dx = −4πiβ0(p+ s)δ(s) (24)

which is an integral equation determining ∂ψ/∂n over
the entire surface and δ(s) is Dirac’s delta function. We
put the surface field as

∂ψ

∂n
=
e−ipx−iβ0(p)f(x)√

1 + (df/dx)2
[−2iβ0(p) + vB(x)], (25)

where −2iβ0(p)e−ipx−iβ0(p)f(x)/
√

1 + (df/dx)2 is the

surface field obtained by the tangential plane approxi-
mation. To obtain the surface field ∂ψ/∂n, we assume
that vB(x) is well approximated by a band-limited func-
tion and we put

vB(x) =
∫ kB

−kB

B(s′, kB)e−is′xds′, (26)

where B(s′, kB) is a function to be determined Here,
B(s, kB) = 0 for |s| > kB is assumed, which should be
understood as truncation. From the discussion above,
we only need vB(x) for |x| < W/2. Therefore, we ex-
pand vB(x) into Fourier series as

vB(x) =
1
W

∞∑
m=−∞

Bme
−imkW x, |x| < W/2, (27)

Bm =
∫ kB

−kB

U(s′ −mkW |W )B(s′, kB)ds′, (28)

where U(s|W ) is the Fourier transform of u(x|W )

U(s|W ) =
∫ W/2

−W/2

eisxdx =
sin(Ws/2)

(s/2)
. (29)

Let us obtain an equation for Bm from (24). We
first expand eisx(eiβfp(x)− 1) into a Fourier series with
the period W ,

eisx
[
eiβfp(x) − 1

]

=
∞∑

n=−∞
Cn(s|β)einkW x, |x| < W/2, (30)

Cn(s|β) =
1
W

∫ W/2

−W/2

[
eiβfp(x) − 1

]
ei(s−nKW )xdx.

(31)

Then, we substitute (26), (25), and (30) into (24) to
obtain,

2πB(s, kB) − 2iWβ0(p)C0(s|β0(p+ s) − β0(p))

+
∞∑

n=−∞
Cn(s|β(p+ s) − β0(p))Bn = 0, (32)

which together with (28) is regarded as an integral
equation in the spectral domain. Multiplying U(s −
mkW |W ) to the both sides of (32) and integrating the
result over s region with [−kB , kB], however, we obtain
a matrix equation for Bm,

Bm +
∞∑

n=−∞
DmnBn = Em, (33)

where we have put

Dmn =
1

2π

∫ kB

−kB

Cn(s|β0(p+ s) − β0(p))
†Here, the integrals over CD and EA are neglected [5].
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×U(s−mkW |W )ds, (34)
Em = 2iWβ0(p)Dm0. (35)

Next, let us obtain another equation to calculate
A(s) from Bm. Substituting (26), (25), and (30) into
(23), we obtain

4πiβ0(p+ s)A(s) = 2iWβ0(p)[C0(s|β0(p+ s)
−β0(p)) − C0(s| − β0(p+ s) − β0(p))]

+
∞∑

n=−∞
[Cn(s| − β0(p+ s) − β0(p))

−Cn(s|β0(p+ s) − β0(p))]Bn. (36)

Dividing the both sides of this by β0(p+ s), we finally
get an equation to calculate A(s) from Bn,

A(s) =
Wβ0(p)

2π
C ′
0(s|β0(p+ s), β0(p))

− 1
4πi

∞∑
n=−∞

C ′
n(s|β0(p+ s), β0(p))Bn, (37)

where we have put

C ′
n(s|β, γ)=

Cn(s|β−γ)−Cn(s| − β−γ)
β

. (38)

This remains finite even when β = 0. Since β(p+ s) =
k sin(θs), θs being a scattering angle, we find from (17),
(37) and (38)

lim
θs→0, π

σ(θs|θi) = 0. (39)

Thus, the scattering cross section for TE case vanishes
when the scattering angle is grazing.

4. Numerical Example for Sinusoidal Case

Let us consider a simple example, where the surface
deformation is sinusoidal

fp(x) = σh sin(kLx). (40)

To make f(x) a continuous function of x, we put

W = NWL · L, (41)

where NWL is implicitly assumed to be an integer. By
use of formulas on the Bessel function Jl(·),

eiσhβ sin(kLx) =
∞∑

l=−∞
Jl(σhβ)eilkLx, (42)

we obtain from (31)

Cn(s|β) =
1
W

∞∑
l=−∞

[Jl(σhβ) − δl0]

×U(s+ lkL − nkW |W ). (43)

Substituting this into (34), we obtain a matrix element

Dmn =
1

2πW

∫ kB

−kB

∞∑
l=−∞

{Jl(σh[β0(p+ s) − β0(p)])

−δl0} · U(s+ lkL − nkW |W )U(s−mkW |W )ds.
(44)

By (31) and (38) we obtain two expressions for
C ′

n(s|β, γ),

C ′
n(s|β, γ) =

1
W

∫ W/2

−W/2

(
eiσh(β−γ) sin(kLx)

−e−iσh(β+γ) sin(kLx)
) ei(s−nkW )x

β
dx (45)

=
2i
W

∫ W/2

−W/2

e−iσhγ sin(kLx)

× sin(σhβ sin(kLx))
β

ei(s−nkW )xdx. (46)

When β �= 0, we obtain from (45) and (42),

C ′
n(s|β, γ) =

1
W

∞∑
l=−∞

U(s+ lkL − nkW |W )
β

×{Jl(σh(β − γ)) − Jl(−σh(β + γ))}. (47)

When β = 0, however, we calculate (46). Since
sin(σhβ sin(kLx))/β → σh sin(kLx) when β → 0, we
obtain from (46) and (42),

lim
β→0

C ′
n(s|β, γ) =

σh

W

∞∑
l=−∞

Jl(−σhγ)[U(s− nkW

+(l + 1)kL|W ) − U(s− nkW + (l − 1)kL|W )].
(48)

We will use (47) and (48) in numerical calculations be-
low.

For numerical calculation, we put

L = 2.5λ, NWL = 20, W = NWLL = 20L. (49)

Introducing the truncation number NM of diffraction
beams, we set

NM = 8, NB = NMNWL = 160. (50)

This means that the summation in (33) is approxi-
mated by a finite sum from n = −NB to NB = 160.
Thus, {Bm} becomes a (2NB + 1)-vector and [Dmn] is
a (2NB + 1) × (2NB + 1) matrix in the calculation be-
low. To calculate the matrix element in (44), we put
the band width parameter kB as

kB = (NM + 0.5)NWLkW = (NM + 0.5)kL. (51)

We numerically calculated Dmn in (44) and then solve
(33) for Bm. Then we apply (37) and (13) to obtain
A(s) and Am(s), from which the relative power Pm, the
scattering cross section σ(θs|θi) and optical theorem
(18) are calculated numerically.
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Fig. 2 Log-Error on optical theorem. Period L = 2.5λ, width
W = 50λ. σh is the surface height and λ is wavelength. NB =
160, kB/kL = 8.5.

Figure 2 illustrates the error |1 −
∑

n Pn| against
the angle of incidence θi for σh = 0.1λ, 0.2λ, 0.3λ and
0.4λ. Here, calculations were carried out from θi =
1◦ to θi = 90◦, since the optical theorem cannot be
defined for θi = 0. The error |1 −

∑
n Pn| is less than

10−4 when σh is 0.3λ or less. When σh = 0.4λ, the
error is still less than 4 × 10−3. Therefore, we may say
that our approach gives a reasonable solution if σh �
0.4λ. However, further numerical studies are required
for various sets of parameters W , L and σh to clarify
the validity and limitation of the present formalism as
a computational technique.

Figure 3 illustrates the scattering cross section
against the scattering angle θs for σh = 0.1λ, 0.2λ,
0.3λ and 0.4λ, where θi = 60◦. We see major peaks at
scattering angles θs ≈ 45.6◦, 72.5◦, 95.7◦, 120.00◦ and
154.2◦, which agree with diffraction angles calculated
by the grating formula (53) below. When σh = 0.1λ
(Fig. 3(A)), the −1st diffraction beam at θs ≈ 95.7◦ is
the largest among diffraction beams, but the 0-order
diffraction beam becomes the largest when σh = 0.2λ,
0.3λ and 0.4λ (See Figs. 3(B)–(D)). As is expected by
(39), we see in Fig. 4 that the scattering cross section
vanishes when the scattering angle becomes grazing.

Figure 4 illustrates relative powers of diffraction
against the angle of incidence θi for σh = 0.1λ, 0.2λ,
0.3λ and 0.4λ. When σh = 0.1λ (Fig. 4(A)), the −1st
diffraction is the largest for any angle of incidence
1◦ � θi � 90◦. However, the 0-order diffraction in-
creases when σh goes up (See Figs. 4(B)–(D)). Here, we
note that Fig. 3(A) for σh = 0.1λ agrees well with our
previous results [3] based on the Rayleigh hypothesis.

5. Comparison with Periodic Case

When W → ∞, the finite periodic surface becomes a
periodic surface with z = f(x) = fp(x). To discuss
a relation between a finite periodic case and such a
periodic case, we consider the wave diffraction by such
a periodic surface.

Fig. 3 Scattering cross section σ(θs|θi). The angle of incidence
is θi = 60. Period L = 2.5λ, width W = 50λ. σh is the surface
height and λ is wavelength. NB = 160, kB/kL = 8.5. (A)
σh = 0.1λ, (B)σh = 0.2λ, (C)σh = 0.3λ, (D)σh = 0.4λ.

Since the surface corrugation is periodic with infi-
nite extent, the wave field has the Floquet form, which
we write as
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Fig. 4 Optical theorem against the angle of incidence θi for a
finite sinusoidal surface with period L = 2.5λ and width W =
50λ. λ is wavelength. Pn is relative power of diffraction with
discrete index and total means

P
n Pn. σh is the surface height.

NB = 160, kB/kL = 8.5. (A) σh = 0.1λ, (B)σh = 0.2λ, (C)σh =
0.3λ, (D)σh = 0.4λ.

Fig. 5 Optical theorem against the angle of incidence θi for
a sinusoidal surface with infinite extent. period L = 2.5λ. P̂n

is relative power of the nth order diffraction and total meansP
n P̂n. σh is the surface height and λ is wavelength. (A) σh =

0.1λ, (B)σh = 0.2λ, (C)σh = 0.3λ, (D)σh = 0.4λ.
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ψ(x, z) = e−ipx[e−iβ0(p)z − eiβ0(p)z]

+e−ipx
∞∑

n=−∞
Âne

−inkLx+iβn(p)z. (52)

This relation holds in the region with z > max{f(x)}.
Here, Ân is the amplitude of the nth order Floquet
mode, which is diffracted into the direction θn deter-
mined by the grating formula [7]:

cos(θn) = − cos(θi) − nkL/k. (53)

According to Ref. [3], we write the optical theorem as
∞∑

n=−∞
P̂n = 1, P̂n =

Re[βn(p)]|Ân|2

2β0(p)Re[Â0]
, (54)

where P̂n is the relative power of the nth order diffrac-
tion.

For the sinusoidal surface (40), we determined the
amplitude Âm by a non-Rayleigh method in [4], where
error |1−

∑
n P̂n| is less than 1× 10−4 even when σh =

0.4λ. Then, we calculated relative powers P̂n, which
are illustrated in Fig. 5 against the angle of incidence
for several values of σh.

Comparing Fig. 4 with Fig. 5, one finds that rela-
tive powers Pn for the finite periodic case are much sim-
ilar to P̂n of the infinite periodic case. When σh = 0, 1λ
and 0.2λ, however, we see some difference at θi ≈ 0◦

and 53.13◦, which are critical angles of incidence. At
θi ≈ 53.13◦, Pn varies gradually against θi but P̂n

changes rapidly. Such similarity and difference were
demonstrated in a previous paper [3] but only for a
small value of σh. When σh = 0.4λ, the difference
at θi ≈ 53.13◦ is much reduced but the difference at
θi ≈ 0◦ still remains. This is probably caused by phys-
ical nature of solutions: the scattered wave ψs(x, z)
satisfies the radiation condition at x → ±∞ but the
diffracted wave described by the Floquet form does not
satisfy the radiation condition.

From these examples, we may say that the relative
power of diffraction beam Pn and the relative power
of diffraction P̂n could become a bridge connecting the
scattering from a finite periodic surface and the diffrac-
tion by a periodic surface, when the angle of incidence
is not close to either a critical angle or a grazing angle.

6. Conclusion

Modifying the spectral formalism to the scattering from
a rough surface [5], we have presented a formulation
suitable for the case of a finite periodic surface. For
a sinusoidally corrugated surface, we demonstrated by
numerical calculations that our formulation gives a rea-
sonable solution. We gave discussions on an expecta-
tion such that the relative powers of diffraction beam
for a finite periodic case are much similar to the relative
power of diffraction for a perfectly periodic case. We

found good similarity in numerical examples when the
angle of incidence is not close to either a critical angle
or a grazing angle.

However, we note that such an expectation came
from physical insight but no theoretical background ex-
ists [3]. Such an expectation is not obvious physically,
because the wave scattered from a finite periodic sur-
face satisfies the radiation condition at x → ±∞ but
the diffracted wave described by the Floquet form does
not.

We are interested in seeing whether such an expec-
tation works or not for a TM wave case [8] and for other
structures such as finite array of grooves [9] or slits [10].
Also, further numerical studies are required to clarify
the limitation of the present formalism as a computa-
tional technique. These problems, however, are left for
future study.

Acknowledgment

The authors are grateful to one of the reviewers for
valuable comments.

References

[1] D. Maystre, “Rigorous theory of light scattering from rough
surfaces,” J. Opt., vol.15, no.1, pp.43–51, 1984.

[2] J. Nakayama, “Periodic Fourier transform and its ap-
plication to wave scattering from a finite periodic sur-
face,” IEICE Trans. Electron., vol.E83-C, no.3, pp.481–487,
March 2000.

[3] J. Nakayama and H. Tsuji, “Wave scattering and diffraction
from a finite periodic surface: Diffraction order and diffrac-
tion beam,” IEICE Trans. Electron., vol.E85-C, no.10,
pp.1808–1813, Oct. 2002.

[4] J.A. DeSanto, “Scattering from a perfectly reflecting arbi-
trary periodic surface: An exact theory,” Radio Science,
vol.16, no.6, pp.1315–1326, 1981.

[5] J.A. DeSanto, “Exact spectral formalism for rough-surface
scattering,” J. Opt. Soc. Am. A, Opt. Image Sci., vol.12,
no.12, pp.2202–2206, 1985.

[6] J. Nakayama, T. Moriyama, and J. Yamakita, “Wave scat-
tering from a periodic surface with finite extent: A peri-
odic approach,” IEICE Trans. Electron., vol.E84-C, no.8,
pp.1111–1113, Aug. 2001.

[7] R. Petit, ed., Electromagnetic theory of gratings, Springer,
Berlin, 1980.

[8] K. Kobayashi and T. Eizawa, “Plane wave diffraction by
a finite sinusoidal grating,” IEICE Trans., vol.E74, no.9,
pp.2815–2826, Sept. 1991.

[9] R.A. Depine and D.C. Skigin, “Scattering from metallic
surface having a finite number of rectangular grooves,” J.
Opt. Soc. Am., vol.A11, no.11, pp.2844–2850, 1994.

[10] A. Neto, S. Maci, G. Vecchi, and M. Sabbadini, “A trun-
cated Floquet wave diffraction method for the full wave
analysis of large phased array, Part 1: Basic principles and
2-D cases,” IEEE Trans. Antennas Propag., vol.48, no.3,
pp.594–600, 2000.



NAKAYAMA and KITADA: SCATTERING FROM FINITE PERIODIC SURFACE
1105

Junichi Nakayama received the
B.E. degree from Kyoto Institute of Tech-
nology in 1968, M.E. and Dr.Eng. de-
grees from Kyoto University in 1971 and
1982, respectively. From 1971 to 1975 he
worked in the Radio Communication Di-
vision of Research Laboratories, Oki Elec-
tric Industry, Tokyo. In 1975, he joined
the staff of Faculty of Engineering and
Design, Kyoto Institute of Technology,
where he is currently Professor of Elec-

tronics and Information Science. From 1983 to 1984 he was a
Visiting Research Associate in Department of Electrical Engi-
neering, University of Toronto, Canada. His research interests
are electromagnetic wave theory, acoustical imaging and signal
processing. Dr. Nakayama is a member of IEEE.

Yoshinobu Kitada received the B.E.
degree from Kyoto Institute of Technol-
ogy in 2002. Currently, he is a graduate
student at the Institute working toward
M.E. degree.


