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Wave Scattering from a Periodic Surface with Finite

Extent: A Periodic Approach

Junichi NAKAYAMA†a), Regular Member, Toyofumi MORIYAMA†, Nonmember,
and Jiro YAMAKITA††, Regular Member

SUMMARY As a method of analyzing the wave scattering
from a finite periodic surface, this paper introduces a periodic
approach. The approach first considers the wave diffraction by
a periodic surface that is a superposition of surface profiles gen-
erated by displacing the finite periodic surface by every integer
multiple of the period Λ. It is pointed out that the Floquet solu-
tion for such a periodic case becomes an integral representation
of the scattered field from the finite periodic surface when the
period Λ goes to infinity. A mathematical relation estimating
the scattering amplitude for the finite periodic surface from the
diffraction amplitude for the periodic surface is proposed. From
some numerical examples, it is concluded that the scattering cross
section for the finite periodic surface can be well estimated from
the diffraction amplitude for a sufficiently large Λ.
key words: wave scattering and di�raction, �nite periodic sur-

face, periodic grating

1. Introduction

The wave scattering from a finite periodic surface has
received much interest, because any real periodic struc-
ture is finite in extent. Several methods for analysis
have been introduced by many authors [1]–[6]. How-
ever, we introduce here a periodic approach as an idea
of analysis.

In the periodic approach, we consider a periodic
surface that is a superposition of surface profiles gener-
ated by displacing the finite periodic surface by every
integer multiple of the period Λ. When the period Λ
goes to infinity, such a periodic surface becomes the
finite periodic surface and hence the diffracted wave
from such a periodic surface is physically expected to
become the scattered wave from the finite periodic sur-
face. Therefore, the scattered wave from the finite peri-
odic surface may be well estimated from the diffracted
wave for a sufficiently large Λ.

To carry out this idea of the periodic approach, we
first present a modified Floquet form of the diffracted
wave. We then point out a fact that the modified Flo-
quet form becomes an integral representation of the
scattered wave with a scattering amplitude function
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when the period Λ goes to infinity. We propose a rela-
tion estimating the scattering amplitude from diffrac-
tion amplitude in case of a large period Λ.

For several values of the period Λ, we numeri-
cally calculate the diffraction amplitude, from which
the scattering amplitude and the scattering cross sec-
tion are estimated. Then we find that the estimated
cross section is almost independent of Λ when Λ is large
enough. It is then concluded that the periodic approach
is a feasible method of analysis.

2. Diffraction by Periodic Surface

Let us start with a sinusoidal surface with finite extent:

z = f(x) =
{
σh · sin(kLx), |x| ≤W/2
0, |x| > W/2 , (1)

kL =
2π
L
, (2)

where σh is the corrugation height, W is the width of
periodic corrugation and L is the period. Translating
f(x) by every integer multiple of Λ and superimposing
the translated ones, we obtain the periodic surface as

z = fp(x) =
∞∑

n=−∞
f(x+ nΛ), (3)

where Λ �W is implicitly assumed.
We write the y component of the electric field by

ψ(x, z), which satisfies the wave equation
[
∂2

∂x2
+

∂2

∂z2
+ k2

]
ψ(x, z) = 0, (4)

in free space and the boundary condition

ψ(x, z) = 0, z = fp(x), (5)

on the periodic surface (3). Here, k = 2π/λ is the wave
number and λ is the wavelength.

We write the electric field as

ψ(x, z) = e−ipxe−iβ0z − e−ipxe+iβ0z + ψs(x, z), (6)

where the first term in the right hand side is the incident
plane wave, the second is the specularly reflected wave,
and ψs(x, z) is the diffracted wave due to the periodic
surface corrugation (3). Here, p is related with θi the
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Fig. 1 Scattering and diffraction of a plane wave from a peri-
odic surface with the period Λ. θi is the angle of incidence and
θs is a scattering angle. W is the corrugation width of a partially
periodic surface. When the period Λ goes to infinity, the periodic
surface becomes a finite periodic surface.

angle of incidence as [See Fig. 1]

p = k · cos θi, (7)

and βm is defined by

βm = β(p+mkΛ), m = 0,±1,±2, · · · (8)

β(p) =
√
k2 − p2, Im [β(p)] ≥ 0, (9)

where kΛ = 2π/Λ and Im stands for the imaginary part.
Since the surface is periodic with the period Λ, the

diffracted wave ψs(x, z) may have the Floquet form [7],
[8]:

ψs(x, z) = e−ipx
∞∑

m=−∞
Ame

−imkΛx+iβmz, (10)

which holds for z > σh. Here, Am is the diffraction
amplitude of the m-th Floquet mode propagating into
the θm direction,

cos(θm) = − cos(θi)−
mkΛ

k
, kΛ =

2π
Λ
. (11)

In our periodic surface shown in Fig. 1, each peri-
odic corrugation works as a scatterer. Since the number
of scatterers per unit length is 1/Λ, the diffraction am-
plitude Am is expected to be proportional to 1/Λ, when
Λ becomes large and the wave interaction between scat-
teres becomes weak. Thus, it is reasonable to introduce
an amplitude function a(s) by the sequence {ΛAm} as

a(mkΛ) = ΛAm, m = 0,±1,±2, · · · . (12)

The amplitude function a(s) for any s will be defined
by interpolation below. Even though Am depends on
Λ, a(s) is almost independent of Λ for a large Λ, as will
be shown below.

By use of (12), we rewrite (10) as

ψs(x, z) =
e−ipx

2π

∞∑
m=−∞

kΛ · a(mkΛ)

×e−imkΛx+iβ(p+mkΛ)z, (13)

which we call the modified Floquet form. In (13), each
term in the summation should be understood as a rect-
angular area given by the width kΛ and the height
a(mkΛ) exp[−imkΛx+ iβ(p+mkΛ)z]. Thus, the sum-
mation becomes an integral when kΛ → 0. This fact
will be used below.

Since the periodic surface and free space are loss-
free, the energy conservation law holds:

∞∑
m=−∞

Re[βm]|Am − δm,0|2 = β0, (14)

where Re stands for the real part. The left hand side
is the total diffracted power and the right hand side is
the power incident on the unit surface length. By (12),
however, we rewrite (14) as

kΛ

2π

∞∑
m=−∞

Re[β(p+mkΛ)]|a(mkΛ)|2

= 2Re[a(0)]β(p). (15)

The left hand side of this also becomes an integral when
kΛ = 2π/Λ → 0.

3. Limiting Case with Λ → ∞

When the period Λ becomes infinitely large, the peri-
odic surface (3) becomes a finite periodic surface (1),
so that the Floquet form (10) is physically expected
to become a scattered wave from such a finite periodic
surface. When we take the limit Λ → ∞, the summa-
tion in the modified Floquet form (13) may become an
integral representation of the scattered wave:

ψs(x, z) =
1
2π
e−ipx

∫ ∞

−∞
a(s)e−isx+iβ(p+s)zds.

(16)

Also, we easily find from (15) the optical theorem in
case of the finite periodic surface,

2Re[a(0)]β0 =
1
2π

∫ ∞

−∞
Re[β(p+ s)]|a(s)|2ds (17)

=
kW

2π

∫ π

0

σ(θs|θi)dθs, (18)

σ(θs|θi) =
k2 sin2(θs)

kW
|a(−k cos θi − k · cos θs)|2,

(19)

where σ(θs|θi) is the scattering cross section per unit
length [5], [6] and θs is a scattering angle given by [See
Fig. 1]

k · cos(θs) = −k · cos(θi)− s. (20)
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Fig. 2 Scattering cross section σ(θs|θi) estimated from the diffraction amplitude Am

by interpolation. θi = 60◦, W = 20L, L = 2.5λ, σh = 0.1λ. (a) Λ = 250λ, (b) Λ = 1000λ.

4. Estimation of the Scattering Cross Section
from the Diffraction Amplitude Am

We have shown that the modified Floquet solution be-
comes an integral representation of the scattered field
from a finite periodic surface, when the period Λ goes to
infinity. For a sufficiently large Λ, therefore, the scatter-
ing cross section may be estimated from the diffraction
amplitude Am for the periodic surface. To see the fea-
sibility of this periodic approach, we carried out some
numerical calculations.

For numerical calculations we put

L = 2.5λ, W = 20L, σh = 0.1λ, θi = 60◦, (21)

and Λ = 250λ or Λ = 1000λ. By use of the method
of Green’s theorem in Ref. [8], we determine [Am] as
a 1001-vector for Λ = 250λ or a 4001-vector for Λ =
1000λ, with an energy error less than 0.5%. From so
calculated Am, we estimate the amplitude a(s) by the
interpolation formula:

a(s) = lim
M→∞

M∑
m=−M

Am

sin
[

s−mkΛ
2 Λ

]
[

s−mkΛ
2

] , (22)

which implicitly implies ψ(x, 0) = 0 for |x| > Λ/2. Sub-
stituting this into (19), we then calculate the scatter-
ing cross section σ(θs|θi) illustrated in Fig. 2. In Fig. 2,
we see peaks at scattering angles 45.6◦, 72.5◦, 95.7◦,
120.00◦ and 154.2◦, which are effects of diffraction by
the periodic corrugation with finite extent. Figure 2(a)
for Λ = 250λ agrees well with Fig. 2(b) for Λ = 1000λ
and Fig. 2 in Ref. [5]. This fact implies that, in case of
(21), the wave interaction between scatterers is negli-

gibly small and a(s) estimated from the diffraction am-
plitude by the interpolation (22) is almost independent
of Λ, if the period Λ is larger than 250λ. Therefore, we
may conclude that the periodic approach works well, if
the period Λ is sufficiently large.

We have presented a basic idea of the periodic ap-
proach and some numerical results for TE wave case.
The approach can be applied to the TM wave case, if
the interpolation formula (22) is modified. However,
a rigorous mathematical treatment and conditions un-
der which the periodic approach works are still open
question. These problems are left for future study.
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