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Abstract

In this report we give a method for construction of wavelet system from MRA,
which is different from Daubechies-Heller method. In addition we set several conditions
in order to form the smooth wavelet under various parameters.

Key Words: n-MRA; symbol matrix; moment condition; zero point condition.

1. Introduction

It is well-known that “good” wavelet systems are made up through a multiresolution analysis
(MRA) which was formulated by Meyer and Mallat.

The method for construction of wavelet systems with compact support treated by
Daubechies and Heller is as follows: "

_ 2
(1) Solve the functional equation: Zzzéimo (a)kz)’ =1 with m,(1) =1, where m,(2) is called
a symbol of scaling function and @ = exp (- 27i/n).

(2) Obtain the wavelet sequence from the scaling sequence which consists of the
coefficients of the symbol m, (2).

(3) Obtain a wavelet system from the wavelet sequence.

In this research, we aim to obtain a scaling function and its associated wavelet system
at the same time from a different method than that given by Daubechies-Heller. We carried
it out by construction of a certain unitary matrix which is deeply concerned with symbols of
scaling function and wavelets.

2. Construction of Wavelet System

Definition2.1. An n-multiresolution analysis (n-MRA) for a natural number n=>2 1s a
collection {V;} ;< z of subspaces of L*(R) such that
(HV,cV;, forall jeZ

@ N,.,V={0
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3) U].eZV,:Lz(R)
@) feV;=fmx)eV;,,

(5) There exists a function pev, such that {(}5(Jc—lc)}kE . makes an orthonormal
basis in V.

Function ¢ is called a scaling function of #-MRA.
Here, we aim to choose wavelet functions y', ... .w"~ '€V, of »-MRA such that

(¢(x—k).l//s(x—l)):0

(l//s(x—k).l//'(x—l)):5s,r51.k-

forkleZ.rs=1,..., n—1.
As is well known we can write

¢(§)=mﬂ(8'%)¢(§)

) iE\ .
w@-mlcfJo(5) e

where - means the Fourier transform and m,(z) is the symbol of the scaling function, and
mg(2) (s=1,...,n—1)are the symbols of the wavelet functions.
Here define the symbol matrix and the symbol vector as follows:

M(z):z(;z(z) m(wz) . . . 7n(a)”"z))
m(2):="(my@)m @) ... m,_ (),

where @: = exp(—27zi / n) It should be noted that the symbol matrix M (z) must be unitary.
In order to construct the symbol matrix M (z), we rewrite the symbols as follows:

m,(2)= = Ngiz*
niecz

n-1
=Yaj@@z'.  (s=0.1..... n-1)

1=0

where z: = e_'f.{q,?;k € Z} is the scaling sequence, {g;:k€Z} (s=1,.... n—1) are the wavelet
sequences and a; (z"):=n""" 3] _ N MINE S
Let
B(z):= (b(z) b(w2) ... b z))
-> t
b (2):= (1 z...z”‘l).

Theorem 2.1. The symbol matriz M(2) is unitary if and only if /nA@E") is unitary,
where
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ay(z"y - a,_,@@"
A@"): = :
a‘r)z—l(zn) an—l(zn)

n—1

Proof: 1t holds that
M(z)=A(z")B(2),
which completes the proof since B(2) / /7 is unitary. (Q.E.D)

Hence we see that it suffices to construct a symbol matrix M(z) in order to obtain
wavelet system of n-MRA. If we can construct /nA(z") so that it becomes unitary, we can
get a symbol vector 7_;z(z) through the symbol matrix M(z)=A(z")B(z). That is, both the
scaling and wavelet functions are decided at the same time.

Here, suppose /n A(z") is unitary. We then get the following equation from Taylor

expansion around z"=1:

/nA@EY=H+ 3 @"- 1)V,

keN

Proposition 2.1. The matrix H is an orthogonal matrix and its first row is given as
(l/ﬁ ..... l/ﬁ> The first row of A(1) is given as (1/n, . ... 1/n).
Proof: Since M(2) is unitary and m,(1) = 1, it should be noted that m,(@)=...=my(@" ') =0.
(Q.E.D)

The above matrix H is called Haar matrix. Fixing a Haar matrix H, we have the
following representation:

/iA(z"):(E+ M- DUy |H.  (Up:=H'Vy)
keN

where E is the unit matrix. So we should give {U,.U,, ...} so that E+ ZkeN(z”— U,
becomes unitary.
The following theorem®” plays an essential role.

Theorem 2.2. (Vaidyanathan) Let € N. The matrix E+ Z;z 1(z”— DU, (U, #0) is
unitary if and only if there exists | unit vectors :151, . ,Z,e R” such that
[ ->
E+Y) @'~ 1>kUk=k1jl(E+(z"— Dpe'Be).

Hence we know that we can make a symbol vector 7;1(z) whenever a set of real unit vectors

{_pfl, . ,‘7)‘,} is given. As a special case, we can choose \/Z A(z")=H. The wavelet of this case

is called Haar wavelet.
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3. Wavelet with Moment Condition
It is important to make wavelet system which satisfies the moment condition in order to

construct smooth wavelet system.
For a fixed Haar matrix H, let

() =" (wy(2) i (@) . .. w1 (2) ‘ 3.1)

.= Hb@)//n.
Let Z,--l (j=1,....n) be the j-th row vector of H, then we have

w; 1@ =(h; 1. b@ ) /),

Il
—
=

~

where for any two vectors £='(xo 2, ... 2, 1) and ¥='(Yo ¥, . . . Y, 1), We put

>

" n_ 1
(ry):="1y= Zxkyk-
k=0

Particularly, if 7 and y belong to R” then (Z.y ) coincides with the canonical inner product in
R".
From (h;_,.n "*b(1))=0 for j> 2, we know that w;_,(2) is factored into

w;_1(D=a@y;-1). (j=2.3.....n) (3.2)

where
a(z): =452 5 L
Here we define

Y@:="(11@ ¥22) ... Y- 1(2)).

Definition 3.1. A symbol vector m(2) is said to satisfy the moment condition of order N
f
m;(2) =0 <mod a(z)N“). (j=1...., n—1)

It should be remarked that from eq. (3.2) any symbol vector satisfies the moment
condition of order 0.
As is well known, the following proposition holds.

Proposition 3.1. The following 1, 2 and 3 are equivalent to one another.
(1) The symbol vector 7_;1(2) satisfies the moment condition of order N.
(2) Let y’ (x) be the wavelet function with the symbol m;(z). Then it holds that

fo"wf(x)dx:o. (k=0,1.....N, j=1.....n-1)
(3) It holds that
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my(2) =0 (mod wo(z)N”).

From the definition, we see that a symbol vector ;7;1(2) satisfies the moment condition of
order N if and only if it holds that

m?(1)=0. (k=0.1...., N, j=1,....n-1)

So the symbol vector ;71(2) with the moment condition of order N is restricted by the above

(n—1)N conditions. Then we aim to give N real unit vectors Z)l, .. }5 ~ So that the following
vector
> N n 2 42\ -
m@=1](E+@ - Db'hi )i (@ (3:3)
k=1

satisfies the moment condition of order N.
Here we expand m(2) by 2" — 1. Then since a (2) w, (2) = (2" — 1)/ 2n, we have

N

m@=w@+ d(a@w2) ¢ (3.4)

k=1

5 k=1 > > > >
Ck(Z):(27’l)k2[ LT <Pror-Prg+ ) | Phay-w@ ) Pryy.  (k=1,...,N)

* j=1

where D means the summation of all {#(1),...,k(k)} which satisfies the condition:
1<h(l)< h(2)< ---<h(k) <N, and we for convenience put H?z 1("'): 1. The components of
zk(z) are polynomials of a degree less than » — 1 since the degree of ﬁ)(z) is at most # — 1.

Here we put p,='(qx ‘%) (x€R, %€R" "' k=1,....N) and define

(p2.p1) 0 0
S:=[(ps.p1) (Ps.P2) . eRVV,

(Pv.Pr)y (Pn.D2) - (Py.Dw-1) O
Lemma 3.1. The first component of zk(z) 18 given by
@ ((@.8" ' D we@+a@(RS*47@).  k=1.....N)

Here let
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77k1:<5,5k5>
u(2):=( RS* 4.7 (2),

then from éq. (3‘4) and Lemma 3.1 we have

k=1

N
my(2) = wo(Z){l + S(2na @) wo@* ' (14 1w(.(2)+a(z)uk-1(z))}.

So the symbol vector ;7n(z) satisfies the moment condition of order N if and only if there
exists N polynomials g,(2) (k=1, ..., N. deg g,(2) = k) such that

wo()gr@ =gi- 1@ +Cm 1N _2a@ '+ ) a@* up_ (2, (k=1.....N) (3.5)
where we put go(2) =1 and S~ '= O for convenience.

Lemma 3.2. Let f(2) be a polynomial whose degree is at most k€ NU{0}. Then there
exist two polyndmials g(2) (deg g(z)=k+1) and h(z) (deg h(z) =n—2) uniquely such that

f+a@* " h(2)=w,2)g ).

Lemma 3.3. {w,(2),w,(2),...,w,_,2)} s linearly independent in vector space spanned
by polynomials of a degree of at most n— 1.

Proof: 1t follows immediately from eq. (3.1). (Q.E.D.)

Lemma 3.4. Let f(2) =ZZ;§fk z¥. Then we can find a vector }*:'(ff ... f,_)) uniquely
which satisfies f(2) = (}* Y (2).

Proof: Since the degree of a(2)f(z) is n — 1, we can find a set of coefficients {f,.f, .....f, -1}
uniquely from Lemma 3.3 such that a(z;) 1(2) :(}*, J)(z)). Then substituting z=1 and recalling

we@=a@Yy:2 k=1,..., n—1)and w,(1) =1, we have f,=0 and

. ~fo
/o fo-t,
L |=H|
f fn—3_fn—2
fn—2

(Q.E.D)

Lemma 3.5. The following relation holds:

n-lokc, - (n—
wy(2)=1+ ] 2 ( 1)E1?+ iz))' (n k)a(z)k.
k=1 :
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Proof: It holds from Taylor expansion that

-1 w((k)(]-)

wo(2) =1+ 2 (2a(2)"

On the other hand, by differentiating both sides of a(z) w,(2) =(z"— 1)/2n k+1 times and
substituting z=1, we have

(k)(l) (l’l—l)(i’lk—f)l-“(n—k)’
which completes the proof. (Q.E.D.)
Here we define
1—-cos
la@= 18 (o arg

Lemma 3.6. For any k €N, the following relations hold:

2k -1 2k -1

+a@* =y Ay 1 (y)
a@*+a@* =y* Ly ().

Ao -1 (y) i -1 -2 k(—l)
Aok (y) 2y 4y-1)\1
Lemma 3.7. If the symbol vector ;71(z) satisfies the moment condition of order N, then it
holds that

a(2)

where

|mo(2)|°= 1 (mod yNt 1).
Proof: Since m(2) =A(z")3(z) and ,/n A(z") is unitary, we have
lﬁz(z)‘:in'”zi;(z)’:
which leads the lemma since m;(2) = O(mod a@)N? 1) (j=1,..., n-1). (QE.D.)

Lemma 3.8. It holds that”

2—n—l B 2y
w0 (2) ‘,}1(1 1—cos(27zk/n))'

Here we define d, (y) for k € N and D (a) as follows:

de(y)=—— =1+ Sd, v’

|w0(z)|2(k‘+l) JeN

D(a)::mzn >Dja@)’.

jeN
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We can see dy ;>0 for all j,k € N from Lemma 3.8.

For any (formal) series F= Zje NU {O}F ;, we put
N
[F] N: = ZOF]‘.
} =

Lemma 3.9. The following relations hold:

g:1(2) =1-(n-1a().
7:@=[D@], g 1@ +211: 2a@" ' [D@] (moda@*"').  *k=2,....N)

Proof: First, from eq. (3.5) we have
9:@=D(@)(1+2na (2’1, (2))
= [D(a)]1 (mod a(z)z).
Noting that deg g,(z) = 1, we obtain from Lemma 3.5
9:@)=[D@] =1-(n-Da@.
Next, from eq. (3.5) we have
gx(2) :D(a)(gk_ @)+ 2 a @+ @) a @ 1(2))
= (1+D1(z)a(z)+ +Dk(a)a(z)k)gk_ 1(2)+2nn -2 (1 +D1(a)a(z))a(z)""l<mod a(z)"“)

which leads the lemma. (Q.E.D.)

Lemma 3.10. If a symbol vector 7n(z) satisfies the moment condition of order N, then it
holds that

on@+@na @) x| =[dv )],
Proof: From eq. (3.5) we get
mo(@) = wo @™ (9w @ +@na@) " 1y )

And from Lemma 3.7 we have
|9 )+ @na @)Y x| =|mo@)]*dn )
=[dv®)], (mod yN”).
On the other hand, since gN(z)+(2na(z))N77N_1 is a polynomial of a(z) of degree N,
gN(z)+(2;1a(z))NI7N_1|2 becomes a polynomial of y of degree N. So the lemma holds.

(Q.E.D.)
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Lemma 3.11. There exists a polynomzial f(x) with real coefficients such that

[dv@)], =|fla@)]

Proof: Let us factor

l[dv@®)] = TTA+se[TA+ ey +uey®),
k k

where s;.t;.u,€ R and any 1 + ¢,y + u,y* has no zero point in R.

We first note that each s,>0 because of the positivity of all coefficients of [dy (y)] v On
the other hand, for a positive s, we can find 0 €R such that 1+sy:|1 +0a (z)|2. In fact, it
suffices to take 0 =1+ /1 +s. ‘

Next we note that each f,.u, satisfies that t,f—4uk< 0. On the other hand, for t,#u € R
which satisfy ¢*— 4u# <0, we can find T, p €R such that

. o2
1+ty+uyz:}1+7:a(z)+pa(z)z

=1+(T°-2T-20)y+(p°- 20T +4p)y°.
In fact, let

p(T) = (T-2T 1)
g(T): = p(T)* - 2Tp(T) +4p (7).

then g(2) =t2/ 4, which implies that g(T)=u has at least one real root since g(T) — + o as
,T| — Oo0.

So we have f(x) of the lemma from the above discussion. (Q.E.D.)

Hence we have from Lemmas 3.10 and 3.11

gn @) +@na@)" nx_1=fa(2)),

and we can determine 7. ..., Nn-1. Also uy(2), ..., unx-,(2) are determined from Lemma 3.9
and eq. (3.5). Moreover, we have RZ}.RS& ..... RSN~ 13 from Lemma 3.4. This means that
Pq.PSq. . ... PSV~'q are determined.

Theorem 3.1. We can determine Z)l, o ,Z)N when PZ}, PSZ}, ...,PSN- 15 are given.

Proof: Any vector in {P;]),PS&’ ..... PSN- 12}} is not zero vector since #,_,(2)#0 (k=1,...,N).
It holds that

_1° -
PSY ' q=q1551852"Sn N1 PN,
where s; is the j—k component of the matrix S. So we obtain
pn=PS" 4 /|Ps" g

>

SV~ 1q='(o, ~.0]pst1g)
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where the sign of ;9 y is arbitrary since we need only Z) N'Z» n for the symbol vector m (2).

;)N_mandSN_la ..... SN-m

Here we use the inductive method. Assume that ZN, R

are given. Let us define (?r) « for a vector T as the k-th component of I.

It holds that
0

- > - 0
PSY " 2q=(py. . ... .
q={ DPN) (SN 20)1\/ o

(SN—m—Zq)N

= Z(SN " ZQ)kpk

k=N-m-1

Recalling that :z;N ,,,,, Z)N_ » are unit vectors, we have for j=N-m, ... N

(PSN-"- 22 Z),>— Z(SN " 2(1)k<PkaP1>

k=N-m-1

k=N-m-1 k=j+1
Noticing that it holds that
0
Sty 0.....0 ’
" Sik=(Si1,....8-1,0,..., e
k=NZm—1 D rk » 7t (SN 2Q)N m—1
(S”"”““q>N

=SV

we can rewrite eq. (3.7) as follows:

(PS¥ "2 Dx) =SV " N+ (SV T2

(PSY" 24 By 1) =S T o+ (SN R+ (ST T s

<PSN " 2qu m> (SN m_IQ)N m+(SN "o 2q)N mt
k=N-m+1

ji-1 > -m-27 & “m-25
SVSY T s+ (YT TR+ DS T TP sk

(3.6)

3.7

N ->
Z(SN_m_ZQ)ksk,N—m-
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-

SN_”Z_ZQ)N, o ,(SN_m_:)Z]))N-m from the assumption.

So we get (
From eq. (3.6), we know that

§N—771—I:Z(SN_’n_gg)N—irl—lzN—m—l
N
-m-27 -m=-22y 2
=pPS" g- 2(S" D Pk
k=N-m

- >
is known. Also we know {y_,,_, # 0 since

-9

PSY T3 #0 =S¥ DN #0

== ZN—m—l #0

N
ZN—m—l :CN—m—l/
>

CN—m—l‘-

So we get

5
CN—m—ll

SRR I

From the above argument, we obtain
> -m-22 -m-272
SN (0, 0SS R ),

(Q.E.D.)

Hence }51, ... ,Z)N are determined and we have the symbol vector ﬁz(z) from eq. (3.3). It
should be noted that 271 ..... Z) ~ are not determined as a set of unit vectors.

The scaling function given above is called the scaling function with minimal length. The
scaling function with minimal length has the smallest support in the functions which satisfy
moment condition of order N.

4. Wavelet with Zero Point Condition

If the scaling symbol m,(2) has a zero point, then the scaling and wavelet functions are
expected to become smoother under the same moment condition. In this section, we try to
make the scaling symbol mq(2) having a zero point. For this purpose, we will have to take
more unit vectors.

Assume that the scaling symbol m,(2) satisfies the moment condition of order N and
there exists 2z, <|z0| = 1) such that m,(2) =0. Then we have

|my(2)]*=0 (mod (1—%)2), (4.1

where y,: :|a(z0)|2.
Here we take a family of real unit vectors {51, o ,ZJ,} for [> N, then we have from

Lemma 3.10
-1

k-N
|m(>(z)|2=|wo(z)|2‘N+”{[a’zv(y)]N+yN+1 » sk(y)<|wo(z)|2y> } (4.2)

k=N
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where each s, (y) (k=N, ...,[—1)is denoted as

n-1 .
s =210.;y’, (k=N,....I[-1)
“

]

and the coefficients of s, (y) satisfy the following relations:”

(0}
Case where n=2; O+ éc,l _

(o] 30
Case where n=3: Gk‘0+—§ki+ 8"’2:0

So if we can make m,(2) which satisfies eqs. (4.1) and (4.2), then we have a symbol
satisfying the moment condition of order N and having a zero point.

5. Examples

In this section we investigate how the smoothness of wavelet system varies along with the
zero point of m(2) through some examples. As a result, we see that there exists the cases
where the wavelet system does not become smooth.

- Case where n=2, N=1

Assume first =2, N=1 and [ =2. Then from eq. (4.2) we have

2
o (@)|"=|wo (2’| {1+2y+y*(0 - 20m)},
where |w, (z)|2: 1 -y, and from eq. (4.1) we have

_ d
=0, iy

|mo(2)|*=0.
Y=Y

|mo(2)|?

Y=Y

So we obtain

2
mot@]=foo(@[ (1= ) (14222 /5 )0)
_-1+/5

Yo= 4 .

In this case, we cannot choose y, arbitrarily. That is, the zero point is fixed.
On the other hand, it holds that

(@) = w0 2] 9, @)+ 4102 D)+ (42(@) (Mo @) + @) )},
where
g@=1-ak, u=(RS3.7&)=RSq.

From this, we obtain
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" 4+ /5+2/6

0 4 =771

3+/5+2/5+2/5 RSZ—_2+(/B_1) /5+2./5
- 1 - - 16 :

6

and R_(} =—1/4 from eq. (3.5) and Lemma 3.9. Hence we have the symbol vector fh(z) from
Theorem 3.1. 7
Next, assume #=2,N=1and [ = 3. In this case, |m, (z)|z is parametrized by y,. We have

o @)= 100 @] {1425+ 551 0) + 52 |wo ) )}, (5.1)
where

se(y)=0,—20,y.  (k=1,2)
From eq. (4.1) we have

o - 16y — 8y: — 8y, +3
1= B B
ys (2yo—1)°

8yZ+ 4y, -2
yoyo— 1)

0—2:

Thus, we can obtain the wavelet system parametrized by y, (0<yy,=<1). It should be noted
that there exists a range of y, where the right hand side of eq. (5.1) is not always positive.

Figure 1 shows the scaling and wavelet functions when =2 N=1,1=2 and fixed
yo:(—1+/5)/420.309017. Figure 2 shows the scaling and wavelet functions when
n=2,N=1.1=3 and y,=0.8.

Case where n=2, N=2
Assume #n=2, N=2 and [ =3. This time, the degree of freedom of the zero point y, does
not remain. Through a similar process of the above, we have

2 3]2 Y ? 2
|m0(z)| =|w, (2) ’ (1—%) (1+8.89221y+49.7152y°),
2 ~ 1 1 7 1/3
where |wo(2)|"=1-y and yo=— 5+3|3) =0339431 Therefore we have
no =2.7829, n,=2.51207, n. =0.761169,
Rq=-025, RSq =-0.570725, RS*q=-0.123513.

So we can obtain the scaling and wavelet functions.
Next, assume 7 =2, N=2 and [ =4. In this case, |m0 (z)|2 is parametrized by y,. We have

|mo(z>|2:|wo(z>3|2{1+3y+6y2+y3(sz(y>+s3<y>|wo<z>|2y)},
where

2(2 - 3yy — 6yo— 12y +24y,)

Yy (- 1+2yg)°

—3+ 2y, + 12y + 24y
Yo (= 1+2y,)’°

S2(y) = (1-2y)

83y = (1-2y).
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Thus, we can obtain the wavelet system parametrized by y,.
Figure 3 shows the scaling and wavelet functions when #=2, N=1, /=2 and fixed

1/3
yoz—%+%<%> ~ 0.339431. Figure 4 shows the scaling and wavelet functions when

n=2 N=1,1=3and y,=0.8.

Case where n=3, N=1
Assume n=3, N=1 and !/ =2. Then we have

16

|m0(z)|2:‘w0(z)2 ‘{1+§y+y2(0'0+0'1y+0'2y2)}.

where

jwo @] =1-8y+ 1842,

_ 9 16y, +64y; __ 2(=3-8yy+ 16y, +64y)) 0_28(—3+y0+32y§)
Yo (3—8yo+8yy) Yy (3—8yo+8y;) * 3y;(3-8yo+8y;)

0

Therefore we know that the wavelet system is decided according to the choice of y,.
Figure 5 shows the scaling and wavelet functions when n=3, N=1.1=1 and y,=0.4.
Figure 6 shows the scaling and wavelet functions when =3, N=1,7=1 and y,=0.8.

Case where n=3, N=2
Assume #=3, N=1 and /=3. Then we have

2
o @]= w0 @] {1+ 89+ HEy*+ 700+ 019+ o).

where

_ 4(=3-13y,— 24y +112y;) o= 9+ 48y, + T2y. - 256y, — 896y,
Yo 3-8y +8ys) Y, (3~ 8yo+8y;)

_ 4(=9 - 24y,+ 32y, +448y;)
3y, (3—8yo+8ys)

0

O

Therefore we know that the wavelet system is parametrized by y, (0 <yy,=<1).
Figure 7 shows the scaling and wavelet functions when =3, N=2,[=3 and y,=04.
Figure 8 shows the scaling and wavelet functions when n=3, N=2, /=3 and y,=0.8.
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n=2 N=11=2 y,=(-1+/5)/ 4(fixed)

(a)Scaling function

(b)Wavelet function

Fig. 1. The scaling and wavelet functions.

n=2,N=1,1=3.y,=08

(a)Scaling function

(b)Wavelet function

Fig. 2. The scaling and wavelet functions.

n=2, N=2,1=3, y,=0.339431(fixed)

(a)Scaling function

) (b)Wavelet function

Fig. 3. The scaling and wavelet functions.

n=2, N=2,1=4y,=08

(a)Scaling function

afla
Il

(b)Wavelet function

Fig. 4. The scaling and wavelet functions.
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n=3, N=1,1=2,y,=04

(a)Scaling function

n=3, N=1,1=2,y,=0.8

VAN

0 “’\/

i

(a)Scaling function

n=3, N=2.1=3,y,=04

(a)Scaling function

n=3,N=2,1=3,y,=08

I

AN

0 Ay

(a)Scaling function

Akira Nakaoka and Akira UEDA

(b)Wavelet function

Fig. 5. The scaling and wavelet functions.

L

(b)Wavelet function

Fig. 6. The scaling and wavelet functions.

T

(b)Wavelet function

Fig. 7. The scaling and wavelet functions.

(c)Wavelet function

(c)Wavelet function

(c)Wavelet function

LA
N

(b)Wavelet function (c)Wavelet function

Fig. 8. The scaling and wavelet functions.
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