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Abstract

This brief note describes some problems we would face in calculating con-
tinuous wavelet transform (CWT) and its inverse (ICWT), and how we can
overcome those difficulties. Especially, the reconstruction error due to the pa-
rameter truncation is discussed, and a calculation method using two special
functions named scaling function and residual wavelet is proposed. Also, other
issues that may affect the accuracy of the calculation are briefly discussed with
some tips, which might be able to help ones who try to implement the
CWT/ICWT very accurately. The overall effect of those techniques results in
sufficiently small reconstruction error less than one percent.
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1. Introduction

Wavelet transform is a mathematical tool that analyzes signals in terms of time and
scale. For a one-dimensional signal made of multiple components, the wavelet transform
may display those components separated in a space parametrized by time and scale.
Because the “scale” basically represents the local period, or the reciprocal of the instantane-
ous frequency of transient signals, the wavelet transform is often used as a time-varying
spectrum that can capture the temporal change of their frequency contents. Furthermore,
thanks to its attractive performance in feature extraction, the wavelet transform has be-
come one of the most standard and fundamental signal processing tools in various fields of
engineering and science, including vibration/motion analysis, image processing, data com-
pression, pattern recognition, etc.

Among a variety of categories in the world of wavelet transform, the continuous
wavelet transform (CWT) may be the most fundamental one, which was first developed
by Morlet to solve the oil prospecting problems in early 1980’s. The standard CWT is de-
fined as
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where a # 0 and b are the scale and shift parameters respectively, x is the signal, and ¢ is
the analyzing wavelet which satisfies the following admissibility condition:
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where gz denotes the Fourier transform of ¢. The factor a ? is necessary to conserve the
L*norm of the wavelets. Since there are possible variations in normalizing the wavelets,

one can generalize the definition of CWT, instead of eq. (1), as”

1

w t—b
(Wx) (a, b) = [ lal ”¢< - >x(t)dt. (3)
The wavelet transform is also written in the form of a linear filter. Let
¢t (1): = lal’¢(t/a), then, the integral in eq. (3) can be rewritten as a convolution integral:
(Wx) (a, 0) = [ gU—x@at = (§ =) () (4)

where { *}~ denotes the reverse with respect to time.

It is evident that the CWT is a highly redundant expression of the signal because it
maps the one-dimensional signal to a two-dimensional time-scale plane. Thus, its inversion
formula is not uniquely determined. The optimal one in the sense of the pseudo-inverse is
given by"

() = % L2 =) (Wew) (a, b)a®dbda )

which, after this, is referred to by inverse CWT (ICWT).
In some cases, it is not necessary to evaluate the negative scales. This situation in-
cludes the case the analyzing wavelet is real-valued and satisfies the modified admissibility

condition: ~
ch= " @Edg < oo, (6)
In this case, the ICWT will be”
Cx() = Cl ST [ (t—b) (WPx) (a, b)a® *dbda . (M)

After this, we deal with admissible real-valued wavelets to simplify the problem.

Numbers of research groups have reported various work on the numerical implemen-
tation of CWT/ICWT. Most of them focussed on fast and efficient computation of
CWT/ICWT, and some of which have developed sophisticated algorithms based on the
multiresolution analysis®.

Nevertheless, one may experience significant errors in calculating CWT/ICWT. The
most important reason of those errors are the parameter truncation. The integrals in egs.
(3) and (7) should be performed on the infinite intervals, however, in practice, one has to
truncate the intervals at certain boundaries. As a result, significant amount of information
would be lost in the calculation. Especially, the scale integral in the reconstruction formula
(7) is critical.

In this paper, a complete solution to this problem is presented, a part of which has been
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reported in the author’s previous paper®. Two representative funcﬁons, called the scaling
function and the residual wavelet, are introduced to compensate the lost information.
Then, those functions for two classes of wavelets will be developed. Also, other preblems
that may affect the accuracy of the calculation are briefly discussed. Finally, a simple cal-
culation is performed to see how accurate the CWT/ICWT are computed using the pro-
posed techniques.

2. Problems Related to Parameter Truncation

In the ICWT given by eq. (7), it is necessary to evaluate the integral from 0 to o with
respect to the scale a, and the integral from —oo to oo with respect to the shift 4. Because
it is impossible to calculate the infinite integral in a numerical way, the influence of the pa-
rameter truncation should be considered carefully.

2.1 Errors due to scale truncation and relief

First, for the scale parameter, let us suppose to take only @ € [@mn, amax] in the recon-
struction. Then, the reconstructed signal would be significantly distorted due to the scale
truncation, especially if the original signal has a DC component and/or high frequency
components. To handle the truncation-induced errors, we divide the scale integral in the
right hand side of eq. (7) into three parts:

x(8) = x0(8) +2:(8) +x2(2), (8)
W) == [ [T b) (W) (o, b)a* dbda, )
t(D) = Cl Lo 7 g —b) (W) (a, b)a” “dbida, (10
x(D) = Cl S =) (W) (a, b)a™ dbuda 1)

where x,(?) is the reconstructed signal evaluated with truncated scales, while x,(¢) and x.(¢)
are the components having the scales below/above the boundaries that can lead to signifi-
cant reconstruction errors.

However, the error will be compensated if we can evaluate these components and in-
volve them in the reconstruction. Mallat” showed that, for p = 1/2, introducing a function,
so-called “scaling function”, one can evaluate the low frequency component x,(¢). This idea
can be applied to the general case with arbitrary p as described as follows.

The scaling function ¢ is defined as a function which satisfies the following equa-

tion:”

|$(w)'2: = Im]a)(aw)ra;a : 12
First, we rewrite eq. (11) using a convolution integral as

(D) = = [7 A= (W) (a, ) (Da*“da 13

C+
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where “ « ” indicates the variable over which the convolution is taken. Furthermore, substi-
tuting the filter expression of CWT given by eq. (4) into eq. (13) yields
1

00 = o [ (97 +x) (Da”da. i
Then, taking Fourier transform of both sides of eq. (14), we have

) = = [ @)|2@)a" da. 1

C+

Considering that g/b':(a)) =a gz (aw), and using the definition of the scaling function given

by eq. (12), we have

“w) = 5 [ [9ao) @) % 1
— C1+ J;m‘g’[)(amax aw)r;c(w)%l
1 (~ o~
= B (e ) 2 ().
Thus, if we define that ¢5(¢): = a*¢(¢/a), and define that
(Wx) (a, b): = [ $i(t—b)x(Ddt, ("
then, the inverse Fourier transform of eq. (16) is evaluated as
%1 = “C S (= b) (W) (e, b abs . 19

Following the same idea, we introduce a function ¢, named “residual wavelet”, to com-
pensate the high frequency component x,(¢). The residual wavelet is defined as a function
which satisfies

F @I = [plaw 2. 19
In the same way as the scaling function, the following formulae are derived:

%(t) = “C— ST g2 (1= 0 (W%) (@, bo)dbs 20
where ¢?(¢): = a *¢’(¢/a) and

(W) (a, b): = [ ¢?(t—b)x(Ddt. | 20

Therefore, using egs. (18) and (20), one can salvage the lost information outside the
scale region of interest, and completely reconstruct the original signal.

It would be worth noting that both the scaling function and the residual wavelet are
not uniquely determined for the given analyzing wavelet, because egs. (12) and (19) deter-
mine only the absolute value of the Fourier transform of those functions. Thus, one can ar-
bitrarily choose the complex phase of gAé(a)) and &"(a)).

2.2 Shift truncation
For the shift parameters in egs. (10), (18) and (20), if the signal is bounded in [#, %],
it is sufficient to consider them in the following range
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t—at! < b < t—ar,

to— Gmax®? < By < b — QT )

b= OminTil < bo < tH— QuinTo
where the analyzing wavelet, the scaling function and the residual wavelet are supposed to
have the compact supports on [z, ], [zd, =], [w, /], respectively. If those functions are
not compactly supported, the following effective support, i.e., the minimum interval
(%, 7] sothat

()] < ek 1, t & [n, Tl 23

may be used instead.

2.3 Derivation of scaling functions and residual wavelets
2.3.1 Derivative-of-Gaussian (DOG) wavelets
Derivative-of-Gaussian (DOG) wavelets® are the wavelets derived from Gaussian func-

tion as
Pu(t): = (—DMd—Me”Z/2 24
' a -
The Mth-order DOG wavelet ¢u(¢) has M vanishing moments, i.e.,
S guDttdt =0, (e = 0, 1, -+, M—1), 25)
and satisfies the following equations:
d n
—Pu(t) = (—1)"ua(2), 26
dt
S [ ou@Ddt" = (—1)'¢u (D). i)
\—,—I

n

The Mth-order DOG wavelet acts as a multiscale differential operator that provides a
smoothed version of the Mth derivative of the signgl‘”.

For this class of wavelets, the scaling function and the residual wavelet are derived as
follows. Let ¥(a, w) the primitive function of ‘;Z\:(aw)r /a, ie.,

U(a, w): = f‘g@(aa)) racll_a. 28
Then, the left hand sides of egs. (12) and (19) can be evaluated as

()] = (e, 0)—T(, w), )

@[ =00, 0) -0, w) G

Taking Fourier transform of the DOG wavelet, and substituting it into eq. (28), we have

(e, w) = 2m0™ [ a™ e da, 31
then,

d oM _2M—1 _—w?a?

?Ellf(a, w) = 2nw™a™ e, 32

Assuming that ¥(a, w) = F(a, w)e ™, and substituting it into eq. (32), we have the
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solution of eq. (32) as
voM-1 —1)! 5
‘llj'(a’ w) = —7 go(il—)'whlable—(oa' (33)
Thus, we finally get
~ M-1 a)zn 9
P(w) = 7z(M—1)!E0 e’ (34
M-1 " )
1= % = e'“}, (35)

¢ (@) = \/E(M—l)!{
where the phase of the Fourier transform of each function is chosen as zero.
The shapes of the analyzing wavelet, the scaling function and the residual wavelet for

M = 2 (Mexican hat) and M = 4 are shown in Fig. 1 and Fig. 2 with their spectra.

2.3.2 Velocity response (VR) wavelets
In the author’s previous paper®, we used a special wavelet called the velocity response
(VR) wavelet to synthesize spectrum-compatible simulated earthquakes. The VR wavelet
is the reverse of the velocity impulse response of a single-degree-of-freedom (SDOF) sys-
(t>0)

tem with the natural period of 1 and the damping ratio of ¢, defined as
(36)

0,
t =
¢ ez”“<cos 2m1-¢ HJT(—EZ— sin 27y 1—¢* t> <0
Note that the wavelet transform using the VR wavelets is causal.
For this class of wavelets, squared Fourier transform of the scaling function and the
residual wavelet are derived as:

~ 1 T o w4 —-1)

dw)| = ——{—— tan ) 3D

T A U

167"tV 1-¢* 8’V 1-¢"

To preserve the causality, the Fourier transform of the scaling function and the residual

-1 2(2_1
tan™ ———==t, (39)
2e/1-¢ }

wavelet are derived using the factorization technique®.

The shapes of the analyzing wavelet, the scaling function and the residual wavelet for

¢ = 0.05 are shown in Fig. 3 with their spectra.
3. Other Problems and Tips

The scale parameter is usually sampled logarithmically, while the shift parameter is
39

3.1 Discrétization of scale/shift parameters

sampled with sampling intervals proportional to the scales, i.e.,
ajzaminajyjzo, 17 ...... y]—l’
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Mexican hat). Left: Fourier spectra; right: waveforms.
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(c) Residual wavelet.

Figure 2 Analyzing wavelet, scaling function and residual wavelet for DOG wavelet transform (M = 4).
Left: Fourier spectra; right: waveforms.
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Figure 3 Analyzing wavelet, scaling function and residual wavelet for VR wavelet transform (¢ = 0.05).
Left: Fourier spectra; right: waveforms.
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1
<amax >j_l
o= \— ,
Amin
b = RAD, R =0, 1, -+- , N;—1, 0
1

Ab = (ljbo, bo = E

where B is the bandwidth of the analyzing wavelet.
Another possibility is to use a homogeneous sampling grid for the shift parameter, i.e.,

bk — kAt, k= O’ 1, ...... , M—l (41)

where At is the sampling period of the data. However, this sampling manner could be very
redundant in large scales and too coarse in small scales.

3.2 Aliasing of wavelets

Because we handle discrete data, aliasing could be a problem for wavelets at small
scales. To avoid the aliasing, zeros are added in the frequency domain to expand the band-
width of the data. This operation corresponds to an interpolation in the time domain.

3.3 FFT-based computation

In order to accelerate the computation of the convolution integrals in CWT and ICWT,
calculating them in the frequency domain using the fast Fourier transform (FFT) is effec-
tive. The FFT-based computation is also suitable to the requirement for the band-width ad-
justment to avoid the aliasing errors.

4. Accuracy of Reconstruction

In order to evaluate the accuracy of the CWT/ICWT pair, a zero-mean white Gaussian
signal is first transformed onto the time-scale plane by CWT, then reconstructed by ICWT.
In this example, the duration of the signal is 30 s, and the sampling period is 0.01 s. We use
the VR wavelets with £ = 0.05. The boundaries of scale parameter are taken as @m». = 0.05
s and Gmx = 2'S.

The reconstruction error ratio, i.e., the ratio of the error norm to the signal norm, is
evaluated with respect to the number of the scale grid. The results are shown in Fig. 4 With
J = 300, we achieve the reconstruction error ratio less than 1%, that means the r.m.s. of the
error is less than 1/100 of that of the original signal.

5. Conclusion

In this paper, several difficulties which may arise in computing CWT and ICWT were
discussed, and some techniques to improve the accuracy of computation have been pro-
posed. Using those techniques, we have achieved the reconstruction error ratio less than 1
9% even for a random signal.
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Figure 4 Reconstruction error ratio.
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