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Abstract

Control of the MHD mode dynamics is essential to improving reversed field pinch
(RFP) experiments as a part of the fusion research programs. Influence of the static and
rotating helical fields on the RFP dynamics has been studied in the STE-2 RFP to test
the idea of the use of helical field for the control of MHD modes. Emphasis is put on the
resistive wall modes which play important roles in future RFPs where plasma lifetime is
much longer than the field penetration time of the wall. Static resonant helical field
brings about unfavorable effect, as expected, by enhancing the magnetic islands, while
rotating resonant field is shown to be a possibile tool for the control of tearing mode
dynamics. The effect of externally nonresonant field on external kink modes is also
discussed.

Key Words: reversed field pinch; MHD relaxation; mode dynamics; external
helical field; resistive wall mode;

1. Introduction

The reversed field pinch (RFP) is characterized by the magnetohydrodynamic (MHD)
relaxation to attain a near minimum energy configuration and subsequent dynamo activities
for sustaining the configuration. It has been established that m(poloidal mode number)=1
internal tearing modes (resonant inside the field reversal surface) and/or internal kink
modes play an essential role in the dynamics of the MHD relaxation and dynamo.”? On the
other hand, nonlinear coupling of these instabilities, or, overlapping of the magnetic islands
associated with these modes, has been believed to result in stochastic field lines in the core
region, causing magnetic fluctuation-induced transport to be dominant in the RFPPY A
dramatic improvement of the confinement has been demonstrated recently by the reduction
of magnetic fluctuation associated with core resonant tearing modes utilizing the technique
of current profile control.” A new operation regime of improved confinement has also been
explored by carefully adjusting the waveforms of the plasma current and toroidal magnetic
flux to minimize the dynamo activity together with sufficient wall conditioning.”

The unfavorable aspects of the MHD instabilities are more pronounced in the RFP with
resistive boundary,”'” where RFP discharge duration (T,) is comparable to or longer than
shell time constant (7). In these circumstances, stability boundary of the tearing modes is
affected by 7, and the distance to the shell as well."”'* Toroidal rotation of the plasma with
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sufficient velocity is shown to have a stabilizing effect on the resistive modes in resistive
boundary RFP.'"?'¥ Feedback stabilization'® may not be applicable in the RFP where many
modes with different helicities have to be stabilized simultaneously. Ideal external kink
modes can also be unstable'® in the timescale of T, however, these modes have been shown
to be stabilized with feedback control.'®

Development of an effective means to stabilize the tearing modes in resistive boundary
is thus one of the important issues in the RFP research. The present work has been
motivated by our interest in the possibility of driving plasma rotation using a toroidally
rotating resonant helical field. The rotation would be driven if the net accelerating torque
could be generated by the interaction between the inherent tearing mode and suitably
phased rotating resonant helical field.'”"'® Study on interaction of the RFP plasma with
external helical fields is thus quite important. However, as far as our knowledge is
concerned, no systematic study has been made to date. In this regard, we should note that
in the OHTE'?*” experiment, now modified to the Extrap T2 expermiment,'? it has been
demonstrated that the pitch reversal (RFP configuration) could be produced and sustained
inside a separatrix by external helical windings, without toroidal field coils. Although the
OHTE applied much stronger fields than our present experiment, they might be similar to
each other in that the helical pitch of the magnetic field is influenced by the external
windings in the outer region.

In this paper, recent results on the MHD mode dynamics under the influence of
external helical field are summarized. First, the RFP plasma response to four kinds of
external static helical fields having different helicities*” is described. A stability analysis on
resistive wall kink mode which was motivated by the experiment will follow, and, finally,
studies on mode dynamics using rotating helical fields (RHFSs) are described.

2. Experimental Arrangement

The STE-2** is a small-size RFP machine (R/a=0.4m/0.1m) in which we used a 2 mm
thick SS chamber, where R is the major radius and @, the minor radius. The time constant of
the chamber for the vertical field penetration, T,= ad/2n,., was 0.25 ms, where d is the
chamber thickness, &, the vacuum permeability, and 77, the chamber resistivity.

In the static perturbation experiments, the chamber was covered by a close fitting 0.5
mm thick copper shell with the minor radius b of 0.103 m. The shell time constant was 1.7
ms, and the combined time constant 2 ms, twice as long as typical discharge duration in our
experiment. In the RHF experiments the shell was removed, the vacuum vessel working as a
resistive wall.

Twelve turn primary windings were set coaxially with the chamber outside the shell at
75=0.115 m. Four kinds of helical windings were attached at r,,=0.121 m, slightly outside
the primary windings. These helical windings produced perturbation fields with M/N=1/+8
and 1/+10, where M and N are the poloidal and toroidal mode numbers of the perturbation
field, respectively. Hereafter we will use m and n to designate the mode numbers of the
inherent magnetic fluctuations.

Internal magnetic field profile measurements showed that, in a typical RFP discharge
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which was slightly degraded by insertion of magnetic probes to the magnetic axis, the safety
factor ¢ was about 0.15 on the axis, decreasing to ~-0.03 at the edge. The M/N=1/8
perturbation was resonant at »/a=0.4, and the 1/10 at »/a=0.5. These perturbations will
be referred to as internally resonant, or, resonant for short. The perturbation fields with
negative N had no resonance between the field reversal surface and the shell, so that they
will be referred to as (externally) nonresonant.

The amplitude of external field at the edge is denoted by |By|, and |B,)/Be, Will be
referred to as the external perturbation level, where By, is the edge poloidal field at the
peak plasma current.

The major diagnostics were magnetic pickup coils and flux loops. An array of toroidal
flux loops were used to study toroidal flux disturbance localized near the poloidal gap. In
addition, a calorimeter probe was used for the measurement of edge heat flux most of which
were shown to be carried by the superthermal electrons.

3. RFP Plasma Response to Static Helical Fields

Figure 1 shows time traces of discharges with and without the helical perturbations.
When the nonresonant perturbations were applied, as shown in Fig.1(a), the RFP discharges
were improved slightly, where the improvement resulted mainly from reduced discharge
resistance. The improvement was observed for the perturbation level of up to ~8 %.

When the resonant perturbations were applied, the RFP discharges resulted in
degradation with decreased plasma current, higher loop voltage and shorter discharge
duration, as shown in Fig.1(b). The degradation is evident with the level of 1 %, which is
slightly higher than the inherent fluctuation level, |f3’,,a‘/ Bg,, associated with the m=1 tearing
modes when compared at the edge, where IB”’I is the root-mean-square inherent fluctuation
amplitude. '
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Fig.1 Time traces of the loop voltage V;, plasma current [, average <B,> and edge By, toroidal
fields in RFP discharges (a)with externally nonresonant (6.5 % M/N=1/-8) perturbation and
(b)with internally resonant (1.5 % M/N=1/8) static helical field, compared with those without

perturbations.
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Dependence of the discharge resistance on the amplitude of the helical perturbations
are summarized in Fig.2(a) for the nonresonant perturbations and in Fig.2(b) for the
resonant ones. It should be noted that the comparison has been made under the same
conditions of the power supplies (charging voltage of the poloidal and toroidal circuits) as
well as fill pressure of the working gas (hydrogen). The peak plasma current does not
increase significantly with application of the nonresonant perturbations, so, the decreased
resitance is brought about mainly by decreased loop voltage, in the average sense. While, on
the other hand, the discharge resistance increased with resonant perturbations of only 1 %
level. It became difficult for the peak plasma current to exceed 50 kA for the M/N=1/8
perturbation of the level of higher than 2 %. The RFP configuration could not be sustained
for the periods longer than ~0.2 ms in these degraded discharges. It should be noted that
the critical amplitude for the degradation to such a degree increased by about a factor 2
(amplitude of about 4 %) for M/N=1/10 perturbations whose resonant surface was located
radially outside of the 1/8 resonance by about 1 cm (0.1a).
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Fig.2 Discharge resistance V;/I, vs. maximum [, in RFP discharges with (a)nonresonant and
(b)resonant helical fields.

In Fig.3(a) (with M/N=1/+8 perturbations) and Fig.3(b) (with 1/+10 perturbations),
the F—@ loci at the time of maximum plasma current are comparatively shown with
nonresonant (open rectangles), resonant (filled rectangles), and without perturbations
(open circles). Here F(=Bgy./<By>) is the field reversal ratio and © (=Bs,/<By>), the pinch
parameter, where By, is the edge toroidal field and <By> the average toroidal field. It should
be noted that the conditions of the power supplies as well as the fill pressure remained
fixed in the comparison.

The © values tend to scatter in the region of 1.8-2.4 without perturbations, the average
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Fig.3 Comparison of the F - @ location with (a)M/N=1/%8 and (b)M/N=1/+10 helical field.
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value being around 2.2. The F values lie in the range from -0.3 to -0.4. The region of the ©
values is lower (with the average of ~2.0) with resonant perturbations, while it is higher
(with the average =2.3) with nonresonant ones. The F values tend to scatter with 1/8
perturbations. With 1/10 perturbations, the region of the F values shows shallow reversal.

The observed tendency of the © value may be understood in connection with the RFP
dynamo activity, which is essentially conversion of the poloidal magnetic flux into toroidal.
Lower @ is an indication of the higher rate flux conversion and higher ©, the lower rate
conversion, when compared under the same conditions of the power supplies.

It has been widely accepted that the RFP dynamo suppresses the parallel current in the
core region while enhancing the poloidal (parallel) current at the edge, interaction of the
internal m=1 tearing modes playing a major role in its dynamics.*” Thus, the experimental
lower © tendency is an indication of more active interaction of the m=1 modes. It is
consistent with the observation that root-mean-square fluctuation level of the edge radial
field increased with increasing the resonant perturbation; The incremental fluctuation level
is about 50 % near the critical level for the degradation. The fluctuation level does not
change significantly with nonresonant perturbations.

A direct comparison of the mode coupling process would require time evolution of the
toroidal mode spectrum, which, however, is beyond the capability of our present diagnostics.
Change of the coherence scale length, which is a measure of the spectral width resulting
from mode coupling, will be discussed later.

In Fig.4, the toroidal magnetic flux in the different toroidal positions is shown, which
were measured with 6 flux loops separated by 15° toroidally, where only the low frequency
part (f<20 kHz) is shown. The suffix in the figure designates the location of the flux loop;
Y, is just at one of the poloidal gaps with suffix increasing in the opposite direction to the
plasma current.

As shown in Fig.4(a), with resonant M/N=1/8 perturbations of 1 % amplitude, the
initial increase of the flux starts almost uniformly at ~0.2 ms. The second flux increase,
which starts at ~0.3 ms in ¥ ,, appears to propagate toroidally with a velocity of ~6 km/s.
Furthermore, the stop of the flux increase propagates with a reduced speed of ~4 km/s.
The time evolution of y, is slightly different from that of the others, increasing to ~0.5 ms,
after which the flux decreases at all the locations.

As is clear in Fig.4(b), with nonresonant 1/-8 perturbations of 4 % amplitude, toroidal
uniformity in the flux behavior is greatly improved throughout a discharge. The
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Fig.4 Time evolution of the toroidal magnetic flux at 6 foroidal locations separated by 15° toroidally. Only
the low-frequency part (f<20 kHz) is shown with (a)resonant and (b)nonresonant helical field.
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improvement of the toroidal uniformity appears to increase with an increase in the
nonresonant perturbation amplitude of up to ~8 %. Thus the slightly improved discharge
performance with nonresonant perturbations is accompanied by the improved toroidal
uniformity of the toroidal flux.

Since the localized increase of the flux is a result of the phase locking of the m=0
modes resulting from nonlinear coupling of the modes, the above results suggest that the
m=0 mode coupling is enhanced with application of resonant perturbations, while it is
suppressed with nonresonant perturbations. The change in propagation velocity shown in
Fig.4(a) might also suggest the relation of the resonant perturbation to the subsequent
mode locking.

Correlation analysis of the magnetic 10 ™00 KHZ < < 3008z
fluctuations from the poloidal array inside ‘ ]
the vessel revealed that magnetic g *°
fluctuations in the STE-2 were 3
characterized by low frequency (f<50 kHz) S L wio helical ©
m=0 component and high frequency (f },’:‘1},0[5‘%,2‘,’ .

2100 kHz) m=1 component. In Fig.5, O e e o % & U6

coherence is plotted as a function of the Foloidal L.engi {om)

po[oidal length of separation of the two Fig.b Coherence averaged over the m=1 frequency

pickup coils. Here, coherence v is related to domain vs. poloidal length between the two
the spectral width Ak as Ak oc (1 - '}/)”2, pickup coils. The scale length decreases with
which is a measure of the nonlinear mode resonant helical field.

coupling. Since the magnetic field at the

RFP edge is mainly poloidal, the poloidal length may be regarded as the length along the
mean magnetic field line in the approximate sense. The e-folding length of the coherence,
which we will refer to as coherence scale length A|, is fairly long either without the
perturbation or with nonresonant perturbations. When the resonant perturbations are
applied, coherence decreases rapidly with poloidal length, Aj being comparable to the
plasma minor radius. The decreased coherence is thus attributable to the enhanced
nonlinear coupling of the internal m=1 tearing modes, being consistent with the lower @
tendency described previously.

It is worth comparing the results with coherence measurement in MST,E‘” where change
of coherence along the poloidal length was measured in several frequency domains. It was
reported that the coherence scale length was fairly long in the frequency domain
corresponding to the core resonant m=1 tearing modes. It is almost the same as the present
results with nonresonant or without helical perturbations. The scale length decreased down
to the order of plasma minor radius in the frequency domain corresponding to the turbulent
fluctuations. The edge turbulence was attributed to the interaction of locally resonant m=1
modes whose resonant surfaces are closely spaced in the edge region. The decreased
coherence scale length is similar to the present results with resonant helical fields. The
comparison suggests that the m=1 mode coupling may be enhanced with the help of a
static magnetic island due to the resonant helical field.

Static magnetic island widths produced by the resonant perturbations were estimated by
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analyzing the following simple RFP equilibrium.”” The analysis is an extension to the M=1
helical perturbation of the method by Pinsker and Reiman,zﬁ) who treated the M=0
perturbed equilibria. In the present analysis, RFP equilibrium with uniform force-free
parameter A(=j|/B) was adopted with a static M=1 helical field in an ideal shell with
proximity b/a of 1.03.

In the cylindrical approximation, the helical flux function in the plasma ,(7,0,2) can
be expressed as follows,

W, (r0,2) = W) —Axy,(r)cosuy, €y
Woo(r) = (Bo/ M o(Ar) +ky 1] ((AN)], )
Y = A Anr) —kyAnrl'((Ay1), 3)

where J, and J, are the Bessel functions of the first kind, B, is the central magnetic field,
kn = N/R, uy = @—kyz, and Ay = (A*=kx )" In the vacuum region, the helical flux
function y,(7,0,2) can be expressed as follows,

WV, (,0,2) = W) -y, (r)cosuy, (4)
W) = C+(knr>/2)Br—aBeln(r/a) ®)
W = Bykiol, (kyn)+CakirlK (kyn) - 228D b gt )

I', (ki b)

where I, and K, are the modified Bessel functions, By is the uniform vacuum toroidal field,
and the coefficient By is related to the perturbation amplitude at the edge b, as By=
b/ (kxI',(kya)). C is a constant to be determined from the following matching condition.
The perturbed plasma boundary p can be written as

p = a+Ax(W (a)/ Y (@) cosuy. M

Normal (Y ,, ¥,) and tangential (n-Vy/,, n-Vy,) components of the magnetic fields
were connected, respectively, at the perturbed plasma-vacuum boundary, where n is the
surface normal vector. From these matching conditions, we could determine the coefficients,
deriving the relation bewteen the magnetic island width and perturbation level.

Figure 6 shows the magnetic island width normalized to the plasma radius (W/2a) as a
function of © for some values of the perturbation level. It shows that M/N=1/8 perturbation
level of ~1 % produces an island with the width of ~10 % of the plasma minor radius,
which approximately equals the radial separation of the neighboring rational surfaces in the
core region. The perturbation level increases up to ~2 % for the M/N=1/10 perturbation to
produce an island with the same width, mainly because of the higher magnetic shear at the
corresponding resonant surface. In real RFP plasmas, A decreases to 0 towards the edge.
Radial variation of A in the core region (r/a <0.5), however, is not so large, and, therefore,
the present results may apply, at least semi-quantitavely, to real RFP plasmas. The
experimentally observed critical perturbation level for sustained RFP is therefore
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attributable to sufficient overlapping of the BT —
ic and inherent island S MIN = 18 . Br / Boa = 25 ——
static an erent islands. So02| e B Bu=ck — |
The discharge performance may be g MN =1/10, Br/Bos =4% -~
improved slightly with the nonresonant 2
perturbations. Here we will discuss some g
possible mechanisms as further issues. é ?
As mentioned in the introduction, 2

I R SR XS
application of the nonresonant perturbation 18981 B TG A5 158 1A

is similar to the OHTE concept in that the g Magnetic island width W with M=1 helically

helical pitch is influenced in the outer perturbed RFP equilibrium. The normalized
region, although the applied field is much island width W /2a is given as a function of © for
weaker than in the OHTE experiment. M/N=1/8 (1 and 2 % perturbation level) and
Since no toroidal field coil was used in 1/10 (2 and 4 %) helical fields.

OHTE, it is impossible to compare the

influence of the helical fields on RFP performance. However, in view of the fact that
improved performance has been observed with a perturbation level as high as ~8 % (upper
bound was limited by the power supply), it may suggest the usefulness of OHTE concept.
An analysis of the RFP pitch profile influenced by nonresonant perturbations is yet to be
carried out.

Another possibility is the influence of external helical current on MHD instabilities.
Since the applied field was externally nonresonant helical field, the corresponding modes
would be external kink modes. In particular, ideal external kink mode can be unstable in a
plasma surrounded by a resistive wall even if the mode is stable with ideal wall. The modes
with this nature is referred to as the resistive wall modes.

4. Influence of External Helical Current on Resistive Wall Mode Stability in an RFP

The stability of ideal magnetohydrodynamic (MHD) instabilities in the present reversed
field pinch (RFP) experiments relies upon a close fitting ideal conducting wall. However, in
fusion relevant machines, the discharge duration T, has to be much longer than the field
penetration time of the wall 7,. Under these circumstances, ideal modes can become
unstable with a growth time of the order of 7, which are referred to as the resistive shell
modes (RSM).

Pioneering work on the RFP operation with a resistive wall was performed in the OHTE
experiment,s’ where T, much longer than 7, was realized and MHD properties were
studied. There followed similar experiments with resistive walls in HBTX-1C,?"'®
Reversatron,'” STE-2'" and Extrap T2*” (T2 for short). In these experiments, enhancement
of the magnetic fluctuations (i.e., higher nonlinear saturation amplitudes of the tearing
modes) and an increase in the loop voltage associated with enhanced helicity dissipation
due to the higher fluctuation level were common observations. As for the ideal modes,
growth of the external kink modes was observed in the HBTX-1C™'® and Reversatron'?®,
while no such observations were reported either for OHTE® or T2*”. On the other hand, in
the external helical field experiments in the STE-2,*” a slight improvement of the discharge
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characteristics was observed when externally nonresonant helical fields were applied. These
results suggest that the helical winding or the external helical current might have some
influence on the stability of the external kink modes.

We will analyze the stability of the external kink modes in the RFP configuration which
is surrounded by both a resistive wall and an outer helical current layer. The stability of
RSM with growth rate p is determined from the dispersion relation which follows from the
following boundary condition at the resistive wall

b 8b, out
st = b_’[ar in s (8)

where b, is the radial component of the perturbed magnetic field and & the wall minor
radius. The jump of 9b, /97 at the resistive wall, [9b, /9r]%", arises from the induced wall
current. Note that the thin wall approximation b?“ = b/ has also been used in eq.(8). When
the external helical current has the effect of making the jump negative which is otherwise
positive, then the mode can be stabilized by the external helical current. It is shown that
this is the case with the external kink modes in the RFP configuration under some
assumptions. Relevance to the experiments will also be discussed.

We will treat a simple cylindrical
plasma model as shown in Fig.7 with the
coordinates (r,0,z). The plasma (whose
minor radius is a) is surrounded by a
resistive wall with thickness & at r =5, and
an outer helical current layer at r=c¢. We
use the thin wall approximation 6/b<1.

The perturbed magnetic field b has the Fig.7 Cylindrical plasma model with resistive wall and
form outer helical current.

v

helical
current
L exp (iMD +ilky z)

e

resistive shell
([ Ta)

b = b(nexp(ik - r+pt), )]

where k= (m/r)eg+(n/R)e, is the wavenumber vector with poloidal mode number m,
toroidal mode number n and major radius of the simulated torus R, with the unit vectors eg
and e,. Hereafter we will treat only the m=1 mode because of its exclusive importance in
the RFP. n/R is denoted by k., and capital B denotes the equilibrium magnetic field.

The perturbed magnetic field in the following three regions outside the plasma can be
expressed in terms of the magnetic potential ¢, which is given in each region as

region Il (a<r=b):

¢y =(C1,+CyK,)exp(iB+ik,z+pt), (10)
region. Il (a<r=<b):
Om = (C3I,+C,K,)exp(i0+ik,z+pt), (11)

region IV (r=c¢):
O = Cs K,exp (i@ + ik, z+ pt), (12)
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where I, and K, stand for I,(k,7) and K,(k,r), respectively and I, and K, are the modified
Bessel functions.

When the growth time of the mode 1/p is comparable to the wall time constant T, the
perturbation in the plasma (region I) can be described approximately by the following
marginal stability equation

49y _gr o, (13)

where £ is the radial plasma displacement and one can find the expressions for f and g
elsewhere.””

The constants C;(j=1,...,5) in eqs.(10)-(12) are determined by the conventional
boundary conditions at the respective boundaries. In particular, we have assumed that the
phase of the helical current is matched to the component of the magnetic perturbation
parallel to the wavenumber vector at » = ¢ so that the following condition holds

[k-bli' = uokly, (14)

where W, is the magnetic permeability in vacuum and 7, the amplitude of the helical surface
current density. When we neglect the curvature effect at the current layer, eq.(14)
represents the jump of 9b, /9r due to the helical current. It has also been assumed that the
current layer is infinitely thin such that the magnetic perturbation normal to the surface is
continuous at r =c.

We then obtain the following dispersion relation using the boundary condition given by
eq.(8) at the resistive wall

pT. = ~(A-B)F %

X ; S— 7 (15)
Ia — Ia = Ib ___I_a !
K, K, #(T=1)( K, K,a)
k. K',
akf Ka
k. Lolw cK'. 1 :
% F,Z,aK,T-T (1D

T = [(F,IF,)+(E 1€),), (16)

H =

where F=k-B=k,B,+(Bo/r), F=k,B,—(Bo/7), k’=k’+(1/a®) with the subscript a
representing the value at » =a and so on, and the prime denotes differentiation with respect
to the argument.

The following force-free profile with the force-free parameter A(») specified by two
parameters ©; and a has been adopted as a model equilibrium

VxB = A(B, (18)
Alr) = (20,/a)[1-(r/a)*). (19)
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In Fig.8, we will give the radial profiles
of the equilibrium magnetic field for three
sets of the parameters ®, and a. 0, is the
parameter associated with the central
current density and o represents the
peakedness of the current profile. We have
neglected the plasma pressure in the
present anaysis.

When there is no external helical
current, we obtain the normalized growth
rate vs normalized toroidal wavenumber for
the equilibrium specified by four parameter g8 Radial profiles of the poloidal and toroidal magnetic
sets of (@,@) as shown in Fig.9. It is fields of the model equilibria for three sets of
essentially the same as the results in ref.9 parameters ©, and .
of linear stability analysis of the external
kink modes using the reduced set of MHD
equations for the RFP*”?Y The modes with 4r
-1.2=<k,a<0 are unstable with the 3t
maximum growth rate at k,a~-1, where
negative n stands for the external modes.
The maximum growth rate (pT;)me is 4.0
for the equilibrium with ©,/a=1.9/3.2, 0
decreasing to 1.1 for 1.8/3.2, and further to
0.5 for 1.7/3.5. The external modes are  Fig9 Normalized growth rate vs. normalized wavenurmber
more important in peaked current profile. for the equilibrium specified by four sets of @,

When there flows an external helical and.c,
current with the same pitch as the mode
treated, the dispersion relation shows that (1{.%19,1%11‘8/3.2? __(1932)

5

PTs

the mode can be marginally stable when : i E ; it o 1':
the condition H=1 holds. ) b ga=1l g |

In Fig.10, we have plotted the helical & bl ‘
current density (normalized to the edge :E : i 1i ? |
radial perturbation amplitude) which is 2ry ]
necessary to stabilize the mode with the 1 i ? ":
maximum growth rate for the equilibrium B n = & =5
specified by ©, and a. Radial position of the (PTshmax
current layer ¢/a is chosen as a paremeter. Fig.10 Helical current required to stabilize the mode
The figure shows that the current for with maximum growth rate for the equilibrium
stabilizing the external kink mode increases specified by (€,/00).

with an increase of the growth rate. The

required current increases with the radial distance of the current layer; The required
current is almost doubled when the current layer moves outward from ¢/a=1.0 to 1.5. It has
also been confirmed that for a given value of c¢/a, the required current does not depend
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strongly upon the resistive wall position b/a. In the actual situation, however, wall proximity
to the plasma b/a would be determined by the requirement for ideal mode stability with a
much higher growth rate. It should be noted that the normalized helical current density
Uoly/ (), can be rewritten as (277al/1,)/ (1B .l /Be,), where I, is the plasma current and
|B,.| the radial magnetic fluctuation amplitude. Since the radial magnetic fluctuation level
|B,a| /Bg, is several % in the experiments, Fig. 10 suggests that the total helical current of
less than 10 % of the plasma current is enough to stabilize the external kink modes.

As mentioned in the beginning of this section, in the resistive wall RFP experiments to
date, they observed growth of the external kink modes in some machines while they did not
in others. Since the external kink mode stability depends on the current profile as shown in
Fig.9, we may be able to attribute the difference to the current profiles in different devices.
We should note, however, that there appears to be no significant difference of the pinch
parameter ©® (=By,/ <B,>) and field reversal ratio F(=B,,/ <B,>) in these experiments,
where the bracket <> denotes the corss sectional average.

A possible alternative interpretation is the effect of the external helical current induced
in the external structure whose decay time constant is longer than the resistive wall time
constant. As shown in the present analysis, the induced helical current would have a
stabilizing effect on the external kink modes if the phase of the induced current coincides
with that of the component of the magnetic perturbation parallel to the wavenomber vector.
It may be interesting to note that both OHTE and T2 are equipped with external helical
windings.

In STE-2,%® as shown in the previous section, a slight improvement of an RFP discharge
was observed with externally nonresonant helical fields. In the experiments, helical
perturbations with M/N=1/-8 and 1/-10 were applied, where M and N are the poloidal and
toroidal mode numbers of the external fields, respectively. The toroidal mode number
spectrum in the experiments would probably not be very narrow because of the inevitable
toroidally nonuniform pitch of the helical windings and winging “error”, both at the
diagnostic ports and at the support structures of the windings. Non-negligible amplitude
may thus be distributed to the N~-4 component (which is also subharmonic of the M/N=
1/-8 field) in the applied helical field. We can therefore put forth that one of the possible
mechanisms of the slight improvement of the RFP with an externally nonresonant helical
field is the stabilizing effect of the external current on the external kink modes.
Unfortunately, magnetic diagnostics were insufficient to identify the toroidal mode numbers
of the instabilities in those experiments. Similar experiments are under way with improved
magnetic diagnostics.

In the experiments with much longer discharge duration, feedback control'® of the
helical current (field) would be needed by the use of two pairs of helical coils with are
orthogonal to each other. Since the spectrum of toroidal mode numbers of the unstable
external kink modes is rather narrow, lying in the range 1 <|n| < R/a as shown in Fig.8, it
may not be very difficult to stabilize these modes with feedback control technique.
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5. Control of Mode Dynamics with Rotating Helical Field

As mentioned in the previous section, the resistive wall modes (RWM) (both tearing
and ideal kink modes) are thought to be serious problems in future RFPs in which the
discharge duration far exceeds the field penetration time of a conducting wall. Theories
have predicted that the growth of tearing modes or their saturation amplitudes can be
reduced by moderate toroidal rotation of the plasma.gm On the other hand, stabilization of
the external kink modes requires sub Alfvénic rotation speed which is much faster than the
natural rotation speed of the tearing modes.*”

In the RFP, it appears to be difficult to use the neutral beam injection for plasma
rotation drive because the diameter of port holes is restricted by the unfavorable field
errors. Thus, development of other techniques for rotation drive is one of the urgent issues
in the RFP research. The internally resonant rotating helical field (RHF) applied from
outside of the resistive wall may be able to provide accelerating torque to the magnetic
island, if the phase is adequately controlled. The external kink modes may be stabilized by
externally nonresonant rotating helical field which resembles the rotating secondary shell
concept.”®

In the preliminary experiments,s‘” we used helical coils covering a half of the torus (two
quarters), which provided M/N=1/8 resonant RHF. The discreteness of the helical coil
produced the low N (~2) components of the M=1 field as well. No significant influence of
the RHF was observed on the m=1 mode dynamics. However, toroidally localized m=0
(toroidal flux) disturbance was accelerated or decelerated depending upon the direction of
the RHF. This result may indicate that the m=0 disturbance was a result of the m=1 mode
coupling.

In this section, we describe the results which indicate direct interaction between the
rotating M=1 helical field and the inherent m=1 core resonant tearing modes. The helical
coils have been modified to cover the whole torus, which has resulted in a rather sharp
toroidal mode spectrum of the RHF; the amplitudes of the M/N=1/7,9 components are
about a half of that of the main M/N=1/8 component, while the rest is negligibly small. In
most experiments reported here we used LC damping oscillation to obtain alternating
current; effective duration of the rotating field was restricted to not longer than 0.3-0.4ms.
The frequency was 10-20kHz, and the
toroidal phase velocity of the RHF was 4-7
km/s. The amplitude of the oscillating field
|B,| is defined as an average from the

without RHF

h,a (m=1) (a‘u

second to the fifth peak values which were j

measured inside the vessel. E% 195
In STE-2 discharges without a B 06

conducting shell, the plasma current I, is ¥ Jo4at(ms)

around 60 kA with discharge duration 7, of "’

around 0.7 ms.*” Figure 11 shows the time toroidal angle @ 0 01

behavior of the m=1 edge radial magnetic Fig.11 Time evolution of Bra over a half of the torus
fluctuations B,, measured with a toroidal " without RHF.
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array of sine/cosine coils attached onto the outer surface of the vacuum vessel and covering
over a half of the torus. Immediately after attaining the RFP configuration at about ¢ =0.256
ms, the magnetic fluctuations grow with the time scale of 7,, and the dominant toroidal
mode number n appears to be around 8, maintaining the structure for the rest of discharge.
The fluctuations remain almost nonrotating (i.e., locked to the vessel). The measurement of
radial magnetic field profile shows that the m/n=1/8 mode is the tearing mode whose
resonant surface is located at r/a~0.4.

When the RHF was applied at 0.3 ms with a frequency of 15 kHz and a perturbation
level of 0.5 %, as shown in Fig.12, the amplitude of magnetic fluctuations is reduced, and,
furthermore, the fluctuations rotate toroidally in the direction of the applied RHF. The
phase velocity of magnetic fluctuations is
slightly lower than that of the RHF. It
should be noted that there is a critical
perturbation amplitude; When the
perturbation level is lower than 0.4 %,
which almost coincides with the edge
flucutation level of intrinsic mode, neither
the reduction of the fluctuation amplitude
nor their toroidal rotation has been
observed. toroidal angle @

The toroidal mode spectrum of the B,,  Fig12 Time evolution of Bra with RHF applied at 0.3 ms.
shows that most of the fluctuation power is
distributed among the m/n=1/7,8,9 modes.
Figure 13 shows the time evolution of the
amplitudes of these m/n=1/7,8,9 modes
together with the plasma current waveform
without the RHF. The amplitudes of the
modes increase immediately after setting
up the RFP configuration with the time
scale of the vacuum vessel until the end of
discharge. When the RHF is applied at 0.3 Fig.13 Time evolution of the m/n=1/7,8,9 mode
ms with relative amplitude of 0.5 %, the anplidcs WIthoub REE.
time evolution of the mode amplitudes
changes, as shown in Fig.14. The growth of
the modes is suppressed transiently for 0.2-
0.3 ms, and, moreover, the amplitudes are
reduced for the rest of the discharge.
Ensemble average over several tens of
shots has revealed that the amplitudes of
these modes are reduced by 20-30 % at 0.5
ms.

The time behavior of the toroidal
phases of the m/n=1/6-10 modes shows

with CCW RHF
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Fig.14 Time evolution of the m/n=1/7,8,9 mode
amplitudes with RHF applied at 0.3 ms.
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that the core resonant (or internally o o g—
nonresonant) m/n=1/<8 modes are almost 0 W |
locked to the vessel, while the m/n=1/9,10 = ]
modes rotate in the opposite direction to °W
the toroidal plasma current (ctr-direction) -l ]
with a phase velocity of ~5x10°zrad/s. It & «f n=s — |
may be interesting to note that in the ultra- o M
low-q (ULQ) discharges in the STE-2, the : —]
dominant m/n=1/5-7 modes rotate rigidly ob RHE :
in the same (ctr-) direction with almost the = _ﬁ/\l //ﬁ
0 0.2 04 0.6 0.8 1

same phase velocity. When the RHF is
t[ms]

applied at 0.3 ms, as shown in Fig.15, the Fig.15 Time evolution of the toroidal phase of the
m=1/n=8 mode keeps moving (or rotates) m/n=1/6,7,8,9 modes with RHF applied at 0.3 ms.
for 20.2 ms, and at the same time, the

m/n=1/9 mode, which otherwise ctr-rotates, reverses the rotation direction and keeps
moving for the same period. The m/n=1/10 mode may also be decelerated for the remaining
period of the discharge. Further discussion on the behavior of these m=1 modes, which
probably includes the effect of resonant three wave coupling through nonlinearly excited
m=1/low n modes, requires simultaneous measurements of the m=1 and m=0 modes.
Nevertheless, we may conclude that the above result is the first demonstration in the RFP
of the direct interaction between the rotating M=1 helical field and inherent m=1 core
resonant tearing modes.

In the present experiments with improved helical coil configuration, it has also been
observed that the toroidally localized m=0 disturbance, which usually rotates in the ctr-
direction, is either accelerated or decelerated depending upon the RHF direction, as in the
previous experiments. The influence of the M=1 RHF on the toroidal rotation of the m=0
localized disturbance has also been identified

Figure 16 shows the resistance vs.

toroidal plasma current in standard and wiohelical O
RHF-applied discharges. The resistance st o .
decreases with an increase in the plasma

current in both cases. No significant g il

improvement of the dependence of the E o o
resistance on plasma current has not been 2l ; ‘e -
made clear yet. However, it may be noted

that the plasma current tends to increase 'so 55 80 P 70 75
with the RHF. Influence of the RHF on high G

frequency magnetic fluctuations has not Fig.16 RFP discharge resistance vs. plasma current in
been observed yet. Further optimization of standard and RHF-applied discharges.

both the frequency (rotation speed) and
amplitude of the RHF is in progress with the use of a pair of pulsed oscillators with helical
current /,< 1 kA in the frequency range of 10 kHz < f <30 kHz.

Some theories have been proposed very recently’”*” on the interaction of inherent
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tearing mode with external rotating helical field in the RFP configuration. Stability
boundaries have been obtained in the amplitude vs. frequency space of the rotating field.
Comparison with this theory is inevitable for further quantitative discussion.

6. Summary

Response of an RFP plasma to external static helical perturbations has been found to
depend upon the helicity of perturbation.

Degradation of discharges has been observed with resonant perturbations, being
characterized by higher discharge resistance and shorter RFP lifetime. In the degrared
discharges, edge magnetic fluctuation level increases with some indications of enhanced
coupling of both m=1 and m=0 modes; The coherence scale length decreases with
increased fluctuation level and localized toroidal flux disturbance grows near the poloidal
gap. Critical perturbation level of M/N=1/8 field for sufficient degradation is lower than that
of M/N=1/10 field by a factor of about 2.

Analysis of the static island width in M=1 helically perturbed RFP equilibria shows that
the above critical level corresponds to production of the static magnetic island with the
width comparable to the radial distance to the neighboring rational surfaces. The factor 2
difference of the critical peturbation level depending on the perturbation helicity roughly
agrees with the calculation. The enhanced m=1 mode coupling with application of the
resonant perturbation thus results from interaction between the static and inherent islands
the latter being associated with m=1 tearing modes.

RFP discharges are improved slightly with application of the nonresonant perturbations.
In these improved discharges, the fluctuation level and coherence scale lenght do not
change appreciablly, while toroidal uniformity of the toroidal magnetic flux has been
improved significantly, which is an indication of the suppression of the m=0 mode coupling.
The F-0 loci implies slight suppression of the m=1 mode coupling, however, no direct
evidence has not been obtained.

A stability analysis of the ideal external kink mode has been performed in an RFP
surrounded by a resistive wall and an outer helical current. The helical current is shown to
have a stabilizing effect on this particular mode. Thus, the external helical current is one of
the possible mechanisms for the improvement. Further experimental efforts are to be made
to identify the external kink mode.

The STE-2 RFP has been operated with only a vacuum vessel to test the idea of driving
the mode and/or plasma rotation using resonant RHF applied from outside of the vessel. It
has been observed that the growth of dominant magnetic fluctuations, which are otherwise
almost locked to the vessel, is suppressed with transient rotation. It is a direct
demonstration of the interaction between the externally applied M=1 modes and the
inherent core resonant tearing modes.

The external helical field appears to be useful in controlling the RFP dynamics.



Control of RFP Dynamics Using External Helical Fields 53

Acknowledgment

The authors thank K. Ohta for his technical assistance. They are also grateful to
Professor T. Tamano, Professor M. Wakatani, Dr. Y. Hirano, Dr. Y. Yagi, Progessor S. Prager,
Dr. J. Sarff, Dr. C. Hegna, Dr. S. Ortolani for useful discussions.

Department of Electronics and Information Science
Faculty of Engineering and Design
Kyoto Institute of Technology
Matsugasaki, Sakyo-ku, Kyoto 606-8585

References

1) J.B. Taylor, Rev. Mod. Phys. 58, 741 (1986).

2) 8. Ortolani and D.D. Schnack, “Magnetohydrodynamics of Plasma Relaxation”, World Scientific, Singapore (1993).

3 ) M.R. Stoneking, S.A. Hokin, S.C. Prager et al., Phys. Rev. Lett. 73, 549 (1994).

4) G. Fiksel, S.C. Prager, W. Shen and M.R. Stoneking, Phys. Rev. Lett. 72, 1028 (1994).

5) J.S. Sarff, N.E. Lanier, S.C. Prager and M.R. Stoneking, Phys. Rev. Lett. 78, 62 (1997).

6) Y. Hirano, Y. Maejima, T. Shimada et al., Nucl. Fusion 36, 721 (1996).

7 ) T. Tamano, W.D. Bard, W.D. Chu et al., Phys. Rev. Lett. 59, 1444 (1987).

8) R.J. La Haye, P.S. Lee, M.J. Schaffer et al., Nucl. Fusion 28, 918 (1988).

9) B. Alper B, M.K. Bevir, H.A.B. Bodin et al., Plasma Phys. Control. Fusion 31, 205 (1989).

10) P. Greene and S. Robertson, Phys. Fluids B 5, 556 (1993).

11) S. Masamune, K. Kawasaki, A. Mutara et al., Plasma Phys. Control. Fusion 35, 209 (1993).

12) J.R. Drake, H. Bergsaker, R.R. Brunsell et al., “Fusion Energy 1996”, IAEA, Vienna (1997).

13) C.G. Gimblett, Nuel. Fusion 26, 617 (1986).

14) Z.X. Jiang, A. Bondeson and R. Paccagnella, Phys. Plasmas 2, 442 (1995).

15) E.J. Zita, S.C. Prager, Y.L. Ho and D.D. Schnack, Nucl. Fusion 32, 1941 (1992).

16) B. Alper, Phys. Fluids B 2, 1338 (1990).

17) R. Fitzpatrick, Nucl. Fusion 83, 1049 (1993).

18) D.J. Den Hartog, A.F. Almagri, J.T. Chapman et al., Phys. Plasmas 2, 2281 (1995).

19) T. Ohkawa, M. Chu, C. Chu and M. Schaffer, Nucl. Fusion 20, 1464 (1980).

20) R.J. La Haye, T.N. Carlstrom, R.R. Goforth et al., Phys. Fluids 27, 2576 (1984).

21) S. Masamune, M. lida, N. Oda et al., “Fusion Energy 1996", IAEA, Vienna (1997).

22) 8. Masamune, M. lida, D. Ishijima et al., Fusion Technology 27, 293 (1994).

23) Y.L. Ho and S.C. Prager, Phys. Fluids B 8, 3099 (1991).

24) 8. Assadi S, Ph D Thesis, University of Wisconsin, DOE/ER/53198-234 (1994).

25) S. Masamune, K. Tida M, Ohta and H. Oshiyama, J. Phys. Soc. Jpn. 67, 2977 (1998).

26) R.I. Pinsker and A.H. Reiman, Phys. Fluids 29, 782 (1986).

27) G. Hedin, Plasma Phys. Control. Fusion 40, 1529 (1998).

28) 8. Masamune, M. lida, Y. Ohfuji et al., Plasma Phys. Control. Fusion 40, 127 (1998).

29) K. Miyamoto, “Plasma Physics for Nuclear Fusion (2nd ed.)”, MIT Press, Cambridge (1989); J.P. Freidberg, “Ideal
Magnetohydrodynamics”, Plenum Press, New York (1987).

30) T.C. Hender, C.G. Gimblett and D.C. Robinson, Nucl. Fusion 29, 1279 (1989).

31) H.R. Strauss, Phys. Fluids 27, 2580 (1984).

32) S.C. Guo et al., Phys. Plasmas 6, 3868 (1999).

33) C.G. Gimblett, Plasma Phys. Control. Fusion 81, 2183 (1989).

34) S. Masamune, M. Tida et al., “Fusion Energy 1998”, IAEA, Vienna 3, 919 (1999).

35) 8. Masamune, M. lida and H. Oshiyama, J. Phys. Soc. Jpn. 68, 2161 (1999).



54 Sadao MasamuneE and Motomi Iipa

36) S.C. Guo and M.S. Chu, Phys. Plasmas 7, 3342 (2001).
37) R. Fitzpatrick and P. Zanca, “Phase-locking of tearing modes in reversed field pinch plasmas”, preprint, Institute of
Fusion Studies, University of Texas at Austin (August 2001).



	masamune032.jpg
	masamune033.jpg
	masamune034.jpg
	masamune035.jpg
	masamune036.jpg
	masamune037.jpg
	masamune038.jpg
	masamune039.jpg
	masamune040.jpg
	masamune041.jpg
	masamune042.jpg
	masamune043.jpg
	masamune044.jpg
	masamune045.jpg
	masamune046.jpg
	masamune047.jpg
	masamune048.jpg
	masamune049.jpg

