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Abstract

A shape memory polymer (SMP) whose glass transition temperature 7, can be
designed has both the shape memory effect and the shape fixity effect. In our previous
research, by analyzing an intelligent composite material containing the SMP particles,
the macroscopic stiffness of the material can change according to the type of the
distribution of T, and the magnitude of the shape memory shrinkage of the SMP
particle. In the analysis, the shape of the SMP particle is assumed to be a spherical
shape. However, when the shape of the SMP reinforcement is a spheroid or a cylinder,
the macroscopic stiffness of the composite in the longitudinal direction of the
reinforcement differs from that in its lateral direction. Namely, the property of the
material on the stiffness shows anisotropy. This property can change due to the shape
of the SMP reinforcement. The shape of the SMP reinforcement does not change by the
constraint from the matrix surrounding the reinforcement, as the reinforcement change
from the rubber state to the glass one. In this study, by taking into consideration such a
shape fixity effect of the SMP reinforcement, micromechanical modeling and analysis
are performed for an intelligent composite material containing SMP reinforcements and
the change in degree of anisotropy of the material on the stiffness is examined. The
macroscopic elastic modulus of the material is formulated as a function of the aspect
ratio of the reinforcement. By using the expression obtained above, we can change the
value of the macroscopic elastic modulus by changing the aspect ratio of the
reinforcement. Especially, for the spheroidal reinforcement, we find that there are two
aspect ratios that values of the macroscopic elastic modulus in the longitudinal
direction of the reinforcement are same each other, and values of the macroscopic
elastic modulus in the lateral direction of the reinforcement obtained from these aspect
ratios are different from each other. As the result, we can suggest that it is possible to
change degree of anisotropy of the material on the stiffness by utilizing the shape fixity
effect of the SMP reinforcement.

Key Words: Micromechanics ; Intelligent material ; Shape memory polymer ;
Shape fixity effect ; Macroscopic elastic modulus ; Anisotropy

1. Introduction

Recently, for intelligent composite materials containing a piezoelectric reinforcement or
a shape memory one, it has been examined experimentally to give following functions to the
materials, i.e., (1) sensor function and (2) actuator one. For example, for a composite
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material containing the piezoelectric reinforcement, it is possible to detect a deformation or
a damage in the material by the electric current occurred in a piezoelectric reinforcement".
Such a sensor function is known as health-monitoring. For a composite material containing
TiNi shape memory alloy fibers, a crack surface in the material can be closed by the shape
memory shrinkage of the fiber”. By such an actuator function, the toughness of the material
is improved.

In our previous research3_6), for the composite material containing TiNi shape memory
fibers or shape memory polymer(SMP) particles, it is possible to change the magnitude of
the macroscopic stiffness of the composite by using properties of these shape memory
reinforcements. A shape memory polymer whose glass transition temperature 7, can be
designed has both the shape memory effect and the shape fixity effect. For example, the
composite material containing SMP particles, we showed analytically that it was possible to
change the path of the macroscopic stiffness of the material with the temperature by
changing the type of the distribution of the glass transition temperature of the SMP
particle”. Moreover, we indicated that the magnitude of the macroscopic stiffness of the
material could change in according to the magnitude of the shape memory shrinkage of the
SMP particle” ® From these results, the change in the stiffness of the material is divided
into two following categories:

(1) The path of the macroscopic stiffness of the composite material with temperature.
(2) The change in the magnitude of the macroscopic stiffness of the composite material to a
desirable one.

In these studies, the shape of the SMP particle is assumed to be a sphere. However,
when the shape of the SMP particle is a oblate spheroid or a cylinder, the macroscopic
stiffness of the composite material in the longitudinal direction of the SMP reinforcement
differs from that in its lateral direction. Namely, the property of the material on the stiffness
becomes to be anisotropy. Therefore, in addition to two categories mentioned above,
another change in the stiffness of the material can be thought as follows.

(3) The change in the ratio of the macroscopic stiffness in one direction to that in other
direction, that is, degree of anisotropy of the material on the stiffness.
The key to change degree of anisotropy of the material is the shape of the SMP reinforcement.

A SMP material has not only the shape memory effect but also the shape fixity effect™.
For the composite material containing the SMP reinforcement, the shape of the SMP
reinforcement does not change due to the constraint from the matrix surrounding the SMP
reinforcement, as the SMP reinforcement changes from the rubber state to the glass one
during the cooling process of the material. Moreover, when the SMP reinforcement becomes
to be the glass state, residual stresses do not occur in the material. By using such a shape
fixity effect of the SMP reinforcement, we may change degree of anisotropy of the material
on the stiffness.

In this study, micromechanical analysis of an intelligent composite material containing
the SMP reinforcement will be performed by taking into consideration the shape fixity effect
of the SMP reinforcement. The shape of the SMP reinforcement is modeled as an ellipsoid
and the macroscopic elastic modulus of the material will be formulated in terms of the
aspect ratio of the SMP reinforcement. By using the expression obtained above, we will
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numerically calculate the effect of the aspect ratio of the SMP reinforcement on the
macroscopic elastic modulus of the material. From this result, we examine the ratio of the
macroscopic elastic modulus in the longitudinal direction of the SMP reinforcement to that
in its lateral direction, that is, degree of anisotropy of the material on the stiffness, by
utilizing the shape fixity effect of the SMP reinforcement.

2. Analysis of macroscopic elastic moduli of a SMP intelligent composite material

2.1 Shape fixity effect of a SMP material

The shape fixity effect” of a SMP material is explained schematically in Figure 1. The
SMP material in the rubber state at the temperature T over its glass transition temperature
T, is shown in Fig. 1(a). When an external force P is applied to the SMP material, the SMP
material is elongated as shown in Fig. 1(b). The external force is kept in constant and the
SMP material is cooled to the temperature lower than its T,. Then, the SMP material
translates to the glass state. This is shown in Fig. 1(c). When the external force is removed,
the SMP material cannot shrink to the original shape and can keep in the deformed shape as
shown in Fig. 1(d). This effect is called as the shape fixity one.

2.2 Analytical model

We consider a composite material containing many SMP reinforcements. We assume
that all of SMP reinforcements have a same glass transition temperature 7, and they are
embedded in a matrix when they are in the rubber state at the temperature over T,. When
the material is cooled to the temperature lower than T,, the shape of the SMP
reinforcement in the rubber state is fixed by the constraint from the matrix surrounding the
SMP reinforcement. During this cooling process, the thermal expansion strain will be
occurred in the SMP reinforcement due to the mismatch between the thermal expansion
coefficients of the SMP reinforcement and the matrix. The SMP reinforcement cannot
expand freely by the thermal expansion strain because the SMP reinforcement is
constrained by the surrounding matrix. Therefore, the thermal stress occurs in the material.
However, the thermal expansion strain in the SMP reinforcement vanishes completely after
the shape of the SMP reinforcement is fixed, therefore, the effect of the thermal expansion
strain is ignored at any temperature.
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Fig. 1 Shape fixity effect of the SMP material.
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Fig. 2 Intelligent composite material containing SMP reinforcements.

The analytical model of the composite material containing the SMP reinforcement is
shown in Figure 2. The region occupied by the SMP reinforcement is indicated by the
shaded part in Fig. 2. This region is denoted by 2, and the region of the whole body of the
material is denoted by D. The shape of the SMP reinforcement is assumed to be an ellipsoid.
The SMP reinforcements of the same geometry and the same orientation are assumed to be
arranged randomly in the matrix. Dimensions of this ellipsoid in the directions of the
principal half axes are a;, a;=a, @, as=a,®;, where @, and @; are aspect ratios of the SMP
reinforcement, respectively. This shape is shown in the right hand of Fig. 2. To fix the shape
of the SMP reinforcement, the material will be cooled from the temperature higher than T, to
that lower than T,. In this cooling process, the SMP reinforcement becomes to be the rubber
state, the transition one, and the glass one in turn. This change of the state will be considered
when analyzing the model. Moreover, the external stresses 0, 0, and 03, apply to the
composite material.

2.3 Equivalent equation for a SMP reinforcement

The region 2 of the SMP reinforcement can be treated as an inhomogeneity whose
elastic constants are different from those of the matrix. Thus, the equivalent equation to
replace such a region 2 with an homogeneous inclusion whose elastic constants are same of
those of the matrix is expressed as follows:

0, ~ R .oy 0, = . .
Gﬁ+GU+sz_Cz'j’kl(gkl+8k1+sk1m"8mn)—Cijkl(8k1+8k1+Sk1m"8mn_8kl)’ €Y

where 8,] is an equivalent eigenstrain which is given to the region Q, and C ,?;k, and C, are
the elastic constants of the SMP reinforcement and the matrix, respectively. 0‘;’ is the
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eigenstress of the SMP reinforcement and Sy, is the Eshelby tensor® for the SMP
reinforcement. Araki et al. indicate that Eshelby tensor can be expressed by two factors, the
one is concerned with the aspect ratio of SMP reinforcement and the other with the
Poisson’s ratio v of the matrix”. For example, S;;;; and S;,; are expressed as,

51111:Hf+ﬁ{(Hf_Hfz)+(HS_H;)}, (2-a)

51122:ll/VHle_z(ll_V)(Hf_Hfz)’ (2-b)

where H; and Hj; are expressed in terms of only aspect ratios w, and @; of the SMP
reinforcement as follows®:

e 1 |w,03F6.k) a)zfan(e,k)}
H:= - : (3-a)
2 a)g_l{ (wg_wg)l/z (a)g_wg)uz
¢ 1 w3 E(6,k)
H= 11— ‘ 3-b
3 1_0);{ (a)z_wg)m} (3-b)
Hi+H;+H;=1, (3-¢)
w5
Hi,=——=(H;-HY), (3-d)
12 1—(0; 2 1
wz
= —wgl— -(H} - Hj), (3-0)
e 1 e e
H; =——(H;-Hy), (3-8)
21 l_wg 2 1
CU2
He,-= FSCU; (H:-H?), (3-h)
a)2
Hiy= ng -(H [~ HY). (3-)

In eq.(3), F(6,k) and E(6,k) are the incomplete elliptic integrals of the first and the second
kind, respectively, and 6 and k are given by

9 1/2
ezsz‘n-l[l—ﬂg‘-J . k=

1/2
-1

w2 - w?

(4)

2

Araki et al. name H; and H fj the geometrical factor”. Other components of S;; in eq.(2) can
be obtained by the cyclic permutation of (1,2,3).

For the spheroidal SMP reinforcement with a,= a,, the relationships between H; and
H; are given by”
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Hi=Hi=1(1-H}) (5-a)
Hi=%(-H}), (5-b)
Hi=Hy=1- 3 Hi+H;,. (5-¢)

In this case, there are two independent geometrical factors, H; and Hj,. The values of H; and
H3, for various types of spheroid are written as follows”:

1) Oblate spheroid (a,=a,> as)

@ _
H=1-—3— ‘o, - w,(1-w)"? 6-
3 (l_wg)m{cos 5~ @y 3) } (6-2)
. 1-3H;
HSI:_Z(TCU%)’ (0<w,y<1). (6-b)
2) Sphere (a,=as=as;)
Hi=% Hi=% (@,=1). @)
3) Prolate spheroid (a,=az<as)
[0
Hi=1-———dw,(@:-1)"-cosh™' w,}, 8-
3 (wg_l)a/z{ 3(@5=1)"~cos 3} (8-a)
. 1-3H,;
=——— (w;>1). 8-b
31 2(wi-1) (w3>1) (8-b)
4) Cylinder (a,=a,, as— o)
H;=H; =0, (03— ). (€))

For the elliptic cylindrical reinforcement with az— oo, the value of H; and H ,‘j are given by

® .
H'= 2 H:=—=— H:=0, 10-a
" lte, Y 1+, C (10-2)
w? 1
H,=——2—- H!=——— H:=0, (w,>0). 10-b
2 +w,)? TP 1+, ™ (@,>0) (10-b)

In eq.(1), 62- is the external strain corresponding to the external stress 0'2-,
the interaction stress and strain. The following relationships hold between 0'2. and &

G and &:

0 and € are
0
i

0 0 ~ 2
O-ijzcifklekl’ Gij:Cl)'klgk[' (11)
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Moreover, 0 ; is expressed by Mori and Tanaka's theory as
6if:_fo-;:_fcijkl(Sklmng;n_8;1)- (12)

where f is the volume fraction of the SMP reinforcement. The equivalent equations for the
deviatoric component and the hydrostatic one of the stress and the strain can be written
from eq.(1), that is,

p {e]+ &5+ (Siu— %S,-,-k,)ez,} = u{e]+ &+ (Siu- %S,W )eu—€ut (13-a)
K/ (5+&,+Sin€y)=K(Ep+ &+ Si €~ €5;). (13-b)

where Kf, ,uf are the bulk modulus and the shear modulus of the SMP reinforcement,
respectively, and K, u are those of the matrix. 83 et al. are deviatoric strains. When the
SMP reinforcement is in either the glass state or the transition one, the equivalent
eigenstrain 8,] of the SMP reinforcement is obtained from eq. (13). However, when the SMP
reinforcement is in the rubber state, the value of the Poisson’s ratio v’ of the SMP
reinforcement is 0.5. Therefore, the value of K7 is infinity. Then we can't use eq. (13-b) to
obtain the unknown 8;f. In this case, the following condition that the value of the

hydrostatic component 8,{ of the elastic strain of the SMP reinforcement is zero'” is used
instead of eq. (13-b),
el=€"+ &, +Siey=0+(1—f)( Sy~ €5)+€,;=0. (14)

By substituting eqs.(2) and (12) into eqs.(13-b) and (14), we can obtain the following
equation,

e+ (1-H 2 {(H - 1) £}, +(H5=1) €5+ (HS= 1) £, }+ Ly £5=0, (15)
where Ly is given by

,u Ta+v/)1-2v)
L a+vH1-2v)-ud+vy(1-2v7)

(16)

Lg=

Eq.(15) is hold regardless of the value of v/

In the same way, by substituting eqs.(2) and (12) into eq.(13-a), we can obtain three
simultaneous equations with respect to the unknown eU By applying the relation of eq.(15)
to these equations, one of three simultaneous equations is written as,

{<1EVL1‘2L11—3H5+2)+3(HS_H§3)+(1—3Hf)}811
+

(MY L Ly 1)+3 (- Hi) + (1-2v)(1 - 3H))) €5,
an

+{(g +LH—1)+3(Hf—Hfz)+(1—2V)(1—3H§)}€;3

(el
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where L;, L;; and H are expressed as

L= ﬁ{‘?(ll_‘f") Le-2(1-2v)}, (18-2)
_20-2») W 1

L= 2= - fa-a) (18-b)

Hi=(H{-H},)+(H;—Hy)+(H;—Hj). (18-¢)

Coefficients with the subscript of Roman numeral such as L; and Hj are invariants. Other
simultaneous equations can be obtained from eq.(17) by the cyclic permutation of
subscripts in coefficients and strains except for invariants.

If we solve eq.(17) with respect to the eigenstrain €,

;> then,

*_ 1-v e_1\2_ § e i _ 2 yye 2 _ e 0
£\ (l_f)(1+V)DOH(L,,+H, - (S Hy e Fa-2v By 20 -2 Hyy el

—%(1+v){%(1 —2v)H§,,+H;V—F1}e?,.
+20+0{L, (L, + Hi= 1)~ 12 Hiy+ G e, (19)
+%[{(1 ~2W)F, - (1+V)G, J¢]
+{(1 —2v)F2—(1+v)Gz}eg;
+{(1 —2V)F3—(1+V)G3}eg'3”,
where D,, F,, G|, and R, are given by

DO:L,[(L,,+H§— 1)?- {%H§,+22—7(1 ~2v)*Hy+ 201 —2v)2H;’V}]

,  (20-a)

-2 -2»{@u+ Hi- DHy+ 5 (-2 Hy+3H Y~ H HYy |
F, :(1—3Hf){(L,,+H;- 1)+8R1}~ (20-b)
G,=2(1-2v)(1-3H})+3L,R, . (20-c)
R,=2(1-2v)(1-3H))+(H-Hy) - 5 H;. (20-d)

Other components of F;, G;, and R; can be obtained by the cyclic permutation. In eqs.(19)
and (20), Hj ~ Hy; are given by

Hiy={ (- i)'+ (H- HE) + (Hi- H5) = S (), (21-a)

Hé=(1-3H!)?+(1-3H;)*+(1-3H3), (21-b)
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Hy,=(0-3H{)H;-Hy)+(1-3H5)(H;-H;)+(1-3H;)H;-H},)), (21-¢)
Hi=(1-3H®)’+(1-3H,) +(1-3HS)?, 21-d)
Hy=(1-3H{)*(H;-Hg)+(1-8H) (Hy-HS)+(1-3HE (H - HS,). (21-€)

A remarkable point of the expression of 8:1 in eq.(19) is that we can obtain easily 8,] for
two cases, (1) the matrix is an incompressible material and (2) the shape of the SMP
reinforcement is a sphere. For the case (1), the value of the Poisson's ratio v of the matrix
is 0.5. Substituting this value into eq.(19), we can derived immediately following explession
of £,

£ = 2(1-v)
11
(1—f>{(L§,+H‘;—1>2—%Hz

}H(L,,+H§— 1 +3(Hi- Hiy) - Hi Je,
(22)
~(H,~Hs,) e~ (H,~H) e~ (H, - H}y) e

For the case (2), by using the relationship in eq.(5) and substituting values of H and H ,‘j in
eq.(7) into eq.(19), we can obtain the following explession,

(23)

1n-- (1 —f)(1+V)L, ii Ln—% it

- . + ,

1-v {8 L2040, 80}'
In eq. (23), we should note that the coefficient of 8?1 is expressed only by invariants.
Therefore, if the values of external stresses 0, 05, and 0, are same, the values of €l Eng
and 8*33 are also same. Because the property of the material containing spherical
reinforcements shows isotropy.

2.4 Macroscopic elastic moduli of the model
The macroscopic average strain of the model g; is given by

= __1 o, z
eij_V_sz>(8’7+8‘7+8ij)dD

:g;}+VLD{fD_Q(é,7+£U)dD+/Q(é,.].+e,.j.—6fj)dD+erf.di} (24)

_ A0 1 - ~ [ 1 *
—8,.].+V—DC,.]-,3,/D(G,C,+ok,)dD+—I;;eridi,

where V) is the volume of the whole body of the model, and €; is a strain disturbance. The
second term of the right side in eq. (24) is reduced as follows:
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Vici;,;fl)(ék,m:;)dp
D

. (25)
=V—Dc;,;{fs(5km+ofm)x, S~ [ (8% G5 )%, dD} =0,

since the equilibrium condition & . »= 0}, ,,=0 (ex. 0;;=90;/dx,) in the whole body D of
the material and the boundary condition 6,#,,=05,7,=0 on the surface S of the body
hold, where #,, is the exterior unit normal vector on S. Substituting eq. (25) into eq. (24)
and noticing that the equivalent eigenstrain 8,1 is constant in 2, we can derive the
macroscopic average strain g; as follows:

= _ 0 *
E,=e,+fEy. (26)
By substituting the equivalent eigenstrain 8,1 in eq. (19) into eq. (26), we can get the

expression of €;.
The relationships between €; and the external stress 03 is expressed as follows:

= = T 0
fu E/EIL _V12_/E22 Z13/E33 0'101
‘Ezz = Va! 511 I/EZE Y/ Ey|= 0-202 ’ @27
33 _V31/E11 _V32/E22 1/Es,:s O3

where Eij and 17[.]. are the macroscopic elastic modulus and the Poisson’s ratio, respectively. From

eq. (27), Fl.j are expressed in terms of £, that is,
0 0
T - O T O3
1 g ’ Ezz_ ’ E33_ (28)
11

0 _ 0 _ el 0 _ 0 _ ra) | — 0 _ )
0p=0g5=0 822"’11‘633‘0 83.‘3 0),=03,=0

From eqgs.(11) and (19), 6; is a function of the external stress O'g-. Hence, g; in eq.(26) is
also a function of 0'2.. By substituting £; in eq. (26) into eq. (28), 0'3. is vanished and Fi}. is a
function of the geometrical factor and elastic constants both of the SMP reinforcement and
the matrix.

3. Numerical calculations and discussions

3.1 Elastic properties of the SMP reinforcement

In the present analysis, we assume that the SMP reinforcement is one of the
polyurethane series and the glass transition temperature T, of the SMP reinforcement is
50(°C). Figure 3 shows the changes in the elastic modulus E / and the Poisson’s ratio v/ of
the SMP reinforcement with temperature T'°. The SMP reinforcement is in the rubber state
at T>T,+15(°C) and it is in the glass state at T< T,—15(°C). E’, v" shown in Fig.3 are the
elastic modulus and the Poisson's ratio of the SMP reinforcement in the rubber state,
respectively, and E%, v¢ are those in the glass state. When the SMP reinforcement is the
transition state at T, — 15(°C)< T<T,+15(°C), E ’and v/ are given by®
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1.00 0.50
v =0.50
EZ =0.907 '
0.75} '
(av} -
5 0.45
= 050} ' =
~
) , 10.40
0.25}F v& =0.38 |
KN LE" =0.0276
0 L : 0.35
0 2535 50 6575 100

T [°C]

Fig. 3 Changes in the elastic modulus E / and the Poisson’s ratio v/ of the SMP reinforcement with temperature .

Tt 18730} {1 - (T~ 15)/ T}
2 E"[%] , (29-2)
yf =Y =V (g _Ef)tyE, (29-b)

TE-EF

3.2 Examination in the value of the elastic modulus of the matrix

In this analysis, the object is to investigate the effect of the shape of the SMP
reinforcement on the macroscopic elastic modulus of the material, by utilizing the shape
fixity effect of the SMP reinforcement. The shape fixity effect of the SMP reinforcement in
the material is occurred by the constraint from the matrix surrounding the SMP
reinforcement. Therefore, it is important to examine the value of the elastic modulus of the
matrix. Next we consider the effect of the elastic modulus of the matrix on the macroscopic
elastic modulus of the material.

Figure 4 shows the change in the macroscopic elastic modulus Es;/E with the elastic
modulus E of the matrix, for various values of the aspect ratio @s; of the SMP reinforcement
whose shape is spheroid. This shape is shown in Fig. 4. We assume that the shape of the
SMP reinforcement is completely fixed at T<385(°C). As shown in Fig. 4, E,;/E decreases
with increasing E, and becomes E;;/E=1.0 at point A when E=E# regardless of the
magnitude of @;. When the value of E is constant, Es,/E increases with increasing @s.
However, when the value of E is over about 0.5(GPa), E,;/E changes little with @;. It is
desirable that the value of E is higher than E” from the viewpoint of the shape fixity of the
SMP reinforcement, and lower than E* from the viewpoint that the macroscopic elastic
modulus should be at least higher than the elastic modulus of the matrix. These ranges of
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MMr=03 T, =50(°C) »,
T <35(°C) wya
350 | @3=100
0)3=5 ax2
N\ R
& 25
|
1.5
1.0ff----~ R ety S PP
Ei=(3E" + E¥)/
0.5
&025 050 075/’100 1.25
E=E" E=ES8

E (GPa)

Fig. 4 Changes in the macroscopic elastic modulus F33 /E with the elastic modulus E of the matrix.

E are denoted by ranges @O and @), respectively. We consider the suitable value of E by
considering these ranges. Our object is to investigate the effect of the aspect ratio of the
SMP reinforcement on macroscopic elastic moduli, therefore, it is not preferable to use the
value of E over 0.5(GPa). Hence, we should decide the value of E, ranging from E” to
0.5(GPa). We see the curve of E,;/E versus E in the case of @s;=1. Let the point where the
curve cuts the line E=E" be called point B denoted by a solid circle. The line [ passes
through points A and B. The line m is parallel to the line / and touches the curve at the
point C denoted by the open circle. In the same way, other points denoted by open circles
for ws=5 and w3=100 can be plotted. As E decreases from point D on the curve of ws= 100,
the dependence of Ey;/E on @, becomes to be strong. Therefore, the tendency of E,,/E for
the aspect ratio of the SMP reinforcement may be affected greatly by a little change of E.
On the other hand, as E increases from point C, the dependence of E;/E on @3 becomes
too small. In taking into consideration with these points, we use the value of E at about the
middle point between points C and D, that is, E=(3E"+ E*)/ 4.

3.3 Changes in macroscopic elastic moduli with temperature

The shape of the SMP reinforcement is assumed to be spheroid, the same as the
previous section. Changes in macroscopic elastic moduli E,, /E and E,;/E with temperature
during the cooling process from a temperature higher than T,+ 15(°C) to that lower than
T,—15(°C) are illustrated in Figures 5 and 6. Fig. 5 is in the case of w3;=100, and Fig. 6 in
the case of w;=0.5. As shown in Figs. 5 and 6, values of E,,/E and E,;/E are constant at
T>65(°C), since the SMP reinforcement is in the rubber state and the elastic modulus E 7 of
the SMP reinforcement does not change during this range of the temperature as shown in
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2.00 E=BE"+E%¥)/4 f=03
E33/E *3
m 33/ 603(1
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Im Ex»n/E a
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. | 9,
& 1.00F .y @3 =100
| o _
! : E33z/ E
0.50 '8 EnlE

1
0 2535 50 6575 100
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Fig. 5 Changes in macroscopic elastic moduli E,,/E and E,,/E with

temperature T during the cooling process (ws= 100).

2.00 -
E=(BE"+E®)/4
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@ 15022t “
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S 1.00} |
| o
E ET 1 e
0.50 1 F - EB/E

1 74
0 2535 50 6575 100
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Fig. 6 Changes in macroscopic elastic moduli E,,/E and E,,/E with
temperature T during the cooling process (@ws= 0.5).
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Fig. 3. As the temperature decreases from 65(°C), E,,/E and E.;/E increase together, since
the state of the SMP reinforcement changes from the rubber state to the transition one, and
during this change of state, the value of elastic modulus E ’increases. At the solid circle in
Figs. 5 and 6, values of E,,/E and E,;/E are the same each other, because the magnitude of
the elastic modulus of the SMP reinforcement is equal to that of the matrix. As the
temperature decreases from this point, values of E,,/E and E,;/E increase again. The shape
of the SMP reinforcement is fixed completely at T<35(°C), values of E,,/E and E,;/E are
constant again. In comparing the result in Fig. 5 with that in Fig. 6, we find that
macroscopic elastic moduli 7> 65(°C) at T<35(°C) and greatly depend on the aspect ratio of
the SMP reinforcement. In the next section, we will examine this dependence of
macroscopic elastic moduli on the aspect ratio of the SMP reinforcement.

3.4 Changes in macroscopic elastic moduli with aspect ratios of the SMP reinforcement
Figure 7 shows changes in macroscopic elastic moduli E,,/E and E,;/E with aspect
ratios of the SMP reinforcement, at T>65(°C). Fig. 7(a) is in the case of a spheroidal
reinforcement, and Fig. 7(b) in the case of an elliptic cylindrical reinforcement. Aspect ratio
of SMP reinforcement in Figs. 7(a) and 7(b) are @, and @, respectively. Changes in Eg;/E
and E,,/E are denoted by a solid line and a dotted line, respectively. In Fig. 7(a), as w;
decreases from 10° to 1, the shape of the SMP reinforcement changes a nearly rod shape, a
prolate spheroid, and a sphere in turn. Moreover, as w; decreases from 1 to 107°, the shape
of the SMP reinforcement becomes from a sphere to a oblate spheroid. In Fig. 7(b), as -
increases, the shape of the SMP reinforcement changes from a rod shape to a plate shape

0.9 }f'5=(3E’ +EZ)/4 T, =50(°C) 1;‘:8331? +E®)/4 0.9
=0.3 o =0.

08- T>65( C) T>65(°C) 1 08
: T, =50(°C) S
= 0.75_____\ = — 0.75 5
|3 0.7F DI\, E33/E ,~° CE33/E 0.7 |
" 0.64 OACEEEE REEEER - EnlE )
M 06} Enl/E s dog X
= =
| |

05 0.5

0.4 ~ 0.4

10°10210" 1 10 10% 10° 1 10°

3
(a) (b)

Fig. 7 Change in macroscopic elastic moduli E_,2/E and E33/E with aspect ratios @ and @3 (T > 65(°C)). Fig.
7(a) is in the case of the spheroid of the SMP reinforcement, Fig. 7(b) in the case of the elliptic cylinder of the
SMP reinforcement.
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whose surface is in the x,—x3 plane. If the value of @3 approaches infinity, the shape of the
SMP reinforcement becomes a rod shape. Thus, we note that E,,/E and E;;/E at @s;— oo in
Fig. 7(a) are continually connected with those at @,=1in Fig. 7(b).

First, we see Fig. 7(a). As shown in Fig. 7(a), when decreases from 10° to about 10
E.,/E is almost constant. As @3 decreases from 10%, E.,/E also decreases rapidly. At about
@;3=1.0, Es3/E reaches its bottom. On the other hand, E,,/E is almost constant when w-
decreases from 10° to about 1. When w; decreases from 1.0, Es/E and E,,/E increase
rapidly. Next, we see Fig. 7(b). As shown in Fig .7(b), E,;/E is almost constant, regardless
of @,. E,, /E increases with @,, and approaches the constant value of E,; /E.

As shown in Fig. 7, the value of E;;/E which we can obtain is in the narrow range
denoted by @, that is, 0.64<E,;/E <0.74. Moreover, both values of E,,/E and E,;/E are
lower than 1.0 due to the elastic modulus of the SMP reinforcement in rubber state being
smaller than that of the matrix. To investigate the effect of the shape of the SMP
reinforcement on macroscopic elastic moduli, we need to examine macroscopic elastic
moduli under T < 35(°C) at which the shape of the SMP reinforcement is completely fixed.

Figure 8 shows the change only in the macroscopic elastic modulus E,;/E with aspect
ratios of the SMP reinforcement at 7 < 35(°C). The tendency of E;;/E for @, in Fig.8 is same
as that in Fig.7. From Fig. 8, we find that it is possible to obtain a value of E,;/E that we
want in range @, 1.44 < E,, /E < 1.80, by changing the aspect ratio of the SMP reinforcement.
The wide of this range as shown Fig. 8 is about three times as big as that as shown Fig. 7.

Now we consider the shape of SMP reinforcement to obtain a value of E;;/E that we
want. As shown in Fig. 8, at point B, denoted by a solid circle, @5=9.00 and E,,/E=1.73.

1.9 E=QE +E%)/4 T, =50(°C) E=Q3E" +E®)/4 1.9
=03 X3 T <35(°C) f£=03
1.8 — *- —91.8
X3
1.73 A
m 1.7 117 m
= =
o
I 16 {16 |
1.5F 41.5
T, =50(°C)
1.44 . <35(°C)
1.4 | I ] 1 1 4

L [] [ .l
102 102/107"/1 \10~10%2 10° 1 10 10% 10°
0.07 0.80 3.35 9.00 W
3 2

(a) (b)
Fig. 8 Change in the macroscopic elastic modulus Ea:s /E with aspect ratios @y and w3 (T<35(°C)). Fig. 8(a) is in

the case of the spheroid of the SMP reinforcement, Fig. 8(b) in the case of the elliptic cylinder of the SMP

reinforcement.
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The behavior of E,/E changes at point B. Therefore, we divide range O of Ej;/E into two
ranges @ and @. If the value of E,;/E exists in range ), there is only one point where the
aspect ratio corresponds to the value of E;;/E. But in range @, for example, when the
value that we want to obtain for E,y/E is 1.6, there are two points, C and D, corresponding
to this value of E;;/E, and values of aspect ratios at points C and D are 0.77 and 3.35,
respectively. Thus, in range @, we find that there are two types of the aspect ratio of the
SMP reinforcement that values of the macroscopic elastic modulus are same each other.
Figure 9 shows the change in E,,/E with aspect ratios of the SMP reinforcement, at
T<35(°C). As shown in Fig.9, points on the curve of E,,/E corresponding to points C, D, E
and F on the curve of E;;/E in Fig. 8 are indicated by solid circles. First, we see Fig. 9(a).
As shown in Fig. 9(a), we find that the values of E,,/E on points C and D are different from
each other. The values E,,/E on the points C and D are 1.69 and 1.46, respectively. Thus,
ratios E,, /E,; on the points C and D different from each other. From this result, when a
value of E;/E exists in range @ in Fig. 8(a), we can choose alternatively the ratio of
E,,/E;;, that is, the degree of anisotropy of the composite material, by which aspect ratio is
given to the SMP reinforcement. However, when the desirable value of E,;/E exists in range
@ in Fig. 8(a), we cannot choose the degree of anisotropy. Next, we see Fig. 9(b). As
shown in Fig. 9(b), E,,/E increases with increasing @, and E,, /E can have values in a wide
range @, 1.49<E,, /E <1.80. That is, regardless of the value of E;;/E being constant as
shown in Fig. 8(b), we can change the value of E,,/E by the aspect ratio @,. Therefore, we
can still continually choose the degree of anisotropy of the composite material by changing

1. —
9 E=BE"+E%)/4 T, =50(°C) E=GE"+E®)/4 1.9
f=03 T <35(°C) f=03 P
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Fig. 9 Change in the macroscopic elastic modulus Ezz/ E with aspect ratios @, and @3 (T < 35(°C)). Fig. 8(a) is in
the case of the spheroid of the SMP reinforcement, Fig. 8(b) in the case of the elliptic cylinder of the SMP

reinforcement.
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the value of the aspect ratio @s;.
4. Conclusion

Micromechanical analysis for an intelligent material containing SMP reinforcements is
performed by considering the shape fixity effect of the SMP reinforcement. The shape of the
SMP reinforcement is modeled as an ellipsoidal one and macroscopic elastic moduli of the
material can be formulated as a function of geometrical factors that are related with only
aspect ratios of the SMP reinforcement. By using this result, we calculate numerically
changes in macroscopic elastic moduli with temperature and effects of aspect ratios of the
SMP reinforcement on macroscopic elastic moduli. As a result, we have reached following
conclusions.

(1) In the case of a spheroidal SMP reinforcement, changes in macroscopic elastic moduli of
the model with temperature during the cooling process to fix the shape of the SMP reinforce-
ment could be obtained. And values of macroscopic elastic moduli at T'> T,+ 15(°C) and
T<T,-15(°C) greatly depend on the aspect ratio of the SMP reinforcement.

(2) Then, we calculate changes in macroscopic elastic moduli with aspect ratios of the SMP
reinforcement at 7> T,+15(°C) and T<T,—-15(°C). In the result, at T<T,—15(°C) it is
possible to obtain a desirable value of the macroscopic elastic modulus in a certain range by
changing the aspect ratio of the SMP reinforcement. The wide of this range is about three
times as big as that at T>T,+15(°C). Especially, in the case of the spheroidal
reinforcement, there are two aspect ratios that values of the macroscopic elastic modulus in
the rotational axis of the SMP reinforcement are same each other. Moreover, values of the
macroscopic elastic modulus in the direction normal to the rotational axis, which is obtained
from above two aspect ratios, are different from each other. It means that we can
alternatively choose degree of anisotropy on stiffness of the material by which aspect ratio
is given to the SMP reinforcement.

(3) On the other hand, in the case of an elliptic cylindrical SMP reinforcement, even though
the value of elastic modulus in a longitudinal direction is nearly constant regardless of the
aspect ratio, the macroscopic elastic modulus in the direction normal to the longitudinal
direction have a wide range of value. That is, we can continually choose degree of
anisotropy of the material on the stiffness.

From above-mentioned results, we can suggest that it is possible to change degree of
anisotropy of the material on the stiffness by utilizing the shape fixity effect of the SMP
reinforcement.
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