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Abstract

The skew product of two independent symmetric Markov processes X and X2
is defined to be the process (X(,l), Xﬁ%,,), where A(t) is a positive continuous .additive
functional of the first process. Both explicit formula and core of the Dirichlet form of the
skew product process have been determined by Fukushima-Oshima" for conservative
symmetric diffusion processes. This formula and the regularity of the Dirichlet form for
conservative symmetric Markov processes have already been established by the present
author.” In the present paper, a simple proof of this formula will be given, along with
detailed information on the core, for symmetric Markov processes which are not necessarily
conservative. In the proof, Dirichlet forms perturbed by killing transformations are used,
instead of the time change transformations used in previous research. Some results-related
to Fubini-type theorems and applications will also be given.

Key Words : Symmetric Markov process; skew product; Divichlet form; capacity; killing
trausformation; irreducibility; recurrence; transience.

1. Introduction

Let X% (i=1, 2) be two locally compact, separable metric spaces and let X:=XxUx x?
Let M?=(Q® Xx{? &9 FJ) (i=1, 2) be two Markov processes on X9 (i=1, 2), respectively,
and let (4, be a positive continuous additive functional (PCAF, for short) of M,

The skew product of MY and M® with respect to (4, is defined to be‘the Markov process
M=(Q, X, &, P) on the product space X given by

Q=P x a® (1.1)
Xi(@) = (XPo™), X o @) (t< ¢ (@), (1.2)
§ (@) 1= EPoM) A suplt> 0; Af0?) < § O], (1.3)

P, =PR ® PP, (1.4)
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where w = (@, @®?)€ Q, and z = (£, £?) €X.

We assume that the transition functions of M®? (;=1, 2) are symmetric with respect to ’
certain positive Radon measures mP (=1, 2) on X?(i=1, 2), respectively, with full supports.
It follows that the Dirichlet forms (&, #)(i=1, 2) of M (i=1, 2) on LA XY, m") (i=1, 2),
respectively, are well defined. We further assume that (&? ) (1=1, 2) are regular and
that the Revuz measure # of PCAF (A) is a positive Radon measure on X, Let (M, &™)
be the perturbed Dirichlet form on L*(XV, m!")) corresponding to the killing transform M4
of M by PCAF (A) (see Section 2).

Let € and €'® be any cores of (&, #*) and (9, #P), respectively. Since the
transition function of the skew product process M is symmetric with respect to the product
measure m: = m? @ m®, its Dirichlet form (e, F) on LZ(X, m) is also well defined. Let
1 ® €@ denote the linear span of the set of all functions of the form uV(¥M)u®(x®),
where u?€ @P(i=1, 2). In Section 3 (Theorem 3.1), we will prove that €'V ® € is a core
of (&, #), and that the following formula with €= ® @@ holds true:

&, v) = fx(z) M £2), v, £2)dmP(?)
(u, v € ®). (1.5)

+ [ o 6P, ), v, s ()

Fukushima and Oshima® have proved that this formula with & = C7g(X) holds true, and that
CS(X) is a core of (&, &), where M® (i=1, 2) are conservative diffusion processes on
smooth manifolds, and Co5(X™) (i=1, 2) are cores of (&?, ™) (i=1, 2), respectively, under
some additional assumptions. Here Cg(X) and CT(X™) (i=1, 2) denote the linear spaces of all
infinitely differentiable functions on X and XG=1, 2), respectively, with compact support.
Since these results can be derived from Theorem 3.1 without additional assumptions, their
results have been extended herein to general symmetric Markov processes which are not
necessarily conservative. In a former work by the present author,”’ eq. (1.5) was proved
where M?(i=1, 2) are conservative, without explicitly specifying core € of (&, #). Kuwae®
has also shown that €'V ® €@ is a core of (&, #) where M (i=1, 2) are conservative and
€ (=1, 2) are special standard cores of (¢, F) (i=1, 2), respectively, in the sense of
Fukushima-Oshima-Takeda.”

While Section 2 recalls preliminary facts concerning symmetric Markov processes and
Dirichlet forms, our main theorem is stated and proved in Section 3. Section 4 is on Fubini-
type theorems, both for functions in the Dirichlet space of the skew product process and for
capacities. Section 5 reports on applications for the results given in Sections 3 and 4 and
discusses global properties of symmetric Markov processes.
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2. Symmetric Markov Processes and Dirichlet Forms

In this section, we recall some generalities of symmetric Markov processes and Dirichlet
forms. We refer readers to the work of Fukushima-Oshima-Takeda® for details.
In the following, for any bilinear form & and any measure g, we use the notation:

lule:=v &M u), (u, )u:= fuvd/u, laell o =V (4, w) .

Let X be a locally compact, separable metric space and let M:=(Q, X,, {, P, be a Hunt
process on X. A Hunt process is a special Markov process possessing the right continuity of
sample paths, the quasi-left continuity and the strong Markov property.,z)Let p: be the
transition function of M, i.e., p{x dy) = P{X;E€dy, t< {)(x€ X, t > 0). For any non-negative
or bounded Borel function fon X, we have pf(x) = E;[f(X)] by the usual convention that
f(X)=0 for any t> &, where E-] denotes the expectation with respect to P, Suppose that
p: is symmetric with respect to a certain positive Radon measure m on X with full support,
ie, (0f &m={(f p:@m for any non-negative Borel functions fand g on X Then p; generates a
strongly continuous semigroup |7:| of symmetric Markovian operators on the real Hilbert
space LZ(X, m) of all real square-integrable functions on X with respect to m. The Dirichlet
form (&, &) of M is defined by

F:={ue€ [}X m):supit(u—Ttu- Wy < ©F, (2.1)
t>0
& (u, v): = lim = (u— Ty, V) . (v € ). (22)
t10

Let &« (u, v):= &m, 1) + a(u, v)n for any u, v € & and any « > 0. It is well known that
(#. &1)is a real Hilbert space having &i(-, -) as its inner product. We denote by . the
family of all m-measurable functions # on X, admitting an &-Cauchy sequence lu, of
elements in &, such that lim,—e #,=u exists and finite m-a.e. It is known that &, is a linear
space containing & and to which the bilinear form & extends. We call (&F., &) the extended
Dirichlet space of (&, F).

Let L be the infinitesimal generator of {T:} . By the spectral representation theorem for
self-adjoint operators, there exists a Borel measure E(-) on [0, o) whose values are
orthogonal projections on L%(X, m), such that

—L = [ AdE(), (2.3)
T, = [0 ¢ B (), (2.4)
e v) = [ Ad(EQ)u, ) (2.5)

We call E(-) the spectral measure corresponding to {7T:|. Using these relations we obtain a
lemma needed later:
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Lemma 2.1. Let | T;| and (&, &) be as above.
(1) Ifu€ LAX, m) and t> 0, then TuE F and | Taule < lluln//2te
(2) If u€ &F, then Tiu — u i (F, &1).

(t}0)

(3) If @ is a dense subset of LZ(X, m), then U>oT: D is dense m (&F, &1).

We omit the proof since it is elementary.

Let Co(X) be the linear space of all real continuous functions on X with compact support.
A subset € of & N Cy(X) is said to be a core of (&, ) if it is dense in (&, &) and uniformly
dense in Co(X). A Dirichlet form is said to be regular if it possesses a core. It is known? that
for any regular symmetric Dirichlet form (&, %) on LZ(X, m) there exists an m-symmetric
Hunt process on X whose Dirichlet form is (&, &).

The capacity relative to &, or & -capacity, is the set function Cap(-) on X defined by

Cap(G):= inf{ &1(n, u); uEF, u>1 m-ae. on G} for any open set G, (2.6)
Cap(B):= inf | Cap(G); G is open and G D B} for any set B. (2.7)

In the following & -g.e. abbreviates “& -quasi-everywhere”, which means “except on a set of
zero &-capacity”. A function fdefined &-q.e. on X is said to be &-quasi-continuous if for any
€ > (0 there exists an open subset G of X such that Cap(G) < € and the restriction of fon
X\ G is continuous. A function fis said to be an &-quasi-continuous m-version of g if fis
&-quasi-continuous and f= g m-ae. If & is regular, then any u € %. admits an & -quasi-
continuous m-version, which will be denoted by u or {u)".

Suppose that & is regular. Let (4, be a PCAF, admitting exceptional sets, in the sense of
Fukushima-Oshima-Takeda?. It follows that there exists a unique positive Borel measure
on X such that

.1 t

lim ¢ [ Bel Jy fXDdAsJam () = J Sadee (9 2.8)
for any non-negative Borel function fon X. The measure # is called the Revuz measure of
(A,). It is known? that eq. (2.8) gives a one-to-one correspondence between the family of all
equivalence classes of PCAF's of M and a certain family S of positive Borel measures on X,
charging no set of zero capacity. Each element of S is called a smooth measure” on X. It is
known® that any positive Radon measure, charging no set of zero capacity, is a smooth
measure on X. Suppose that the Revuz measure ¢ of (A, is a Radon measure on X. It follows
that we can define a bilinear form ( & 3?”) by

gh= lue F; lull.<oo} | (2.9)

e (u v):= &u v) +( V), (u, vE F"). (2.10)
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It is known? that (&“, #”) is the Dirichlet form on LZ(X, m), corresponding to the

m-symmetric Markov process M#, whose transition function p% is given by
p? f(x): = E.Je ™ f(X)]  for any bounded Borel function fon X. (2.11)

We call M# the killing transform of M by PCAF (4)).
For any a> 0, an element # in LZ(X, m) is said to be «-excessive if #> 0 and ¢~ T < u
m-a.e. for any ¢t > 0. The following lemma? will be used in Section 4:

Lemma 2.2. Suppose that uE F and a > 0. Then u is a -excessive if and only if &« (u, f) > 0
for any non-negative element f € F N Cy(X).

Finally, we recall some global properties of M, or of (&, &). For any set B, we denote by
1p its indicator function. A subset B of X is said to be & -invariant, or {T}-invariant if
T:(ulpg) = (Tm)1p for any t> 0 and any u€ L*(X, m). The following lemma® will be used in

Section 5:
Lemma 2.3. Let {X ,} be any non-decreasing sequence of functions in & (N Co(X) such that 0 <
X,<1lm=12,...)and U, |x; X (2)=1l=X
(1) Bis &-invariant if and only if X,1p€E F and &(X,1p X,1p)=0 for all n.
(2) For each m, if X,1g € &, then &(X,lp X,1p) < 0.

Dirichlet form & is said to be irreducible if any & -invariant set B is m-trivial, i.e.,
m(B)=0 or m(B) = 0.

For any non-negative m-integrable function f we define the function Gf by

N
Gfi= lim [, T.fdt€ 0, o] m-ae. (2.12)
N—>oo ‘

Dirichlet form & is said to be transient if Gf< oo m-a.e. for any such f and recurrent if Gf=

0 or co m-a.e. for any such f The following facts are well established:?

Lemma 2.4. (1) If & is irreducible, then & 1is either transient or vecurrent.
(2) & is transient if and only if, whenever u € Z., llulle =0 implies u=0 m-a.e. |
(3) & is vecurrent if and only if 1 € F. and | 1] ¢=0.

(4) Suppose that & is irreducible and recurrent. If u € F and | ulle =0, then there exists a

constant ¢ such that u=c m-a.e.

3. Main Theorem

We follow the notation given in Section 1. For any subsets 2 (i=1, 2) of functions on X?
(i=1, 2), respectively, we denote by 2V ® 2@ the totality of all linear combinations of
P ® 4@ with u® € 29 (i=1, 2), where (U @uP)(#) :=uV(FNu@(4?), 2=V, £?).
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The following is the main theorem:

Theorem 3.1. If €Y and €@ are any cores of eM* and &2 respectively, then €V Q &'? is
a core of &. Moreovey, eq. (1.5) holds true for u, vE €VQ €@, In particular, if u®, € €O
(i=1, 2), then it follows that

VR uU?. fIR42) ' (3.1)
A Y R I G D P C T

The corresponding proof will be given at the end of this section.
For any A > 0, let *4 be the transition function of the killing transform MY 24 of
MY by PCAF (A4)):

p M &) =EP [ M fx ), (3.2)
where Eél)[-] denotes the expectation with respect to Pél). The corresponding semigroup and
Dirichlet form on L*X™, m") are denoted by {T%"**} and (& **, &I ) respectively.
Note that # M *# = F0# whenever A > 0. Let p? and p; be the transition functions of M®
and the skew product process M, and let {7%} and {74 be the semigroups on L3(X‘?, m®)
and LZ(X, m), generated by pﬁz) and py, respectively. Let EZ)(-) denote the spectral measure
corresponding to {T¢%)}.

The following is a key lemma:
Lemma 3.1. If u® % € LX) m™) (i =1, 2), then it holds that
(T,(u(1)®u(2)) 1)(1)®v(2))m
= fo (Tt(l)'“‘ ut, v(l))mu)d(Ez)( Aul?, v(z))mm. (3.3)

Proof. Taking Borel versions of u? (1=1, 2), we have

(M @ u?) (X) = u XD uP X, t € [0, o) (3.4)
by the usual convention, and hence,

2 V®uP) (&, 7) = EL VX P pLuP (7)), t € [0, ). (3.5)
Thus, using Fubini’s theorem, we obtain

(Tt(u(l) X u(z)), v(l) R ,U(Z))m

= Ly E& 1D (XDUTE) P, oo 8)am(8)
= qu)Ef:l’[u‘l’(X‘}’) focoe_ AAtd(E(Z)(/l)u(Z)‘ v(Z))m(Z)] (&) dmV(£)
— f:(fx‘“ E D XD e~ M0 8) amV(&)|d (ED A2, o)

= [ (TD2#D D) g (ED(2)u®, v2)p O
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Remark 3.1. While Lemma 3.1 signifies that
T, ( R u<2> f - “‘u‘”@dE‘z’ <2> (3.6)

holds in the weak sense of L?(X, m), this equation actually holds in the strong sense of
L*(X, m).

Lemma 3.2. Ifu € FD and v € FP, then u® v € & and it holds that

lu @ w2 = lull 2w vl 2o+ 1%l2 lullZe, (3.7)

(3.8)

lu®wlz = ”%”[(1) lollZe + Nl 2wl
Furthermore, eq. (3.1) holds for any uV, v'P € FD and any @, /P € 9'(2).
Proof. Using Lemma 3.1, we have
1
—t—(u®v— T{iu Q@ 1), & V)m
= [T = T e d(ED(), )0
— EDAH (Y y) d(Ez)(A)v, V) @

(¢loy 70

= [T 16V, u) + A @), dED Q). 1)y
= &Bu, v, V)@ + (1 %) &, v).

This proves eq. (3.7), from which eq. (3.8) follows. The last assertion can be similarly
proved. L]

Lemma 3.3. For any u¥ € LAX® wm?) (i=1, 2) and any t> 0, T (1D @ u®)) belongs to the
closure of FV* Q@ gD in the Hilbert space (F, &1).

Proof. For any u 0 e LZ(X( m?) (=1, 2) and any > 0 we take an approximating sequence
lvd for T:(u™ @ u®), defined by

2

n .
V= '21 T FHE D @ @iy @), (3.9)
]:

where I}"]=(J%. ;;L] (m, =1, 2,...). It follows from Lemma 3.1 that the sequence
{vd converges to T{u'’ ® u®) weakly in L*X, m). Note that E?(IMy® e @ and,

moreover,

EDED (1), E2(11) u?) = 0 if i j (3.10)

and
” E(Z)(I[n]) u(2)” ,g(2) _l_ ” E(Z) Iln] (2) || 2= _%(EZ)(I}M)“(Z)’ M(Z))m(Z) (3.11)
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(n,4,7=1, 2,...). Thus, using Lemma 3.2 and Lemma 2.1 (1), we obtain

n2

i 1
Il = 2 SO @ B P, TOED © B )
1, ]_ ‘
< z { || T(l) " u(l)||<g(1)‘|‘ . || T(l)—# (l) |2| E(Z) Ilnl (2) (2))m‘2’
i=1

1'12 i
= > | TMw

i=1

1
< 9.0 T 120 142 )20 < oo

(I,I"])u(z), u(z))m(z)

Therefore the sequence {v,} is bounded in (&, &1). Hence, using a standard argument, we
can choose a sub-sequence {v,,| of {v,|, such that its Cesaro means w,: = %2;;1 vy, (=1,
2,...) converge to an element w* € & strongly in (&, &), and hence, weakly in L%(X, m). On
the other hand, {w,} converges to T,(u#"® 4?) weakly in LZ(X, m), concluding that w = T,
(Y ® 4®). This completes the proof since w, € F* @ FD (n=1, 2,...). : ]

Now we shall give the proof of our main theorem.

Proof of Theorem 3.1. First note that eq. (1.5) follows from eq. (3.1). Given the assumptions
and Lemma 3.2, it suffices to show that #™# @ #@ is dense in (¥, &1). To this end we
set @:= L3(XV, mM)® L2 X2 (2’ . It follows from Lemma 2.1 (3) that U,> ¢7:9 is dense
in (&#, &) since @ is dense in LZ(X, m). Therefore, it follows from Lemma 3.3 that F# ®
F@ is dense in (#, &1). ]

4. Fubini-Type Results

We follow the notation used in the previous section. For any subset B of X and any point
(€, 7)E X, we set Be:= [42€ X?: (&, £P)EB| (&-section) and B": = (Ve X, (¥, 7)€ B}
(7-section). Let Cap(‘)( Y(i=1, 2), Capm"‘( -) and Cap(-) denote the capacities relative to &
(i=1,2), 6# and &, respectively.

Theorem 4.1. (1) If u € Fe, then u(-.7) € F for m®.a.a. 7 and

lull 2 > [ (. 7) 120 dm@(7). (4.1)
(2) Ifu € &, thenu(-,7) € F fr m?-a.a. 7 and

lulf > [y lu(.7) 1 3o am® (). (4.2)

(3) If |Bil is a decreasing sequence of open subsets of X satisfying Cap(By) | 0, then
CapPBl) | 0 for !®.a.a. 7.

(4) If NC X and Cap(N) = 0, then Cap”(N”) = 0 for w®-a.a. 7. In particular, # & m®(N) =
0.
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(5) If a function f is &-quasi-continuous on X, then f(-,'7) are &V-quasi-continuous on X Sor

mP.aa 7.

Proof Let @:= €M ® «'®. We first note that inequalities (4.1) and (4.2) hold for .any u €
# by Lemma 3.2. To prove (1) we take a # € %.. We can choose .a sequence {$,} from &
such that ¢, (——->u m-ae. and 3y | $ur1— P, |6 < . Thus, by using inequality (4.1),

. n—> oo
we obtain

Z I fpt1— Fulle < o0,

#n=!1

o] 2 |1/2
J}a{ >, u¢n+1(-.7)——‘¢n(-.7)ug~jhdnfzkv) <
n=1

It follows that, for m®-a.a. 7, {¢.(-.7) are .&M.Cauchy sequences in .V and converge to
u(-,7) mN.a.e. by Fubini's theorem. This completes the proof -of (1). Assertion (2) follows
from (1), Fubini's theorem and the fact that FN 'LZ(X(”, 'm(“») = M. To show (3) we take
the 1-equilibrium potentialz) er of By, which satisfies

Cap(B)= | ek||:‘;=l, e € F, er= 1 m-ae. on B, (4.3)
It follows from (2) aﬁd Fubini’s theorem that
e -, 7) |l ?g&n > Cap'¥(Bl) for mP-aa. 7. (4.4)

On the other hand, we have, by using‘relations‘ (4.2).and (4.3), and Fatou’s lemma,

Sy lim inf lleg -, 7) |50 am®(7) < lim Cap(By) = 0. (4.5)

b— 00 ‘>0
Hence, limp— oo Cap™(Bf) = lim infr—co |l e+, 7) IIE-;(IU =0 for m*-a.a. 7. Assertions (4) and
(5) follow from (3). O

In the following, for any # € %., an &-quasi-continuous m-version of u will be denoted
by u.

Corollary 4.1. Ifu € &%, then u(-,7) are 6(1)-quasi~continuous m("l)-versionspf u(-.7) € % for
(2)

m-aa. 7.

This is evident from (1).and (5) of Theorem 4.1 and Fubini's theorem.

Let v:=# @m? It follows from Theorem 4.1 (4) that v is.a smooth Radon measure
for &. Thus we can define the perturbed Dirichlet form (&V, F") corresponding to the killing
transform of M by the PCAF whose Revuz measure is v . We denote the capacity relative to
& by Cap (+).

Theorem 4.2. (1) Ifu € ., then u(-,7) € L fr m?-a.a. Tand (&, )€ FP for p-aa £.
Moreover, it holds that '

lul2 = [ lu(-.7) 120dm®m) + [ l2(E ) 130 de (). (4.6)
X Xt
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(2) Ifu € F then u(-,7) € g Jor mPaa 1 and u(&,-) € P Jor p-a.a. & . Moreover,
it holds that

lul 2> =fy lu(- 1) 150 dn®) + [y laE ) 1 5o du(@) (4.7)
=[y L) | Fow am®1) + [y 156 ) | 5e du (). (4.8)

In particular, if w€ F N Co(X), then u(-, 7)€ & V" * N Co(xM) for mP-q.a. 7 and
w(&,)€ FON C(X?) for -aa €.

(3) If {Bd is a decreasing sequence of relatively compact open subsets of X satisfying Cap(By) } 0,
then Cap®((Bye) 4 O for #-aa. &.

(4) If NC X and Cap(N) = 0, then Cap'®(Ne) =0 for ¢t-a.a. £.

(5) If a function f is & -quasi-continuous on X, then f(€ ,-) are é"(z)-quasi-continuous on X2 for

H-aa §.

Proof. Let € := ¢V ® € It follows from Lemma 3.2 that eqs. (4.6)—(4.8) hold for any
u € &. To prove (1) we take a u € & and a sequence {$,| from & such that 9, )%
&-qge.and = ,—; $,+1— ¢, lls <oo. Using the same argument as in the proof of the
previous theorem and assertion (4) of the same theorem, we can show that, for # -a.a.
&, |9 (& ) are 6"(2)-Cauchy sequences in #? and converge to #(€ ) m®-a.e. This proves
(1) since eq. (4.6) naturally extends to & .. Assertion (2) follows from (1) and Fubini's
theorem. To prove (3) we have only to note that Cap(Bs) } O implies Cap” (By) | 0.2 The rest is

the same as in the proof of the previous theorem. We omit the details. ]
The following is a corollary to both Theorems 4.1 and 4.2:

Corollary 4.2. Let B? C X (i=1, 2) and suppose that Cap”(B?) >0 (i=1, 2). If either
2B > 0 or m®(B?) > 0, then Cap(B* X B?) > 0.

Theorem 4.3. (1) Ifu € F* and v € FP, then u® v € F* and it holds that
lu® ol Zv=lul o lvlte + 1l vl fe < lall & ol G (4.9)

(2) For any B? C X (i=1, 2), Cap” (BY X B®) < Cap™*(BY) Cap'®(B?).

(3) Let B? C X9 (i=1, 2). If either Cap™(BY) = 0 or Cap®(B?) = 0, then Cap(BY X B?) =
0. ‘

4) If fis &Y-quasi-continuons on XV and if g is &P-quasi-continuous on X?, then f®gis
& -quasi-continuous on X.
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(5) Suppose a > 0 and B > 0. Ifu € FUX(C gMV is a-excessive relative to &V and ifv €
F9 s B-excessive relative to &P then u @ v is a-excessive relative to &f”

Proof. Assertion (1) is immediate from Lemma 3.2. Using the inequality in (4.9), we can show
(2), from which (3) and (4) follow. To prove (5), we note that u @ v € Z" by (1). For any
non-negative element # € &~ N Co(X), we have
Y (v h)
= [y P, k(- M) v(Ndm®() + [ &P (v, h(E, ) W(E)dr(£) > 0,
using Theorem 4.2 (2) and Lemma 2.2. ]

5. Applications

In this section, we turn to the applications of our results to some of the global properties of
symmetric Markov processes. We follow the notation used in the previous section.

Theorem 5.1. If a subset B of X is an &-invariant set, then B are &MV-invariant subsets‘of X
for mP.a.a 7 and Be are &P-imvariant subsets of Xx® for p-a.a. & . Consequently, if both W
and &'? are irreducible and if 1 + 0, then & is irreducible.

Proof. We have only to prove the first part. Suppose that B is &-invariant and let { X be as

in Lemma 2.3. Since X, 15 € % for all »n, we can assume with no loss of generality that 1p is
&-quasi-continuous. It follows from Lemma 2.3 (1) and Theorem 4.2 that, for any #,

[y EN(Xa1a(-.7), Xl (-, 7)) dm®(7)
+ [y EPIHE ) Xal g (6, )dr (€)= & (Xulp Xaly) = 0.

Hence it follows from Lemma 2.3 (2) that

EV(X(-M1gr, Xl ML 79)=0 (n=1, 2, ..) for m®-a.a. 7,
EDXE )L, Xul€,)1pg =0 (n=1,2,..) for p-aa. §.
This completes the proof of the first part in view of Lemma 2.3 (1). ]

Theorem 5.2. (1) Suppose that & is recurrent. It follows that &Y is recurrent and, if #F0, that
& is also recurrent.
(2) If €W is transient, then & is tramsient.
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(3) If &2 is transient, 1 + 0 and &Y is irreducible, then & is transient.

Proof. Suppose that & is recurrent. It follows from Lemma 2.4 that 1 € #. and &(1, 1) = 0.
Hence, it follows from Theorem 4.2 (1) that 1 € gD 1€ P and [ye é°(1)(1, 1)dm‘2’+
[y éa(z’(l, 1)dp# = 0. Thus, assertion (1) again follows from Lemma 2.4. To prove (2) and
(3), suppose u € F. and &(u, u)=0. It suffices to show that u = 0 m-a.e. It follows from
Theorem 4.1 that |

u(-,7)€ FLV and Nu(-. 7 lsn=0 for m?-aa.7. (5.1)

If &% is transient, then (5.1) implies that u(-,7) =10 mP-ae. for mP-a.a. 7, and hence, u=0
m-a.e. by Fubini's theorem. This completes the proof of (2). Next, we prove (3). We can
assume that & is recurrent. It follows from Lemma 2.4 (4) that (5.1) implies that, for
m®.almost every 7, there exists a constant ¢(7) such that #(-,7)=c(7) &"-qe., where
denotes an &-quasi-continuous m-version of u. This implies that u =c¢ # ® mP.ae. by
Fubini's theorem. Hence it follows from Theorem 4.2 (1) that ¢ € #.? and | ¢l ¢ @=0. Since

&@ is transient, it holds that ¢c=0 m®-a.e., which implies that u=c¢=0 m-a.e. : L]
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