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Scattering of a TM Wave from a Periodic Surface with Finite
Extent: Undersampling Approximation

Junichi NAKAYAMA†a) and Yasuhiko TAMURA†, Members

SUMMARY This paper deals with the scattering of a TM plane wave
from a perfectly conductive sinusoidal surface with finite extent. For com-
parison, however, we briefly discuss the diffraction by the sinusoidal sur-
face with infinite extent, where we use the concept of the total diffraction
cross section per unit surface introduced previously. To solve a case where
the sinusoidal corrugation width is much wider than wave length, we pro-
pose an undersampling approximation as a new numerical technique. For a
small rough case, the total scattering cross section is calculated against the
angle of incidence for several different corrugation widths. Then we find
remarkable results, which are roughly summarized as follows. When the
angle of incidence is apparently different from critical angles and diffrac-
tion beams are all scattered into non-grazing directions, the total scattering
cross section increases proportional to the corrugation width and hence the
total scattering cross section per unit surface (the ratio of the total scatter-
ing cross section to the corrugation width) becomes almost constant, which
is nearly equal to the total diffraction cross section per unit surface in case
of the sinusoidal surface with infinite extent. When the angle of incidence
is critical and one of the diffraction beams is scattered into a grazing direc-
tion, the total scattering cross section per unit surface strongly depends on
the corrugation width and approximately approaches to the total diffraction
cross section per unit surface as the corrugation width gets wide.
key words: numerical analysis, undersampling, Wood’s anomaly, total
scattering cross section, multiple scattering

1. Introduction

This paper deals with the wave scattering of a TM plane
wave from a perfectly conductive sinusoidal surface with fi-
nite extent (see Fig. 1). For numerical analysis, we propose a
new approximation method which is practically useful when
the surface is small in roughness but the corrugation width
W is much larger than λ the wave length.

When a TM plane wave is incident on a perfectly con-
ductive periodic surface with finite extent, strong scattering
takes place into directions determined by the grating for-
mula and the scattered wave becomes a sum of diffraction
beams [1], [2]. When the angle of incidence θi is critical, one
of the diffraction beams is scattered into a grazing direction.
Such a diffraction beam is scattered by the surface corruga-
tion and re-scattered again. Thus, a multiple scattering takes
place. This multiple scattering may be weak when the cor-
rugation width W is not wide but becomes strong when W
is wide enough. Therefore, it is physically expected that the
corrugation width W gives serious effects to the scattering
properties. When the corrugation width W goes to infinity
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Fig. 1 The scattering of a TM plane wave from a periodic surface with
finite extent. ψi(x, z) and ψs(x, z) are the incident plane wave and the scat-
tered wave, respectively. θi and θs are the angle of incidence and a scat-
tering angle, respectively. L is the period. W and σ are the width and
roughness of the surface, respectively.

and the surface becomes perfectly periodic∗, such a multi-
ple scattering causes a well known Wood’s anomaly [9]–
[11]. However, the effect of multiple scattering has not been
discussed in details for a periodic surface with finite extent.

In order to discuss the multiple scattering effect, we
have to deal with a case where W is much larger than λ
the wave length. But theoretical or numerical methods have
not been developed yet for such a case. When the angle
of incidence is critical, the small perturbation method gives
the total scattering cross section per unit surface propor-
tional to

√
W asymptotically and causes unphysical diver-

gence at W → ∞ [12], which is the same drawback as in
the Rayleigh-Rice theory of periodic grating [13], [14]. On
the other hand, numerical methods [1], [2], [15]–[17] com-
monly reduce the scattering problem to solving a matrix
equation. Roughly speaking, the matrix is [8 W/λ]× [8 W/λ]
in size. This fact makes it impractical to solve a case with W

∗ The words, the perfectly periodic surface, are an analogy of
the perfect lattice or perfect crystal in the solid state physics [3].
In our opinion, periodic surfaces may be classified into two cate-
gories. One is the perfectly periodic surface, which is described
by a periodic function in strictly sense. The other is the imperfect
periodic surface, which is periodic in some sense but has imper-
fections. Some examples are a periodic surface with finite extent,
a periodic surface with apodisation [4], a periodic surface with de-
fects [5], and periodic random surface [6]–[8]. In this paper, we
intend to clarify properties of the scattering from a periodic sur-
face with finite extent in comparison with the perfectly periodic
case, where the perfectly periodic case is regarded as an idealized
standard.
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much larger than λ the wave length, because of increasing
computation time.

To deal with a case W/λ > 103, we need a new method
for numerical analysis. We propose an undersampling ap-
proximation, by which the matrix size is reduced to about
[4L/λ + 1] × [4L/λ + 1], L being the surface period. By use
of this approximation, we calculate the total scattering cross
section for W/λ up to 6.4 × 103. Then, we find that, when
the angle of incidence is apparently different from a critical
angle, the total scattering cross section per unit surface is
almost constant independent of W. When the angle of inci-
dence is critical, however, the total scattering cross section
per unit surface depends on W due to the multiple scattering.

2. Formulation

Let us consider the scattering of TM plane wave from a per-
fectly conductive sinusoidal surface with finite extent shown
in Fig. 1. We write the surface corrugation as

z = f (x) = σu(x|W) sin(kLx), kL =
2π
L
, (1)

where L is the period, kL is the spatial angular frequency
of the period L, W is the width of corrugation which is im-
plicitly assumed to be an integer multiple of the period L to
make f (x) continuous at x = ±W/2. u(x|W) is a rectangular
pulse,

u(x|W) = u2(x|W) =

{
1, |x| ≤ W/2
0, |x| > W/2

, (2)

and σ is the surface roughens. In what follows, we only
consider a case with σ � λ, λ being wave length. We de-
note the y component of the magnetic field by ψ(x, z), which
satisfies the wave equation[

∂2

∂x2
+
∂2

∂z2
+ k2

]
ψ(x, z) = 0, (3)

in the region z > f (x) and the Neumann condition on the
surface (1)[

∂

∂z
− d f

dx
∂

∂x

]
ψ(x, z)

∣∣∣∣∣∣
z= f (x)

= 0. (4)

Here, k = 2π/λ is wave number. We write the incident plane
wave ψi(x, z) as

ψi(x, z) = e−ipxe−iβ(p)z, p = k · cos θi, (5)

where θi is the angle of incidence (see Fig. 1) and β(p) is a
function of p defined by

β(p) =
√

k2 − p2,

Re
[
β(p)
] ≥ 0, Im

[
β(p)
] ≥ 0. (6)

Here, Re and Im are real and imaginary part, respectively.
Since the surface is flat for |x| > W/2, we put

ψ(x, z) = ψi(x, z) + e−ipxeiβ(p)z + ψs(x, z), (7)

where the second term in the right-hand side is the specu-
larly reflected wave and ψs(x, z) is the scattered wave due
to the surface roughness. In far region, ψs(x, z) becomes a
cylindrical wave satisfying the Sommerfeld radiation condi-
tion, and hence its Fourier spectrum has singularities but its
angular spectrum is always finite [16]. Taking this fact and
assuming the Rayleigh hypothesis, we write an approximate
expression of ψs(x, z) as

ψs(x, z) =
∫ kB

−kB

Aβ(s)

β(p + s)
e−i(p+s)x+iβ(p+s)zds, (8)

which is made up of up-going waves and evanescent waves.
Here, kB is a truncated band width, Aβ(s) is the angular spec-
trum and is the amplitude of the partial wave scattered into
θs = Θ(p + s) direction, where Θ(p + s) is defined by

Θ(p + s) = arccos[−(p + s)/k]. (9)

If we put s = mkL, (m = 0,±1,±2, · · ·), this becomes a
famous grating formula [9] for a perfectly periodic surface,

Θ(p + mkL) = arccos[−(p + mkL)/k], (10)

where Θ(p + mkL) is the mth order diffraction angle.
The optical theorem is analogous to the famous for-

ward scattering theorem and may be written as [2], [16],

pc = pinc, (11)

pc = −4π
k

Re[Aβ(0)], (12)

pinc =
2π
k

∫ kB

−kB

Re[β(p + s)]
∣∣∣∣∣ Aβ(s)

β(p + s)

∣∣∣∣∣
2

ds (13)

=
W
2π

∫ π

0
σs(θs|θi)dθs, (14)

σs(θs|θi) =
4π2

kW
|Aβ(−k cos θs − k cos θi)|2. (15)

Here, σs(θs|θi) is the differential scattering cross section per
unit surface. The optical theorem (11) states that the total
scattering cross section pinc is equal to pc the loss of the
amplitude of the partial wave scattered into the specularly
reflection direction. Because of (11), however, we will call
pc the total scattering cross section. Further, we will con-
sider pc/W the total scattering cross section per unit surface
in what follows. We not that pc/W and σs(θs|θi) are dimen-
sionless.

The optical theorem may be used to estimate the ac-
curacy of an approximate solution. We define the error Err

with respect to the optical theorem as,

Err =

∣∣∣∣∣ pc − pinc

pc

∣∣∣∣∣ , (16)

which will be calculated below.

3. Rayleigh Hypothesis and Undersampling Approxi-
mation

Let us obtain a representation of the angular spectrum by use
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of an undersampling approximation. Since ∂ψs/∂z|z=0 = 0
for |x| > W/2 by (1), (5) and (7) , we obtain from (4),

∂ψs

∂z

∣∣∣∣∣
z=0
= i
∫ kB

−kB

Aβ(s′)e−i(p+s′)xds′

=

{
ie−ipxQ(x) |x| ≤ W/2
0, |x| > W/2

, (17)

where Q(x) is an unknown function. If Q(x) is square inte-
grable, it can be represented by a Fourier series with period
W [1]. However, we approximately expand it as a periodic
function with the period L and we put,

Q(x) =
NQ∑

n=−NQ

Qn · e−inkL x, (18)

where L and kL are the period and the spatial angular fre-
quency introduced in (1), respectively. NQ is a sufficiently
large truncation number and {Qn} is a vector to be deter-
mined.

Multiplying ei(p+s)x to (17), integrating the result and
using (18), we obtain

Aβ(s) =
1

2π

NQ∑
n=−NQ

QnU(s − nkL|W), (19)

which holds for |s| ≤ kB. Here, U(s|W) is the Fourier trans-
form of u(x|W).

U(s|W) =
∫ ∞
−∞

u(x|W)eisxdx =
sin(sW/2)

(s/2)
, (20)

lim
W→∞U(s|W) = 2πδ(s), (21)

where δ(s) is the Dirac delta. Since W is an integer multiple
of the period L , we obtain U(nkL|W) = Wδn0, δmn being
Kronecker’s delta. Then, we obtain from (19)

Aβ(nkL) =
W
2π

Qn, (n = 0,±1,±2, · · · ,±NQ) (22)

Eq. (19) is an undersampling approximation of the angular
spectrum Aβ(s). Substituting (19) into (8) yields

ψs(x, z) =
NQ∑

n=−NQ

Qn

2π

∫ kB

−kB

U(s − nkL|W)
β(p + s)

×e−i(p+s)x+iβ(p+s)zds. (23)

3.1 Equation for {Qn}

Let us derive an equation for the vector {Qn}. We first intro-
duce a Fourier coefficient Cm(α, β) by the relation

[
∂

∂z
− d f

dx
∂

∂x

]
e−iαx+iβz

∣∣∣∣∣∣
z=σ sin(kL x)

= i
∞∑

m=−∞
Cm(α, β)e−iαx−imkL x. (24)

Using the formula on Bessel function Jm(z),

eiz sin(x) =

∞∑
m=−∞

Jm(z)eimx, (25)

we obtain

Cm(α, β) = βJ−m(σβ)

+
σαkL

2
[
J1−m(σβ) + J−1−m(σβ)

]
. (26)

Substituting (23) into (4) and using (24), we obtain

i
2π

NQ∑
n=−NQ

Qn

∞∑
m=−∞

∫ kB

−kB

U(s − nkL|W)
β(p + s)

×Cm(p + s, β(p + s))e−isx−imkL xds

= −i
∑

m

[
Cm(p,−β(p)) + Cm(p, β(p))

]
e−imkL x, (27)

which holds for |x| < W/2. Multiplying eilkL x to the
both sides of this equation, and integrating over an inter-
val [−W/2,W/2], one easily gets a set of equations for the
vector {Ql},

NQ∑
n=−NQ

Dln(p)Qn = El(p), (28)

Dln(p)=
∞∑

m=−∞

∫ kB

−kB

U(s − nkL|W)
2πWβ(p + s)

Cm(p + s,

β(p + s))U(s + (m − l)kL|W)ds, (29)

El(p) = − [Cl(p,−β(p)) +Cl(p, β(p))
]
. (30)

The integrand in (29) has singularities at p + s = ±k. The
integral may be evaluated easily by putting p+ s = −k cosα
and changing the variable of integration from s to α. When
W/λ > 103, however, numerical integration takes much
computation time and its highly accurate evaluation be-
comes difficult technically.

4. Perfect Periodic Case

In the limit W → ∞, our surface (1) becomes perfectly pe-
riodic and hence the scattered wave ψs(x, z) is physically
expected to converge to the diffracted wave by the perfectly
periodic surface. Therefore, we consider the diffraction by
the perfectly periodic surface.

As is well known, the wave field has the Floquet form
in a perfectly periodic case. According to reference [18], we
write

ψ(x, z) = e−ipxe−iβ(p)z + e−ipxeiβ(p)z

+

∞∑
m=−∞

Ame−i(p+mkL)xeiβ(p+mkL)z, (31)

where the second term in the right hand side is the reflected
wave by a flat surface, and (Am+δm0) is the amplitude of the
mth order Floquet mode. Note that (A0 + 1) is the reflection
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coefficient.
In the periodic case, we may have two different energy

balance formulas [18]. One is the energy conservation re-
lation and the other the optical theorem. Many works have
been carried out on the former one, but we are interested
in the later one, because we expect that the optical theorem
could be a bridge between the scattering from a periodic
surface with finite extent and the diffraction by a perfectly
periodic surface [1], [2].

We may write the optical theorem as

p(g)
c = p(g)

inc, (32)

p(g)
c = −2

β(p)
k

Re[A0], (33)

p(g)
inc =

∞∑
m=−∞

Re[β(p + mkL)]
k

|Am|2. (34)

Since k in the denominator in (33) and (34) is the incident
energy flux, p(g)

inc is the total diffraction cross section per unit

surface, whereas p(g)
c means the loss of specularly reflection

amplitude. Because of (32), however, we will call p(g)
c the

total diffraction cross section per unit surface. Note that p(g)
c

is dimensionless. In what follows, we will compare p(g)
c with

pc/W the total scattering cross section per unit surface.
It is known in case of a perfectly periodic Neumann

surface [19]–[21] that (1 + A0) becomes −1 and any other
diffraction amplitude Am, (m � 0), vanishes at a low grazing
limit of incidence. Because of the factor β(p) = k sin θi,
however, p(g)

c vanishes in the limit θi → 0 as is illustrated
later.

5. Optical Theorem as Bridge

We have been looking for bridges between the scattering
from a finite periodic surface and the diffraction by a per-
fectly periodic surface. In previous papers [1], [2], we sim-
ply assumed that the total scattering cross section pc is lin-
early proportional to W, because the scattering is generated
by the surface corrugation with the width W. Such assump-
tion is useful in some cases but is not always valid as is
shown later.

As is described above, the scattered wave ψs(x, z) is
physically expected to converge to the diffracted wave by
the perfectly periodic surface in the limit W → ∞. Mathe-
matically, however, such convergence is doubtful. However,
we propose an expectation such that pc/W the total scatter-
ing cross section per unit surface converges to p(g)

c the total
diffraction cross section per unit surface. We write our ex-
pectation as

lim
W→∞

pc

W
= p(g)

c , (35)

which could be a bridge between the scattering from a finite
periodic surface and the diffraction by a perfectly periodic
surface. In what follows, we numerically examine this ex-
pectation.

6. Numerical Examples

For numerical calculation, we put

L = 2.5λ, (36)

by which θi = 0◦, 53.130◦, and 78.463◦ become the critical
angles of incidence.

6.1 Perfectly Periodic Case

By a non-Rayleigh method [22], we calculated numerically
the amplitude Am in (31) from m = −8 to m = 8. Then,
p(g)

c the total diffraction cross section per unit surface is il-
lustrated against the angle of incidence in Fig. 2. We see
that Wood’s anomaly appears as rapid changes of p(g)

c at
θi = 53.130◦ and 78.463◦. This figure shows that p(g)

c van-
ishes at low grazing limit θi → 0 as is described above.

The total diffraction cross section per unit surface p(g)
c

strongly depends on the roughness σ except for the critical
angles of incidence. It is interesting to see that such depen-
dence becomes very weak at θi = 53.130◦. Some numer-
ical examples are p(g)

c = 1.9222 at σ = 0.01λ, 1.9739 at
σ = 0.05λ, 2.1187 at σ = 0.1λ, and 2.4912 at σ = 0.2λ,
However, we note that such weak dependence appears only
for a sinusoidal surface.

6.2 Finite Periodic Case

To reduce computation time, the truncation number NQ and
the truncated band width kB should be set as small as possi-
ble. Empirically, we set

NQ =

[
2k
kL

]
r

=

[
2L
λ

]
r

, kB =
(
NQ + 1

)
kL, (37)

where [ ]r means round out operation. In case of (36),
we have NQ = [2 × 2.5]r = 5, so that (28) becomes a

Fig. 2 Total diffraction cross section per unit surface p(g)
c against θi the

angle of incidence. Perfectly periodic case. L = 2.5λ. σ = 0.05λ, 0.1λ and
0.2λ.
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Fig. 3 Error with respect to the optical theorem. L = 2.5λ, σ = 0.1λ.
The error decreases when W becomes large.

Fig. 4 Total scattering cross section pc/λ against the angle of incidence
θi. L = 2.5λ, σ = 0.1λ.

(2NQ + 1) × (2NQ + 1) = 11 × 11 matrix equation. The ma-
trix equation is solved for σ = 0.1λ, for θi from 0.00001◦
to 90◦ and for eight different values of W/λ, which are
50, 100, 200, 400, 800, 1600, 3200 and 6400. Here, W/λ =
6400 = 2560 × 2.5 means W is 2560 times of the period
L = 2.5λ, for example. By (16), we then calculated Err in
Fig. 3, which shows that the error decreases monotonously
with increasing W except for θi ≈ 0. Even for W/λ = 50
the error is less than 1% for any angle of incidence. This re-
sult suggests that our undersampling approximation and our
parameter setting (37) give a reasonable result for a small
rough case.

Figure 4 shows the total scattering cross section† pc

against θi. When θi is apparently different from critical an-
gles of incidence, pc increases linearly proportional to W.
At a critical angle θi ≈ 53.130◦, we see peaks which be-
come sharp and clear as W gets large. At another critical
angle θi ≈ 78.463◦, we see dips, which become deep and
clear when W becomes large. Except for θi ≈ 0, the curve
of pc for W/λ = 6400 is quite similar in shape to p(g)

c of the
perfectly periodic case. It is interesting to see that curves
of pc against θi depend on W and change their shapes when

Fig. 5 Total scattering cross section per unit surface pc/W against the
corrugation width W/λ. L = 2.5λ, σ = 0.1λ.

θi < 10◦. We note that the behavior of pc near θi ≈ 0 is
entirely different from p(g)

c in Fig. 2. At a low grazing limit
θi → 0, pc does not vanish but p(g)

c approaches to zero. This
figure suggests that the scattering takes place at a low graz-
ing limit of incidence, whereas the diffraction disappears as
is discussed above.

Figure 5 is a main result of this paper. It illustrates
pc/W against W for several different angles of incidence.
When θi is apparently different from critical angles, for
example, when θi = 30◦, pc/W is almost constant. Nu-
merical examples for θi = 30◦ are pc/W = 0.1495281 at
W/λ = 1600, 0.1495190 at 3200 and 0.1495145 at 6400,
whereas p(g)

c = 0.1495099 in the perfectly periodic case.
When θi = 60◦, we have pc = 0.5751289 at W/λ = 1600,
0.5751200 at 3200 and 0.5751153 at 6400, which are almost
equal to p(g)

c = 0.5751105. These facts suggest again that
our undersampling approximation gives a reasonable solu-
tion. Thus, we may conclude that our expectation (35) holds
for a non-critical angle of incidence.

If the angle of incidence is critical, pc/W depends on
W. This should be understood as multiple scattering effects.
Figure 5 shows that, when θi = 0.00001◦, pc/W decreases
monotonously as W increases. If the relation (35) holds,
however, pc/W must converge to p(g)

c , which is 6.9895×10−7

at θi = 0.00001◦.
When θi = 53.130◦, pc/W slowly increases with W

and almost saturates for a large value of W. Numerically,
pc/W = 2.031361 at W/λ = 1600, 2.190114 at 3200,
and 2.261195 at 6400, which is approximately equal to
p(g)

c = 2.1187 when σ = 0.1λ. For θi = 78.463◦, pc/W
slowly decreases as W increases. We have pc = 0.5407401
at W/λ = 1600, 0.5212594 at 3200 and 0.5124105 at 6400,
whereas p(g)

c = 0.5290224. These numerical examples show
that, for a critical angle of incidence, our expectation (35)

†The value pc by the undersampling approximation is slightly
different from that by the spectral formalism [16]. But discrep-
ancies are small. They are, for example, less than 0.7% when
W = 100λ.
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Fig. 6 Scattering cross section against scattering angle θs. L = 2.5λ,
σ = 0.1λ. W = 800λ, (A) θi = 53.000◦, (B) θi = 53.130◦.

hold approximately. We suspect that pc/W converges to
pc with dumping oscillations and small differences between
pc/W and p(g)

c could be caused by such oscillations. But this
point is not clear at present and is left for future study.

We have seen in Fig. 4 that a small variation of the
incident angle causes a large variation of pc when θi is
nearly critical. Let us see some relation of such variations
with the differential scattering cross section σs(θs|θi). Fig-
ure 6(A) illustrates σs(θs|θi) for W = 800λ, σ = 0.1λ,
and a non-critical angle θi = 53.000◦, where the 0th, −1st,
−2nd, and −3rd order diffraction beams appear as peaks
at θs = 127.000◦, 101.643◦ 78.569◦ and 53.260◦, respec-
tively. Among these peaks, the 0th order one is the largest
with level 33.32 dB, Slightly changing θi to a critical angle
θi = 53.130◦, we have σs(θs|θi) in Fig. 6(B), where the 1st
order diffraction beam appears at θs = 180◦. Comparing
Fig. (A) and (B), we see that the 0th order diffraction peak
is enhanced to 36.02 dB in the critical case, which is 2.7 dB
higher than the 0th order peak in Fig. (A). Since pc is mainly
determined by the largest peak level in σs(θs|θi), we may
conclude that such enhancement of the 0th order diffraction
beam makes the peak of pc at θi = 53.130◦.

To look for the reason why pc has a dip at θi = 78.463◦,
we illustrates σs(θs|θi) for a non-critical angle θi = 78.000◦
and for a critical angle θi = 78.463◦ in Fig. 7. In Fig. (A),
the −1st order diffraction appears as the largest peak at θs =

Fig. 7 Scattering cross section against scattering angle θs. L = 2.5λ, σ =
0.1λ. W = 800λ, (A) θi = 78.000◦, (B) θi = 78.463◦.

78.925◦ with level 31.45 dB and the 1st order diffraction be-
comes the second largest one at 127.439◦ with 30.52 dB.
Slightly changing θi from 78.000◦ to 78.463◦, we have
Fig. (B), where the −1st order diffraction appears at 78.463◦
with 31.89 dB in level, which is slightly (0.44 dB) higher
than the −1st order diffraction peak in Fig. (A). The 1st or-
der diffraction peak appears at 126.870◦ with level 24.03 dB,
which is 6.49 dB down in level from that of Fig. (A). The
largest −1st order diffraction peak is almost same in level
in these figures, but the 1st order diffraction peak becomes
lower in case of the critical θi = 78.463◦. Thus, we may con-
clude that, the dip of pc is caused by a fact that the 1st order
diffraction peak is reduced at a critical angle θi = 78.463◦.

7. Conclusions

We studied the scattering of a TM plane wave from a peri-
odic surface with finite extent. To analyze efficiently a case
with the corrugation width much larger than wave length, we
proposed an undersampling approximation method. Then,
we demonstrated that our method works practically for a
slightly rough sinusoidal surface. In fact, we calculated
the scattering cross section for a corrugation width up to
W/λ = 6.4 × 103. From numerical results, we newly found
multiple scattering effects appear as strong dependence of
the total scattering cross section per unit surface on the cor-
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rugation width for a critical angle of incidence.
We also express our expectation such that the total scat-

tering cross section per unit surface converges to the total
diffraction cross section per unit surface, when the corruga-
tion width tends to infinity. Our numerical results show that
this expectation holds with high accuracy when the angle
of incidence is non-critical but approximately for a critical
angle of incidence. However, they suggest that the conver-
gence is fast in case of a non-critical angle but is very slow
in a critical case. To make this point clear, further numerical
calculations are needed for much wider corrugation width.

We dealt with a special case, that is a sinusoidal cor-
rugation with slightly rough and gentle slope. It is inter-
esting to apply the undersampling approximation to a non-
sinusoidal case. However, the applicability of the under-
sampling approximation is not clear at present†. However,
we are interested in developing an analytical theory on the
basis of the undersampling approximation. We are also in-
terested in application of the undersampling approximation
to a two-dimensional scattering problem [23], where the re-
duction of matrix size is essentially important for practical
numerical calculations. However, these problems are left for
future study.
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