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LETTER

Energy Balance Formulas in Grating Theory

Junichi NAKAYAMA†a), Regular Member and Aya KASHIHARA†, Nonmember

SUMMARY The energy conservation law and the optical
theorem in the grating theory are discussed: the energy con-
servation law states that the incident energy is equal to the sum
of diffracted energies and the optical theorem means that the
diffraction takes place at the loss of the specularly reflection am-
plitude. A mathematical relation between the optical theorem
and the energy conservation law is given. Some numerical exam-
ples are given for a TM plane wave diffraction by a sinusoidal
surface.
key words: energy balance formula, periodic grating, energy
conservation law, optical theorem

1. Introduction

In the theory of periodic grating, two types of energy
balance formulas are known [1]–[6]. One is the en-
ergy conservation law stating that the incident energy is
equal to the sum of diffracted energies. The other is the
optical theorem stating that the diffraction takes place
at the loss of the reflection amplitude. Many authors
have applied the energy conservation law to estimate
accuracy of analysis numerically. On the other hand, it
seems that the optical theorem has seldom discussed,
even though the theorem was given in a classical paper
[6].

Recently, we have looked for relations between the
scattering from a periodic surface with finite extent and
the diffraction by a periodic surface with infinite ex-
tent. Then, we found in a certain case that the optical
theorem could become a bridge connecting such scat-
tering and diffraction [7]. This gives us a motivation
to reconsider the optical theorem in the grating the-
ory. This paper briefly discusses the optical theorem.
Then, we present a mathematical relation between the
optical theorem and the energy conservation law. We
point out that the optical theorem can be used as an-
other method to estimate accuracy of numerical analy-
sis. Some numerical examples are given for a TM plane
wave diffraction by a sinusoidal surface.

2. Diffraction by a Periodic Grating

Let us consider the TM wave diffraction from a periodic
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surface given by

z = f(x) = f(x+ L), kL =
2π
L

(1)

where L is the period and kL is the spatial angular fre-
quency associated with L. We write the y component of
the magnetic field by ψ(x, z), which satisfies Helmholtz
equation,[

∂2

∂x2
+

∂2

∂z2
+ k2

]
ψ(x, z) = 0, (2)

in free space above the surface (1). Here, k = 2π/λ is
wavenumber and λ is wavelength. On the surface (1),
the magnetic field satisfies the Neumann condition,

∂

∂n
ψ(x, z) = 0, z = f(x), (3)

where n is normal to the surface. We write the incident
plane wave ψi(x, z) as

ψi(x, z) = e−ipxe−iβ0z, p = k · cos θi. (4)

Here, θi is the angle of incidence (See Fig. 1) and

βm =
√
k2 − (p+mkL)

2
, Im [βm] ≥ 0,

(m = 0,±1,±2, · · ·), (5)

where Im stands for the imaginary part.
Since the surface deformation is periodic, the wave

field ψ(x, z) has the Floquet form, which we write as

ψ(x, z) = e−ipxe−iβ0z + e−ipxeiβ0z + e−ipx

×
∞∑

m=−∞
Ame

−imkLx+iβmz, z>σ, (6)

Fig. 1 Diffraction of a plane wave from a periodic surface. L
is the period, σ is the surface height. The angle of incidence θi

and a diffraction angle θs are measured from the positive x axis.
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where σ = max{f(x)}. The equation (6) may be inter-
preted in two ways. In the energy conservation law, (6)
is considered as a sum of the incident plane wave and
diffracted waves with amplitudes {Am+δm,0}, δm,n be-
ing Kronecker’s delta. In the optical theorem below, (6)
is regarded as a sum of three components: the incident
plane wave, the reflected wave and diffracted waves
with amplitudes {Am}. In other words, the diffrac-
tion is defined as deviation from the sum of incident
wave and the reflected wave. Note that the definition
of diffracted waves is different in these two cases.

3. Energy Conservation and Optical Theorem

The energy conservation law may be written as [1]

1
k

∞∑
m=−∞

Re[βm]|Am + δm,0|2 =
β0

k
, (7)

where Re stands for the real part, the right-hand side is
the incident energy falling on unit surface, and the left-
hand side is the sum of diffraction energies. Note that
(1+A0) is regarded as the 0 order diffraction amplitude
in (7). From (7), we obtain inequalities,

|1 +A0| ≤ 1, −2 ≤ Re[A0] ≤ 0. (8)

We define the efficiency P̂m of them-th order diffraction
and the error êe with respect to the energy conservation
as

P̂m =
Re[βm]
β0

|Am + δm,0|2, (9)

êe =

∣∣∣∣∣
∞∑

m=−∞
P̂m − 1

∣∣∣∣∣ . (10)

This relation (10) has been used for estimating accu-
racy of analysis numerically by many authors. Some-
times, (7) is called the flux density conservation, or the
optical theorem. By the optical theorem, however, this
paper means another formula (11) below. The optical
theorem may be obtained from (7) as

1
k

∞∑
m=−∞

Re[βm]|Am|2 = −2β0

k
Re[A0], (11)

where A0 is regarded as the 0 order diffraction ampli-
tude. The left-hand side in (11) is the sum of diffraction
energies and hence −2β0Re[A0]/k is understood as the
total diffraction energy per unit surface. Therefore, the
total diffraction is proportional to the real part of the
0 order diffraction amplitude A0. This is analogous to
the forward scattering theorem stating that the total
scattering cross section is proportional to the imagi-
nary part of the forward scattering amplitude. More-
over, it is known that the total scattering cross section
becomes twice of the geometrical cross section of a re-
flecting target much larger than wavelength [8]. If we

regard β0/k = sin θi as the geometrical cross section of
unit surface, we formally find from (11) and (8) that the
total diffraction can vary from 0 to 4 times of the ge-
ometrical cross section. However, the optical theorem
(11) and the forward sacttering theorem are different
in physical significance.

For normalization, we introduce the relative energy
of the m-th order diffraction by

Pm = − Re[βm]
2β0Re[A0]

|Am|2, (12)

which is the ratio of them-th order diffraction energy to
the total diffraction energy. Then, we define the error
eo with respect to the optical theorem by

eo =

∣∣∣∣∣
∞∑

m=−∞
Pm − 1

∣∣∣∣∣ =
êe

|2Re[A0]|
, (13)

which gives the mathematical relation between eo and
êe. This relation is the main result of this paper. If
|Re[A0]| < 1/2, eo is larger than êe. When |Re[A0]| >
1/2, however, êe become larger than eo. Note that êe

can be 4 times larger than eo at most by (8). Thus,
the relation (13) becomes another method to estimate
accuracy of numerical solution.

4. Numerical Example

Let us consider a simple example, where the surface
deformation is sinusoidal:

z = f(x) = σ sin(kLx). (14)

According to the reference [2], we put

k = 10, L = 1, σ = 0.15. (15)

Then, we numerically determined {Am} from m = −10
to 10 by use of a non-Rayleigh method in Ref. [3]. Fig-
ure 2 illustrates−2β0Re[A0]/k and A0 against θi, which
vary rapidly at θi ≈ 27.8◦, 68.2◦ and 75.1◦ due to
Wood’s anomaly.

Fig. 2 A0 and the total diffraction −2β0Re(A0)/k against
angle of incidence θi. L = 1, σ = 0.15, k = 10.
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Fig. 3 log10(e0) and log10 (êe) against angle of incidence θi.
L = 1, σ = 0.15, k = 10.

Fig. 4 Diffraction efficiency P̂m against angle of incidence θi.
L = 1, σ = 0.15, k = 10.

Figure 3 illustrates log-errors, log10(êe) and
log10(eo), which are less than −7 for any angle of in-
cidence calculated. Since |Re[A0]| > 1/2 in case of
(15), êe becomes slightly larger than eo. From this fig-
ure, we may say again that the optical theorem (13)
can be used as a method to estimate accuracy of nu-
merical solution. The efficiency P̂m against θi is illus-
trated in Fig. 4, which agrees well with other source [2].
On the other hand, Fig. 2 shows that the total diffrac-
tion energy depends on θi and becomes maximum at
θi = 90◦. The total diffraction energy is distributed
into each diffraction order at the rate of Pm, which is
shown against θi in Fig. 5. It is interesting to see that
Pm is largely different from P̂m as a function of θi. Spe-
cially, P0 and P̂0 are entirely different.

5. Conclusions

We have discussed the optical theorem in the grating
theory. Then, we have presented the relation between
the energy conservation law and the optical theorem.

Fig. 5 Relative energy of diffraction Pm against angle of
incidence θi. L = 1, σ = 0.15, k = 10.

Our discussions are restricted to a reflecting grat-
ing for TM case but can be immediately extended to TE
case. Extension to a transmitting and lossy case may
be possible, where the optical theorem is expected to
be a relation between the 0 order diffraction amplitude
and the sum of diffraction energies and absorption en-
ergy. However, we are interested in the optical theorem
(11), because the theorem could be a bridge connecting
the diffraction by a periodic grating with infinite extent
and the scattering from a periodic grating with finite
extent [7]. Theoretical and numerical studies on such
connection are also left for future study.
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