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PAPER

Wave Scattering from an Apodised Sinusoidal Surface

Junichi NAKAYAMA†a), Regular Member

SUMMARY This paper deals with the scattering of a TE
plane wave by an apodised sinusoidal surface. The analysis starts
with the extended Floquet solution, which is a ‘Fourier series’
with ‘Fourier coefficients’ given by band-limited Fourier integrals
of amplitude functions. An integral equation for the amplitude
functions is derived and solved by the small perturbation method
to get single and double scattering amplitudes. Then, it is found
that the beam shape generated by the single scattering is pro-
portional to the Fourier spectrum of the apodisation function,
but that generated by the double scattering is proportional to
the spectrum of the squared apodisation. As a result, the single
scattering beam and the double scattering beam may have differ-
ent sidelobe patterns. It is demonstrated that the sidelobes are
much reduced if Hanning window or Hamming window is used as
an apodisation function.
key words: periodic Fourier transform, wave scattering, �nite

periodic surface

1. Introduction

This paper deals with the scattering of a TE plane wave
from an apodised sinusoidal surface shown in Fig. 1.

The wave scattering by a periodically corrugated
surface with finite extent has received much interest,
because it is related with important applications [1]–
[6] such as diffraction gratings, leaky wave antenna
and waveguide couplers in thin film optics. Physically
speaking, the wave scattered from a finite periodic sur-
face is made up of several beams, which are diffracted
into the directions determined by the famous grating
formula [7]. Due to the interferences between waves
radiated from the ends of the corrugation, sidelobes
appears as ripples in the angular distribution of the
scattering [2]–[4], [8]. This paper proposes an apodised
periodic corrugation to reduce the sidelobe levels. We
will demonstrate that the sidelobes are much reduced
in level and in angular distribution if Hanning window
or Hamming window [9] is used as an apodisation func-
tion.

For analysis, we employ the method of periodic
Fourier transform introduced in a previous paper [8],
where the scattered wave was shown to have an ex-
tended Floquet solution in case of a periodic corru-
gated surface with finite extent. The extended Floquet
solution is a ‘Fourier series’ with ‘Fourier coefficients’
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given by band-limited Fourier integrals of amplitude
functions. From the boundary condition, we obtain an
integral equation for the amplitude functions. Assum-
ing the corrugation amplitude is sufficiently small, we
solve the integral equation by the small perturbation
method. We obtain the first and second order solu-
tions, which represent the single and double scattering
processes, respectively. Then, it is found that the beam
shape generated by the single scattering is proportional
to the Fourier spectrum of the apodisation function, but
that generated by the double scattering is proportional
to the spectrum of the squared apodisation. We con-
clude that the single scattering beam and the double
scattering beam may have different sidelobe patterns.

Properties of the periodic Fourier transform are
summarized in Appendix.

2. Formulation

Let us consider the wave scattering from a periodically
corrugated plane shown in Fig. 1. We write the surface
deformation as

z = f(x) = σg(x|W ) sin(kLx), kL =
2π
L
, (1)

where L is the period, σ is the corrugation height
parameter, W is the physical length of corrugation
and g(x|W ) is the apodisation factor which is a non-
negative function taking its maximum at x = 0,

Fig. 1 Scattering and diffraction of a plane wave from a peri-
odically corrugated surface with apodisation. The incident plane
wave and the scattered wave are denoted by ψi(x, z) and ψs(x, z),
respectively. θi is the angle of incidence and θs is a scattering
angle. W is the physical length of corrugation and σ is the cor-
rugation height parameter.
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g(0|W ) = max
x

[g(x|W )] = 1, (2)

and vanishes for |x| > W/2,

g(x|W ) = 0, |x| > W

2
. (3)

We denote the y component of the electric field by
ψ(x, z), which satisfies the wave equation

[
∂2

∂x2
+

∂2

∂z2
+ k2

]
ψ(x, z) = 0, (4)

in the region z > f(x) and the Dirichlet condition

ψ(x, z) = 0, z = f(x), (5)

on the surface. Here, k = 2π/λ is the wave number and
λ is the wavelength.

We write the incident plane wave ψi(x, z) as

ψi(x, z) = e−ipxe−iβ0(p)z, p = k · cos θi, (6)

βm(p) =
√
k2 − (p+mkL)

2
, Im [βm(p)] ≥ 0,

(m = 0,±1,±2, · · ·), (7)

where θi is the angle of incidence. Since the surface
becomes flat for |x| > W/2, we put the electric field as

ψ(x, z) = e−ipxe−iβ0(p)z − e−ipxeiβ0(p)z + ψs(x, z), (8)

where e−ipxeiβ0(p)z is the specularly reflected wave and
ψs(x, z) is the scattered wave due to surface deforma-
tion.

In view of the periodic nature of the surface corru-
gation, we may determine a possible form of the scat-
tered wave. By use of the periodic Fourier transform
and its inverse transformation, it was shown in a pre-
vious paper [8] that the scattered wave may have an
extended Floquet form:

ψs(x, z) =
1
kL

∞∑
m=−∞

e−imkLx

×
∫ π/L

−π/L

Am(s)e−i(p+s)x+iβm(p+s)zds, (9)

which satisfies the wave Eq. (4) and radiation condition
for z → ∞. Here, Am(s) is the complex amplitude of
the plane wave propagating with wave vector k = −(s+
p+mkL)ex+βm(p+s)ez, ex and ez being unit vectors
in the x and z directions, respectively. In other words,
Am(s) is the amplitude of the plane wave scattered into
the direction θs determined by,

cos θs = −
(
cos θi +

s

k
+m

λ

L

)
. (10)

If we put s = 0, (10) is reduced to the famous grating
formula:

cos θm = −
(
cos θi +m

λ

L

)
, (11)

where θm is the mth order diffraction angle. Equa-
tion (9) is a ‘Fourier series’ with ‘Fourier coefficients’
given by band-limited Fourier integrals of amplitude
functions Am(s).

The diffracted waves are physically radiated from
the corrugated part of the surface. Therefore, the
diffracted waves exist only limited regions in space and
in the far region they become beams propagating into
θs = θm given by (11). In the angular distribution of
the scattering, such a beam appears as a mainlobe at
θs = θm with a finite beam width. The amplitude of
each beam is physically expected to be proportional to
W the width of corrugation. To represent the effects of
apodisation precisely, however, we introduce the width
parameter Wn and the spectrum function Gn(s|W ) as

Gn(s|W ) =
∫ ∞

−∞
eisx[g(x|W )]ndx, (12)

Wn = Gn(0|W ) ≥ |Gn(s|W )|, (n = 1, 2, · · ·),(13)

where the inequality holds because g(x|W ) is non-
negative. By the Parseval relation and (13), we obtain

1
2π

∫ ∞

−∞
|Gn(s|W )|2ds =

∫ ∞

−∞
|g(x|W )|2ndx

= W2n (14)

Then, we define the spectrum width ∆S(n)

∆S(n)=

∫ ∞
−∞|Gn(s|W )|2ds
|Gn(0|W )|2 = 2π

W2n

W 2
n

, (n = 1, 2 · · ·),

(15)

which is the half-power width shown in Fig. 2.
Applying the saddle point method to (9), we ob-

tain the scattered wave in the far field, from which the
scattering cross section σ(θs|θi) is derived as

σ(θs|θi)

= lim
r→∞

2π
kr

kW1
· |ψs(r cos θs, r sin θs)|2

=
∞∑

m=−∞

(2πk)2

k2LkW1
|Am(−k cos θs − p−mkL)|2

Fig. 2 Power spectrum |Gn(s|W )|2 and spectrum width
∆S(n). Since g(x|W ) is a non-negative function of x, |Gn(s|W )|2
becomes maximum at s = 0.
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× sin2 θsu(−k cos θs − p−mkL|kL), (16)

where θs and θi are a scattering angle and the angle of
incidence, respectively (See Fig. 1). Here, u(s|kL) is a
rectangular function

u(s|kL) = u2(s|kL) =
{

1, |s| ≤ kL/2
0, |s| > kL/2

. (17)

We note that σ(θs|θi) is a non-dimensional quantity
because it is divided by the width parameter W1.

3. Integral Equation

In this section, we will obtain an integral equation for
the amplitude Am(s). By the Rayleigh hypothesis, we
assume the expansion (9) is valid even on the corru-
gated part of the surface. Substituting (8) and (9) into
the boundary condition (5), we obtain

1
kL

∞∑
m=−∞

e−imkLx

∫ π/L

−π/L

Am(s)e−is′x+iβm(p+s′)f(x)ds′

= −[e−iβ0(p)f(x) − eiβ0(p)f(x)]. (18)

We decompose the exponential factor in (18) as

eiβm(p+s′)f(x) = 1 + fe[x, σβm(p+ s′)], (19)

where the first term 1 in the right-hand side implies
the flat surface (z = f(x) ≡ 0). The second term is the
effect of variation from the flat surface,

fe[x, σβm(p+ s′)]
= exp [iσβm(p+ s′)g(x|W ) sin(kLx)]− 1 (20)

which vanishes when |x| > W/2 by (3). By the decom-
position, (18) becomes

1
kL

∞∑
m=−∞

e−imkLx

∫ π/L

−π/L

Am(s′)e−is′xds′

+
1
kL

∞∑
m=−∞

e−imkLx

∫ π/L

−π/L

Am(s′)e−is′xfe[x,

σβm(p+ s′)]ds′ = fe[x, σβ0(p)]− fe[x,−σβ0(p)].
(21)

Using (A· 4) and (A· 6), we next calculate the periodic
Fourier transform of (21) to obtain,

∞∑
m=−∞

e−imkLxAm(s) +
1
kL

∞∑
m=−∞

e−imkLx

×
∫ π/L

−π/L

Am(s′)Fe[x, s− s′, σβm(p+ s′)]ds′

= Fe[x, s, σβ0(p)]− Fe[x, s,−σβ0(p)]. (22)

It should be noted that (22) involves only periodic func-
tions of x with the period L. This is because any
function of x is transformed into a periodic function

of x by the periodic Fourier transformation. Here,
Fe[x, s, σβm(p)] is the periodic Fourier transform of
fe[x, σβm(p)],

fe[x, σβm(p)] ⇐⇒ Fe[x, s, σβm(p)], (23)

where the symbol ⇐⇒ denotes the relation between
the periodic Fourier transform and its inverse, as is de-
scribed in Appendix. Since Fe[x, s, σβm(p)] is a peri-
odic function of x by (A· 2), we write

Fe[x, s, σβn(p)] =
∞∑

m=−∞
Cm[s, σβn(p)]e−imkLx. (24)

Form (24) and (22), one easily finds an integral equation
for the amplitude Am(s) as

Am(s) +
1
kL

∞∑
l=−∞

∫ π/L

−π/L

Cm−l[s− s′, σβl(p+ s′)]

×Al(s′)ds′ = Cm[s, σβ0(p)]− Cm[s,−σβ0(p)]. (25)

It is still open question to find out an efficient method
for solving (25). In the next section, however, we
give an analytical solution by the small perturbation
method.

4. Perturbation

Assuming σk  1 and the corrugation height is suffi-
ciently small, we solve the integral Eq. (25) by the small
perturbation method.

We first expand Cm[s, σβl(p)] and Am(s) into
power series of the small parameter σ,

Cm[s, σβl(p)] = σC(1)m [s, βl(p)]

+σ2C(2)m [s, σβl(p)] + · · · , (26)

Am(s) = σA(1)m (s) + σ2A(2)m (s) + · · · , (27)

where A(1)m and A(2)m are the single and double scattering
amplitudes, respectively. To calculate the coefficient
C
(n)
m [s, βl(p)], we write

fe[x, σβl(p+ s′)]
= iσβl(p+ s′)g(x|W ) sin(kLx)

− 1
2
σ2β2l (p+ s′)g2(x|W ) sin2(kLx) + · · · . (28)

Using (A· 4), (A· 6) and (A· 8), we obtain

Fe(x, s, σβl(p+ s′)] =
iσ

L
βl(p+ s′) sin(kLx)

×
∞∑

m=−∞
e−imkLxG1(s+mkL|W )− σ2

2L
β2l (p+ s′)

× sin2(kLx)
∞∑

m=−∞
e−imkLxG2(s+mkL|W ) + · · · ,

(29)
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where Gn(s|W ) is the Fourier spectrum of gn(x|W ).
From (24) and (29), we find

C(1)m [s, βl(p)] =
βl(p)
2L

[G1(s+ (m+ 1)kL|W )

−G1(s+ (m− 1)kL|W )]. (30)

From (30), (27), (26) and (25), we obtain the single
scattering amplitude,

A(1)m (s) =
β0(p)
L

[G1(s+ (m+ 1)kL|W )

−G1(s+ (m− 1)kL|W )]. (31)

Using (31), (30), (26) and (25), we obtain the double
scattering amplitude,

A(2)m (s) = −β0(p)
4πL

∞∑
l=−∞

∫ kL/2

−kL/2

βl(p+ s′)[G1(s− s′

+(m− l + 1)kL|W )−G1(s− s′ + (m− l − 1)kL|W )]
×[G1(s′ + (l + 1)kL|W )−G1(s′ + (l − 1)kL|W )]ds′.

(32)

By use of (31) and (32), we will calculate the scat-
tering cross section later. However, we obtain approx-
imate expressions for A(1)m (s) and A(2)m (s) to see effects
of apodisation. When the widthW is much larger than
the wavelength λ, |Gn(s|W )| becomes large at s = 0, as
is shown in Fig. 2, but |Gn(s+mkL|W )| is small when
m �= 0. Using such a localized property of Gn(s|W ),
we obtain from (31) a rough approximation for A(1)m (s),

A(1)m (s) ≈ 0, m �= ±1,

A
(1)
1 (s) ≈ −β0(p)

L
G1(s|W ),

A
(1)
−1(s) ≈

β0(p)
L

G1(s|W ). (33)

Also we obtain from (32) and (12) a rough approxima-
tion for A(2)m (s),

A
(2)
0 (s) ≈ β0(p)

2L
[β1(p) + β−1(p)]G2(s|W ),

A
(2)
2 (s) ≈ −β0(p)

2L
β1(p)G2(s|W ),

A
(2)
−2(s) ≈ −β0(p)

2L
β−1(p)G2(s|W ),

A(2)m (s) ≈ 0, m �= 0,±2. (34)

where we have used the relation:

G2(s|W ) =
1
2π

∫ ∞

−∞
G1(s− s′|W )G1(s′|W )ds′.

(35)

From (33) and (34), this paper obtains important con-
clusions such that the single scattering amplitude and
the double scattering amplitude are proportional to
G1(s|W ) and G2(s|W ), respectively. Since |Gn(s|W )|2
becomes maximum at s = 0, the single scattering
beams appear at θs = θ±1 and the double scattering
ones at θs = θ0, θ±2, where θm is defined by (11).
The intensity patterns of beams are proportional to
|G1(s|W )|2 and |G2(s|W )|2 in single scattering and
double scattering cases, respectively. Also, the beam
intensities are proportional to |W1|2 = |G1(0|W )|2 and
|W2|2 = |G2(0|W )|2 in single scattering and double
scattering cases, respectively. We note that the beam
pattern generated by the single scattering may differ
from that by the double scattering. Since Gn(s|W ) is
a functional of g(x|W ), we may control the beam pat-
terns by designing the apodisation function g(x|W ).

From (15) and (10), the beam width ∆θ(n)m for the
mth diffraction order generated by the n-tuple scatter-
ing is given as

∆θ(n)m =
1

k sin θm
∆S(n), (36)

which well approximates the half-power beam angle for
W1 � λ.

5. Examples

Using the single and double scattering amplitudes, we
calculate the scattering cross section for several apodi-
sation functions. We consider the rectangular weight,
Hanning and Hamming windows as examples of apodi-
sation. For numerical calculations in what follows, we
set

θi =
π

3
, L = 2.5λ, W1 = 50λ, σ = 0.1λ. (37)

5.1 Apodisation Functions

Let us consider the apodisation function

g(x|W ) =
{
a1 + a2 cos

(
2πx
W

)
, |x| ≤W/2

0, |x| > W/2 , (38)

a1 + a2 = 1. (39)

From (38), (13) and (15), the width parameters and the
spectrum width ∆S(n) become

W1 = a1W, W2 =
(
a21 +

a22
2

)
W, (40)

∆S(1) =
2π
W

(
1 +

a22
2a21

)
, (41)

∆S(2) =
2π
W

a41 + 3a21a22 +
3
8a
4
2(

a21 +
a2
2
2

)2 . (42)
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Fig. 3 Scattering cross section σ(θs|θi) calculated only by sin-
gle scattering amplitude. Rectangular weight. L = 2.5λ, W1 =
W = 20L = 50λ, σ = 0.1λ and θi = π/3, λ being the wave-
length. The single scattering appears as the diffraction peaks at
θ−1 = 95.7◦ and θ1 = 154.2◦. In case of the rectangular weight,
sidelobes are high in level and spread widely .

5.2 Rectangular Weight

When

a1 = 1, a2 = 0, (43)

g(x|W ) becomes the rectangular function:

g(x|W ) = u(x|W ) (44)

Here, the width W must be W = nL to make f(x)
be continuous at x = ±W/2, where n is any positive
integer. By (12) and (44), one easily finds

G1(s|W ) = G2(s|W ) =W
sin

(
sW
2

)
(

sW
2

) , (45)

W1 =W2 = G1(0|W ) = G2(0|W ) =W, (46)

∆S(1) = ∆S(2) =
2π
W
. (47)

Only in case of the rectangular weight, W1 and W2 are
equal to the physical width W .

Figure 3 shows the scattering cross section com-
puted by only the single scattering amplitude (31). The
mainlobes appear at scattering angles θ1 = 154.2◦ and
θ−1 = 95.7◦, where θ−1 and θ1 are the −1st and 1st
order diffraction angles given by (11). Since the sin-
gle scattering amplitude A(1)m (s) is given by G1(s|W )
with the form sin(x)/x, sidelobes appear around a beam
peak in the angular distribution. The highest sidelobe
associated with a mainlobe is only −13 dB lower than
its mainlobe peak.

Figure 4 shows the scattering cross section using
the single scattering amplitude (31) and the double

Fig. 4 Scattering cross section σ(θs|θi) calculated by single
and double scattering amplitudes. Rectangular weight. In ad-
dition to the single scattering peaks in Fig. 3, double scattering
appears as the diffraction peaks at θ−2 = 72.5◦ and θ0 = 120.0◦.
Due to destructive interference between sidelobes generated by
single and double scatterings, sidelobes are much reduced for
θs < 60◦.

scattering amplitude (32). In addition to the single
scattering peaks, we see double scattering peaks at
θ−2 = 72.5◦ and θ0 = 120.00◦, which correspond to
the −2nd and 0 diffraction orders, respectively. How-
ever, the 2nd order diffraction becomes invisible in case
of (37). We note that the third order perturbation gives
an additional peak at θs = θ−3 = 45.57◦, which does
not appear in our approximation up to the second or-
der perturbation. Sidelobes associated with the single
and double scattering peaks may interfere each other.
We see in Fig. 4 a destructive interference takes place
for θs < 60◦. From (47), and (37), the beam width is
calculated as ∆θ(1)−1 = 1.2◦, ∆θ(1)1 = 2.6◦, ∆θ(2)−2 = 1.2◦

and ∆θ(2)0 = 1.3◦.
We have seen that the rectangular weight generates

a lot of sidelobes in the angular distribution of the scat-
tering. These sidelobe levels may be much reduced, if
one employs an appropriate weight instead of the rect-
angular weight. Such a weight is known as windows [9]
in the harmonic analysis, current distributions in the
antenna theory [10] and apodisation in optics [11].

5.3 Hanning Window

If we put

a1 = a2 = 0.5, (48)

(38) becomes the Hanning Window. The scattering
cross section using the single scattering amplitude (31)
and the double scattering amplitude (32) is illustrated
in Fig. 5, where we putW = 100λ to makeW1 = 50λ by
(40). We see the single scattering beams at θ1 = 154.2◦

and θ−1 = 95.7◦ and the double scattering peaks at
θ−2 = 72.5◦ and θ0 = 120.00◦.



1158
IEICE TRANS. ELECTRON., VOL.E83–C, NO.7 JULY 2000

Fig. 5 Scattering cross section σ(θs|θi) calculated by single
and double scattering amplitudes. Hanning window. W1 = 50λ,
W = 40L = 100λ. Peaks at θ−1 = 95.7◦ and θ1 = 154.2◦ are
the single scattering beams, of which sidelobes are much reduced
in level and fall off quickly. The double scattering appears at
θ−2 = 72.5◦ and θ0 = 120.00◦. Sidelobe distributions of a dou-
ble scattering beam are different from those of a single scatting
beam.

In case of the Hanning window, the sidelobes are
much reduced. The highest sidelobe associated with
a single scattering peak becomes −32 dB down from
the peak. In case of a double scattering peak, how-
ever, the highest sidelobe level becomes −46 dB lower
than its peak level. We pointed out above that the
single scattering beam and the double scattering beam
may have different patterns of angular distributions.
This fact is clearly seen in Fig. 5, where sidelobe pat-
terns are entirely different in the single scattering and
double scattering cases. The sidelobes associated with
the double scattering fall off much faster than those
with the single scattering. However, such difference
does not appear in case of the rectangular weight with
|G1(s|W )|2 = |G2(s|W )|2. In case of the Hanning win-
dow, the beam width becomes slightly narrower than
the rectangular case, because the corrugation width
W = 100λ is much wider than W = 50λ in the rectan-
gular case. From (48), (41), (42), and (37), the beam
width may be calculated as ∆θ(1)−1 = 0.9◦, ∆θ(1)1 = 2.0◦,
∆θ(2)−2 = 1.2◦ and ∆θ(2)0 = 1.3◦.

5.4 Hamming Window

On the other hand, (38) becomes the Hamming Win-
dow [6] when

a1 =
1.08
2
, a2 =

0.92
2
, (49)

which are slightly different in numerical values from
(48). However, the angular distribution of σ(θs|θi) be-
comes quite different as is illustrated in Fig. 6, where
we put W = 92.59λ to make W1 = 50λ by (40). Again,
the single scattering peaks appear at θ1 = 154.2◦

Fig. 6 Scattering cross section σ(θs|θi) calculated by single
and double scattering amplitudes. Hamming window. W1 = 50λ,
W = 92.59λ. Peaks at θ−1 = 95.7◦ and θ1 = 154.2◦ are the sin-
gle scattering beams, of which sidelobes are much reduced. The
double scattering appears at θ−2 = 72.5◦ and θ0 = 120.00◦.

and θ−1 = 95.7◦ and the double scattering peaks at
θ−2 = 72.5◦ and θ0 = 120.00◦. The highest sidelobe as-
sociated with a single scattering peak becomes −43 dB
lower than its peak. In case of a double scattering peak,
however, the highest sidelobe level is −49 dB down from
its peak value. Comparing Fig. 6 with Figs. 4 and 5
we see that sidelobe levels are relatively low in case of
the Hamming window but the sidelobes fall off slowly,
compared with the Hanning case. The beam width be-
comes ∆θ(1)−1 = 0.8◦, ∆θ(1)1 = 1.9◦, ∆θ(2)−2 = 1.2◦ and
∆θ(2)0 = 1.3◦.

6. Conclusions

We have studied the wave scattering by an apodised
sinusoidal surface. By use of the method of periodic
Fourier transform and the small perturbation method,
we obtain the single and double scattering amplitudes.
Then, it is found that the beam shape generated by the
single scattering is proportional to the Fourier spectrum
of the apodisation function but that generated by the
double scattering is proportional to the spectrum of the
squared value of apodisation. Thus, the beam shape by
the single scattering is different from that by the dou-
ble scatting. We have demonstrated that the sidelobes
are much reduced in level and in angular distribution
by use of an apodisation function such as the Hanning
window and Hamming window. This fact may be use-
ful for designing devices using finite periodic structures
such as diffraction gratings, leaky wave antenna and
waveguide couplers.

However, our discussions are limited to a case
where a TE plane wave is incident and the surface cor-
rugation is sufficiently small in height. However, we
note that our formulation can be immediately applied
to TM wave case and the wave scattering from a dielec-
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tric wave guide with an apodised periodic corrugation.
It is still open question to find out an efficient method
solving the integral Eq. (25) for a very rough case. It
seems interesting to determine Am(s) in the extended
Floquet form by the Yasuura mode-matching method
[12]. However, these problems are left for future study.
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Appendix: Periodic Fourier Transformation

This appendix summarizes properties of the periodic
Fourier transform. See reference [8] for details.

We define the periodic Fourier transform of a func-
tion f(x) by

F (x, s) = eisx
∞∑

m=−∞
eismLf(x+mL), (A· 1)

where the spectrum F (x, s) becomes a periodic function
of x with the period L,

F (x+mL, s) = F (x, s). (A· 2)

From (A· 1), we formally find the inverse transform as

f(x) =
1
kL

∫ π/L

−π/L

F (x, s)e−isxds, kL =
2π
L
. (A· 3)

For simplicity, we will denote the relation between the
periodic Fourier transform and its inverse by the sym-
bol: f(x) ⇐⇒ F (x, s).
modulation If f(x) ⇐⇒ F (x, s), then

f(x)eiqx ⇐⇒ F (x, s+ q). (A· 4)

product of weighting function and periodic func-
tion Let w(x) and fp(x) be a weighting function and
a periodic function with fp(x) = fp(x+L), respectively.
If we write

w(x) ⇐⇒ Fw(x, s), (A· 5)

then, a product fp(x)w(x) is transformed into a prod-
uct of the periodic function and the periodic Fourier
transform of the weighting function

fp(x)w(x) ⇐⇒ fp(x)Fw(x, s), (A· 6)

which means that a periodic factor is invariant under
the periodic Fourier transform. This is an important
property of the periodic Fourier transform.
relation with Fourier spectrum Let F̂ (s) be the
Fourier spectrum of f(x),

f(x) =
1
2π

∫ ∞

−∞
e−isxF̂ (s)ds. (A· 7)

The spectrum F (x, s) is related with F̂ (s) as

F (x, s) =
1
L

∞∑
m=−∞

e−imkLxF̂ (s+mkL). (A· 8)

Junichi Nakayama received the
B.E. degree from Kyoto Institute of Tech-
nology in 1968, M.E. and Dr. Eng. de-
grees from Kyoto University in 1971 and
1982, respectively. From 1971 to 1975 he
worked in the Radio Communication Di-
vision of Research Laboratories, Oki Elec-
tric Industry, Tokyo. In 1975, he joined
the staff of Faculty of Engineering and
Design, Kyoto Institute of Technology,
where he is currently Professor of Elec-

tronics and Information Science. From 1983 to 1984 he was a
Visiting Research Associate in Department of Electrical Engi-
neering, University of Toronto, Canada. His research interests
are electromagnetic wave theory, acoustical imaging and signal
processing. Dr. Nakayama is a member of IEEE and American
Geophysical Union.


