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Abstract

In regional science, many researches have been focused on the study of point facilities (for
example, hospital, school, and etc.) but network facilities (for examrle, road, railway) have not
been investigated in depth. Hence, we are concerned with network facilities in this paper,
especially the distribution of crossing numbers, the distribution of the length of segments,
crossing angles and the area of cells are analyzed by applying a random line mosaid map. A
random line mosaic map is shown to be useful for discribing intersecting road, river, railway,
electric wire and administrative boundary line in an urban area. An empilical study is pursued

. in Japanese cities,
1. Introduction

The purpose of this paper is to study characteristics of L-masaic and apply it to

the analysis of several urban areas.

1-1 Descriptive model for network maps by use of L-mosaic map.

Hitherto, some important advances have occured in the approach of point process
in distribution model of urban facilities. These results have any relation to descriptive
model developed in the area of the forest ecology, urban geography, regional science.
Nevertheless, the urban map of the distributed random line segments have not been
fully discussed in urban geography and so we will study here some urban maps by
the approach of random line process.

First, we shall deal with the random line mosaic map and describe its many
characteristics. Second, we shall compare it with some Japanese urban maps empiri-

cally.

1-2 Mosaic-Maps

Mosaic-map has been discussed in mathematical ecology (for instance, see (4)) and
two types of mosaic maps are often referred to. One is a random set mosaic (see fig.
1) and the other is random line masaic. (see fig. 2) These are both used to analyze

ecological maps. Besides these two maps, we propose a random covering mosaic map.
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Fig. 1 Random set mosaic Fig. 2 Random line mosaic Fig. 3 Random covering mosaic

(see fig. 3) For the sake of brevity, a random set mosaic is called S-mosaic, a random
line mosaic is called L-mosaic and a random covering mosaic is called C-mosaic
hereafter. In this paper, our main concern is with L-mosaic and its characteristics.
L-mosaic map is examined in such fields, as mathematical ecology, geometrical pro-

pability and crystal analysis. In this paper, we shall show its application to urban

geography.
1-3 Description model by use of a random mosaic map.

One may consider that ecological maps or crystal maps should not be applied to
an urban map because urban areas are artificially built. However, we find a justifica-
tion for its use as follows; urban area has been planned considering any local optimum
but to accumulate local optimum plans is not necessarily lead to groval optimum plan
of urban area and sometimes to random distribution of public facilities. This hypo-
thesis will be supported by the finding that several theoretical estimates by L-mosaic

map are fitted to the data collected in Japanese many cities.

1-4 Role of descriptive models for urban planning

The reason why we wish to use model recognition of the relation between des-
criptive model and urban planing must be declared, after that, explain that descriptive
model is useful tool for urban analysis.

a. To understand clearly; an urban pattern is so complex that a lot of indexes
may be necessary to describe it. Too much information is, however, not always useful
for planners. Rather, a simple index which represents a grobal urban pattern would
be practical to them.

b. To obtain a theoretical basis; the rule of urban distribution is sometime got
by reduction way and so it is experience rule but theoretical model is more oper-
ational and generally useful for planning.

c. To obtain relationship between indexes of urban morphology; by the
empirical method, morphological unit of urban planning will be estimated but to get
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relation betweed indexes of pattern is very difficult by that way. If we apply the
L-mosaic map, we will be able to get the relationship easily.

d. To get module of urban pattern; if we can get the descriptive model to
satisfy the above three conditions 1, 2, 3, we will be able to construct the module of
morphological unit and so very useful for our urban planning because we can clear up

the indexes and their relationships of comprehensive urban morphological pattern.

2. L-Mosaic Map

L-mosaic map is employed for analizing the distribution of random lines. We
shall show first definition of this map. Second its applications will be shown. A straight
line L in the plane is determined by its polar co-ordinates (p, ). (see fig. 4) That

is, the equation of line L is written as

xY)

o X

Fig. 4 Definition of random line.

zcosf+ysin@=p (1)
generally the measure of set G of straight lines is given by equation

m(G)= f(p, 0) dpdb. @)
In order to be a reasonable measure of random lines, the value of this integral should
be invariant under affine transformation. By affine transformation, line L. becomes

(a+z' cos @—y' sin @) cos 0+ (b+ ' sin @+ ' cos @) sin §=p (3)
Rearranging this, we obtain

x! cos (0 —a)+ ' sin (@ —a)=p—a cos §— b sin § (4)
Compared equ. (1) to (4), the relation

0'=0—a, p'=p—acos—bsin §
holds.

If m(G) is invariant, we have

[ e, ondp'as'=[1p, oydpdo ®)

On the other hand, since Jacobian transformation is given by
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o(p', ﬂl)_ll asin §—b cos 6|_1
a(p,0) |0 1 =2

We obtain
[ £, orap'de'= [ fiz', 0" dpdo . ©)
From equation (5) and (6)

| fie. Oapdo=[fp', 6"dpds
since this equality should hold for any set G(m), the equation

A, 0)=£(p', 0" 7

holds. This implies f(p, §) =constant. We fix this constant to be unity for convenience.

Hence we finally obtain
m(G)=[dpdo . 8)

It is noted that many useful properties of random lines are obtained by use of integral
geometry® %, Concerning its application, the distribution of mixed many species of
trees®, and mineral crystal are analyzed!®>. For instance, see (4), (6), (13) among

others.

3. Morphological Index of L-Mosaic

3-1 Four aspects of morphological indexes.

When we wish to graspe characteristics of a network pattern by a morphological
index, what indexes should we choose? For example, if we observe Horton’s rule
of river network, Fullman’s formula of geological crystals, Kansky’s definition of
transportation network analysis, we find the following four indexes: Number of node,
length of link, area of cell, angle of crossing lines. These four indexes would also be
useful for analysis of urban maps. On the other hand, as example of another index,

we know ‘random mingling * expressing the relation of adjacentment, see (4).

3-2 Probability of random line intersecting each other in a domain

a. Measure of straight lines which intersect a curve
Let ¢ be a fixed curve composed of a finite number of arcs with tangent at every
point. When ¢ has a finite length L, the measure of all straight lines which intersect

¢ can be obtained

j ndpdf=2L 9)
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where 7n is the number of crossing that straight line intersect ¢. (see fig. 5)

/

Nee A

Fig. 5 Number of intersect.

b. Probability that a straight line intersects a line segment
(see fig. 8) The crossing number n=1 for all straight line in equation (9)
p=21/L (10)
p1 is the probability that straight line intersects a line segment.

¢. The measure of straight lines which intersect a convex curve.
If ¢ is a convex, we have intersect number n=2 in equation (9) for all straight

lines and the straight line which is at the position of contact ¢ has zero measure.
[dpdo=L (11)

From the result of (a) and (¢) in the above, one would obtain the next result;
d. If ¢, and ¢; are both convex curve and ¢; is contained in ¢;, the probability
that the straight line which intersect ¢, acrosses also c¢; is given by (see
fig. 6)

Fig. 6 The probability that random line intersects C is given /L.

pi=ifL.. (12)
P2 ; the probability that the straight line intersects ¢; intersects also ¢,
[ ; the length of ¢,
L ; the length of ¢

e. The probability that two straight lines intersect each other in convex
figure ¢ (see fig. 7)
Following the result of (7)
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Fig. 7 The probbility that random line intersects each other is given 2ms/L2

ps=2ns/L (13)
ps; the probability that we want
s; areas of ¢

L ; perimeter length of ¢

f. Example of application

When a road will be planned in a area whose perimeter is L, the probability that
the road intersects the site of the facility (school or park etc.) whose perimeter is /
will be given I/L under the condition that the road assigment is not determined but
the necessity of the construction is decided. We must pay attention to the fact that
the probability is given with no relation to the position of the facility and the road
assignment. The probability is given with relation to their perimeter and has no

relation to their area measurement.

3-3 Distribution of crossing number

In order to understand clearly the nature of the density of crossing nodes of a road
or the number of bridges in a unit length along the river, we apply the results of the
following.

a. Distribution in a unit length

In a domain ¢, of the perimeter L, which contains ¢; of the length /, the number
of crossings that the straight line intersect ¢; is a poisson distribution. When 7 straight
lines intersect ¢;, the probability that % of n also intersect ¢; is given as follows ; (fig. 8)

Fig. 8 The probability that random line intersects a segment is given 2//L.
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nCiP3(1— Py)n—k
p1; from the (12). (pr=1/L)
and so, n— o

mk

e

b. Distribution in a domain
In a convex domain of the perimeter L and area s, the probability that any two
straight lines intersect each other in the domain is given by

p=2ns/L* .  (see (13))

Crossing number N that are realized in the convex by 7 straight lines is obtained from
the following probability.

p(N=0)=(1-7)
PIN=1) = yerp!(l—p)*"

PIN=F) = ycsph(1— p)¥—*
(N=ncy=n(n—1)/2)

Note that crossing number N is binominal distribution.

When #n— co, N — oo, this equation becomes

N~

m_ —m
R (15)

From the results above, the road-crossing number is Poisson distribution in a length
or in an area, and that the bridge number along the river or railroad-crossing along
the railway is Poisson distribution.

3-4 Distribution of length

Our next purpose is now to understand that the nature of intervals of crossing of

b

2

Fig. 9 Interval of random point to the random line,



120 Masao FuruvAMA

road network or the accessibility to road or railway networks. Having obtained these,

we shall study L-mosaic map.

a. Crossing interval
From equation (14), the crossing number is distributed according to Poissom distri-

bution. Thus the interval of crossing x is given by

(16)

x ~ pe r¥
where p; the density of crossing number
b. Perimeter of the cell
When the crossing interval is an exponential distribution, the perimeter or k-angles

convex is the sum of % exponential distributions. Therefore

Fig. 10 Perimeter of the cell
Zi~pe P (=1, k)
Ve=Ty+Tg+ oo + Zr

k-1
i~ e

so that, yy~1I"(k) distribution.
The perimeter of a cell will be regarded as the perimeter of an urban district.

c. Accessibility
We shall now consider that the nearest distance to random straight line from any

point. According to the definition of random line, measure of the set of random lines
holds constant for affin transformation. The density function of random lines is

given by
f(p, 0) ~ dpda

where p is the distance from origin to the line. Hence accessibility » from any point

to the nearest line is also an exponential distribution like the interval case.

(18)

re~pe e

where p; dencity of line
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d. Diameter of a cell
In L-mosaic map, when one straight line is distributed randomly, the number of

the crossing that the straight line intersect the mosaic map along the line is distributed
by Poisson. Thus the interval is also exponential distribution. Moreover the diameter

of the cell at any angle is also an exponential distribution.

3-5 The angle of crossing line

The angle ¢ of crossing lines is given by

0 X
Fig. 11 Crossing angle of random line is ¢.

f@)=5sin(g)  0<¢<I) (19)

(flp)=I1/2—¢| is not correct)
(See referece, Santalo, Kurita.)

3-6 An area of cell

Since the distribution of a cell area has not been derived, we shall obtain the mean
value and the second moment. The result is given by Goudsmit (1945)%, but we
derive the same result by an alternative method. We know Crofton’s second theorem
gives a clue to this problem?®.

a. Mean value

Mean value of an area of a cell is derived by the number of cells. A mean
number of the crossing with n random lines in a convex is given from (15) by
nn—1) 2z

2 L3
where S; area, L ; perimeter, N; crossing number,

NaP_—,.

P ; probability of intersect

The mean area of the cell is given by

S S ek JEE _ F .
NP nn—=1)2zS I nn-1) 1T =2 n-—1

2 L3
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where L/n is transformed by the density of the line into 2/p.
Therefore, we obtain,

E(s)=—}j~-—b‘£— (20)
E(s) ; mean value of cell area

b. Second moment

Fig. 12 Chord length and point distance 7.

Crofton’s second theorem (reference (2), (7)) proves that

[f r*dpidpz=@¢~ﬁz(w3—yj‘l“3dpd0

The left term implies that » is the distance between random two points p;, p; in
convex figure, and p, and p; can move at random all over the domain, dp;dp,. The
right hand term implies that / is the length of any diameter and integral the diameter

can move all over the domain, dpdd.
Now let £=2,

[[apdp=—g[rdpas , [[dpdpi=s .
When the number of the cell on L-mosaic map is N, the mean value of S is given
by
E(®) _ Zi(ys "
g =z[tapdo| 5 apao
1/l s
= .2.?13-'/ e E L;
=L(s*)/E(L)
where s ; the area of cell L ; perimeter of cell
E(s®)=E(l*)x E(L)/3

From 3-4-d and mean number angles of a cell is 4,

E@) = [ 1f0dl= [[Foevidi=3\/p°
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E(L)=4x E(l)=4p
E(s?) =8/p*
c. Distance between two cells
The subject of the distance was declared on 3-4, but but by using Crofton’s second
theorem and Richard’s idea (See reference (8)), we know another result.
First, let us define the k-adjacent. On any two cells in a mosaic map, when all

line segments from one cell to the other intersect % lines, the two cells are designated.

We find the mean distance » between the k-adjacent cells.

B([[riapidps) =2 EE a2

where p; is in the cell and p, is in k-adjacent cell and the integral over the two point

move in each cell. For n=0, £=0,

E({[apidps) =E(s)=8/o*

T 1 (n+k+2)!
) °pn+2' Zl

E(ry) =

When distance registance function of traffic generation is e™’, summantion of traffic

between £ adjacent cells is given by
. 8(k+1)pH2
E(_” dPIdPZ) E +1;k+2

3-7 The relation of the morphological index

In the previous section, we introduced some morphological index of L-mosaic map.
These are, however individually studied. In order to understand the network pro-
portion or modular coordination, we shall hence combine the indexes and give a simple
relation between them. For example, in crystals, Fullman gives the relation of the
random division network as follow ;

S _ 4 2N
VA L
where N ; nodes number, S ; surface area
V' ; volume, L ; edge length in a volume

From the right terms, we obtain

L=yNIIS (25)

This formula means that the length is given by nodes and area. This can also be
obtained from equation (20). L is length in area. E(s) is mean area of a cell. E(N)

is mean number of nodes in area s. E(/) is mean length of a edge.
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S 4 L2 4
E(S) =E(N) =ﬁ' ﬂ(n"1)=ﬁ-(E(l))2

L=2E(N)-E(l)=2E(N)7+S/AE(N)=yII-E(N)+E(s)

This implies that

(District area) (Length of road) S N

(Length of road)oc(Crossz'ng number)Y L~ 1

This formula is the same form as the estimation formula of the length of minimum

trees or minimum circuit in operations research.

L=c¢yns
C ; constant and for minimum trees, ¢ is to 0.68, for minimum circuit,
¢ is to 0. 8.

4, Survey of Japanese Cities and Urban Module

4-1 Servey

Japanese famous 12 cities are chosen and from these urban maps—scale 1/25,000
—river, railway and road are abstracted (fig. 13-24). Number of nodes, length and

Fig. 13 Sapporo
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Fig. 15 Yokohama
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Fig. 20 Kobe

AN

Fig. 21 Hiroshima
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Fig. 23 Kumamoto
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Fig. 24 Kagoshima

area are measured on the mean value and variance and distribution of each city. To
measure the length, we use a planemeter, and read its value 1/10 of 10 mm unit.
To measure the area, we put on 1 mm mesh and read the number of node in one

unit.
4-2 Result of survey

a. Length

The mean value of link length is generally 670 meters on 12 cities and between
them. The mean value of length is from 400 meters to 900 meters and its variance
is a little different. On L-mosaic map, the distribution of link length is exponent the
distribution. For scale effects on the difference and large scale road network is ex-
ponent but small road network is I distribution tendency.

b. Area

One urban district has about 30 ha on the average. The variance of area, we
use E(S?)/(E(S))? and estimate the variance. On L-mosaic Map, E(s%)/(E(s))?=7=%/2=4.9.
Most cities have 8.5~5.

Concerning the area distribution type, 12 cities have the the same tendencies.

But on L-mosaic map, the area distribution has not been theoretically.

¢. Node number
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From L-mosaic model, we expect that this distribution will be poission type but

the result shows Neyman-A distribution.
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