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Abstract

This study deals with a nonlinear feedback system that transforms an independent stochas-
tic sequence into a stationary Markov chain with finite states. As a nonlinear system, a stochas-
tic difference equation is proposed with a nonlinear system function that is defined by the tran-
sition probability. Several types of autoregressive (AR) representations for such stochastic sys-
tem are then introduced. First, a non-linear AR equation is derived by expanding the system
function into a power series. The Markov chain is then represented by a K-dimensional vector
which enjoys a linear discrete-valued AR equation, where K is the number of states. Third, the
Markov chain is represented by a unit vector sequence which satisfies another linear discrete-
valued AR equation. Further, the Markov chain is regarded as a (K — 1)-dimensional vector
sequence which satisfies a linear AR equation with a constant coefficient matrix and white noise
excitation. Relationships between these representations are discussed and formulas for spectrum
matrix, correlation matrix and joint probability are obtained.

Key Words: Stochastic process; stationary Markov chain; auto-regressive representations;

discrete-valued equation ; spectrum matrizx.

1. Introduction

Stationary Markov chains with finite states are widely used as mathematical models of
random phenomena with discrete events in physics, engineering and system science. They are
important as signal models in the theory of digital communication and signal processing.
Mathematically, Markov chains are discussed with the transition probability, in terms of
which statistics such as average, moments, correlation and spectra have been studied
extensively.})-3)

However, we are interested in such a Markov chain as a discrete approximation of natu-
ral signals on the continuous time axis, particularly for a non-Gaussian signal. This is because
continuous-valued natural signals are commonly approximated by a discrete-valued sequence
obtained by the periodic sampling and quantization. Even though such a discrete approxima-
tion is employed in practical applications, natural signals are often regarded as continuous-
valued stationary sequences, which are represented by dynamic system equations such as
linear auto-regressive (AR) equations and auto-regressive moving average (ARMA) models
with white noise excitations in the theory of digital signal processing. A Markov process on a
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continuous time axis also has the dynamic system representation such as the stochastic dif-
ferential equation and Langevin equation. On the other hand, little work has been reported on
dynamic system representations for finite Markov chains. Therefore, there is a wide gap in
mathematical representations of continuous-valued stationary sequences and discrete-valued
finite Markov chains.

To bridge this gap, we present a physical system that transforms an independent stochas-
tic sequence into a finite Markov chain in this paper. We introduce a stochastic difference
equation that is a nonlinear feedback system with a system function related to the transition
probability. Expanding the system function into a power series, we derive a discrete-valued
auto-regressive (AR) equation that is nonlinear with respect to the Markov sequence, where
the discrete-valued AR equation is an AR equation with discrete-valued random coefficients
and discrete-valued white noise. We demonstrate that such a nonlinear AR equation is re-
duced to a linear equation if K-dimensional vector representation is introduced, where K is
the number of states. Further, we represent the Markov chain by a unit vector sequence
which énjoys another linear discrete-valued AR equation. Removing the redundancy in the K-
dimensional vector representation, we next represent the Markov chain as a (K — 1)-dimen-
sional vector sequence which satisfies a linear AR equation with constant coefficient matrix
and white noise excitation. Relationships between these representations and formulas for sta-
tionary probability, correlation matrix, and spectrum matrix are discussed.

Finally, we give a simple example where the non-linear discrete-valued equation becomes
a linear equation, and then prove that a discrete-valued stationary sequence with any probabil-
ity distribution and an exponential correlation function can be generated by such a linear
discrete-valued equation.

2. Finite Markov Chain and Nonlinear Discrete-Valued AR Equation

~ Let us consider a stationary Markov chain y,, n=0, *1, *2, - with K numerical
states :
<, <3< < pg. (1)
We define the transition probability matrix t=/[1,] as
ta=Prob {yp=vilth1r=01}, t,>0, (k, I=1, 2, 3, -, K) (2)
Sh=1, =1, 2, -, K, (3)

which is the probability of y,=vi when y,—-1=v;. We assume that there exists a stationary
probability q=1[¢,] :

a=t-q, q=[q, ¢, -, ¢*1, (4)

K
quO’ Eqkzly (5)

where superscript ¢ denotes the transpose. The stationary probability q is an eigen vector of t
=[t,] with an eigen value of 1. We further assume that the multiplicity of the eigen value 1
is simple and any other eigen values of t are less than unity in modulus in the complex plane.
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Under these conditions, the Markov chain becomes aperiodic and has a stationary
probability.9)

Let us consider a nonlinear system that generates the Markov chain g, from an indepen-
dent stochastic sequence &, distributed uniformly over the interval [0, 1]. In terms of the

transition probability t, we first introduce a random transition matrix T(z,) = [T, ()],

k-1 k
0, xSZk,=ltk/,,, -r>2k'=1tk’,l

T )= (ky l=17 29 Yy K)’ (6)
N P e I
K

T,i,(x)=Tk,z(l‘), 2 Ti(x)=1, (7)
k=1

which is a binary function of x taking only 1 or 0. Since x, is uniformly distributed over the
interval [0, 1], the average of the random transition matrix T (x,) becomes the transition
probability :

(T(2.)> =t, (8)
where the angle brackets denote the ensemble average. Then, we write the nonlinear system
by a stochastic difference equation,5)6)

vn=F(z,, yu-1), n=0, 1, £2, -, (9)
where F(Z,, ys-1) is the deterministic system function of x, and y,-;. The system function

cannot be determined in a unique sense, but it may be defined as,

( Uy, O<l‘£t1,1
K Uy, t1,1<l‘£tu+tz,/
F(zx, v)=2v* Tr(x)=1 + - (10
k=1
\ Uk, 1"_t1(,1<1,'£1

Physically, (9) describe a nonlinear feedback system, where the feedback is carried out by
switching the system function F(x, ¥.,-1) with a one-step past output y,_;.

Let us obtain an AR representation of the nonlinear system. Since y,-; takes only K
different values in (1), any function of y,-; may be written by a linear combination of K base
functions :7) 1, y,_,, y,f_l, e yf__ll. In other words, any function of #,_; is written by an inner

product of a coefficient vector and a random vector Y,_; :

Yn-—lz[]-, Yn—-1, y:—ly Tt yf__ll]ty (11)
which takes only the K-dimensional vector values :
vi=[L, o, o, - 01 (=1, 2, 3, -, K). 12

Taking this into consideration, we may expand F(x, y.-1) by the base function to obtain a
non-linear AR equation for the Markov chain y,,

Yn=F(Zn, Yn-1)
=D1,o(l'n)+D1,1($n) y yn—1+D1.2(1‘n) : yn2_1+"‘+D1,K—1(~Tn) . yf_‘ll
=[Dyo(z), Dii(z), =, Dig-1(z)] * Yoo, 13
where D1,(z,) is a white noise sequence and D, ,(x,) with p=>1 is a random coefficient. We
call (19 a discrete-valued AR equation, because the solution #,, the coefficients, and the white
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noise are all random and discrete-valued. When K=2 and y, is a binary sequence, however, (13
becomes a linear discrete-valued AR equation, which was first introduced in a previous
paper.®) This means that a stationary binary sequence of a simple Markov chain is always
generated by a linear discrete-valued AR equation. In what follows, we implicitly assume K=
3.

Putting y,-1=v; with [=1, 2, 3, -, K in (3, we obtain the relationship between F(xz,
v;) and the coefficient function D () as,

[F(z, v), F(x, v, =+, F(z, vpl=[Dyo(x), Dii(x), -, Dig1(2)] "V, (14

where V is the Vandermonde matrix

1 1 1
1 Vs cee Uk
2 2 2
Z)l vZ LR Z)K
V=[vi, vs -, Vgl= (19)
K-1 K-l K-1
| Uy Uy U

Since the inverse matrix V! always exists under the condition (1), we may determine D ,(x)

when F(x, v;) is given. Since V + V™'=I (unit matrix), (19 yields a useful relationship,

[of, v5, =, vl * V'=[8os, Orss v Ok-ral, (k=0, 1, 2, -, K—1). (16

3. Product Representation of Vector Random Sequence

We have demonstrated that a finite Markov chain can be represented by an AR equation.
Since (13 is nonlinear, it is difficult to obtain an analytical solution y,. In this section, however,
we consider that an event is a K-dimensional vector in (12, which corresponds to a numerical
state in (1). This makes it possible to obtain another AR equation which is linear with respect
to the vector-valued Markov chain.

As described above, any function of y,—; can be represented by an inner product with the
base vector (11). Applying this again to the vector Y, :

1 1
yn F(-rm yﬂ—l)
2
n FZ ny n—
v=| 4| Pl e | 17

Ly '] LFE (2 yaoy) |

and a power of F(Zs, ys-1), we obtain a linear AR equation for the K-dimensional vector
sequence Yy :

Yn=D(-rn) * Yo, (18)

where the coefficient matrix function D(z) is given by
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1 0 0
D1,o(l') D1,1(l‘) Dl,K—1(-1')
D D vv Dogi(x)
D(x)= 2,0.(.,1') 2,1.(.1?) ZK.I 19
| DK—l,o(I) DK-l,l(l‘) DK—-1,K—1(-Z‘) |
Putting Y,-; =v, with /=1, 2, 3, -, K in (18 and (7), we obtain the relationship between
D,, »(z) and the system function F(z, v)) as, ,
F(z)=D(z) - V=V - T(x), 20
where the second equality is obtained by (10, and F(x) is a KX K matrix function,
[ 1 1 1 ]
F(z, v) F(z, v)) - F(z, g
2 2 2
F(z)= FXz, vy F (:v., v2) F*(zx, vg) . o1

| F¥" Yz, v) F¥Nz, vo) - F¥'(z, vp) |
It is important to note that, even when y, is a stationary Markov chain, its power, such as
y?, is stationary but is not always a Markov chain. Since D (x,) is an independent stochastic
sequence, however, (18 means that the vector Y, again becomes a Markov sequence.
Let us calculate the average values of the coefficient D(x,) and F(x,) to obtain statistical
properties of the Markov chain. Since x, is an independent stationary random sequence with

uniform distribution over the interval [0, 1], we obtain from (6), (8) and (10),

F™ (i, 00>= 207 tys, (m=0, 1, 2, ). 22
By @2 and @0 we then obtain the average of F(x,) as
(F(z)>=V -t=d-V, @3
where d is the average value of D(x,),
d={D(z)>=V -t -V @4
By (4, we obtain the characteristic equation for the eigen value A,
lA-TI—-t]|=]A-1I—-d|=0, 29

where || A | denotes the determinant of A. This equation means that t and d have the same
eigen values. Since t has an eigen value of 1 with multiplicity one and any other eigen values
are less than unity in modulus in the complex plane, so does the matrix d. Note that random
matrix D(z,) and T(x,) also have eigen values of 1. Since <Y,> =V - q by definition of the
average, we obtain from (18, ‘

Y>=d- <Y, q=V1-<Y, 26
which means that the average vector <Y, is an eigen vector of d with eigen value 1; a for-
mula will be given below for calculating the average. This also implies that the stationary
probability q can be uniquely determined from the statistical moment Y,>. This property
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holds because the Markov chain has finite states. However, it is well known that probability
distributions cannot be determined uniquely from statistical moments in general.
Next, we consider the KX K correlation matrix R(m),
R(m) = (Y, CEN@ Y, — Y. = [0 ’ ] &
0 C(m)

where @ indicates the Kronecker product and C(m) is the (K—1) X (K—1) correlation mat-
rix defined in section 6 below. The first column and row of R (m) are zero, because the first
element of Y, is 1. Solving (18 by iteration, we obtain the product representation of the vector
sequence,

Y,=D(xz,) * D(2,-1)-D(xp) * Yo, (28)
where D(x,) is an independent sequence. This equation directly represents the causality such
that vector Y, depends on the present and past inputs x,-; with k=0. From (8 and (6), we
easily obtain the KX K correlation matrix R(m),

R(m)= - RO mZO, @9
R(0) - [d]" m<0
This implies that the correlation matrix of a Markov chain can be written by an exponential
function. Using this relationship, we will calculate the spectrum matrix in the next section.
The correlation matrix enjoys the symmetry,
R(—m)=R'(m), R(0)=R'(0), (30
and R(0) is given explicitly as,

(¢, O O - 0]
0 g 0 - 0
R(O):V . . . e eee e -VI—V . q®qt . Vt’ (31)

L0 0 0 - gxl

where the diagonal matrix in the right hand side is the joint probability distribution Py, as is
discussed in Section 5.

4. Spectrum Matrix

We obtained a formula for the correlation matrix R(m). As a Fourier transformation of
the correlation matrix, we derive the spectrum matrix in this section.
We define KX K spectrum matrix S(A4) as the Fourier transformation of R(m),

—_ 0 0 — S . p2mimi

where s(1) is the (K—1) X (K—1) spectrum matrix defined later. Inserting 29 into this, the
spectrum matrix S(A) can be calculated as follows :

S(1)=—RO)+ Zd" - " - R(0)+R(0) - 3 @] - greim 59
= —R(0)+[I—e" - d]-* - R(0)+R(0) + [I—e¢~2 - gt 59
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=—R(Q)+V : [I—¢¥?-t]7*- V- R(0)
+R(0) - [V [I—e 2 - t/]71 - VY, (39)
where we have used @4 to drive 85. Our formula 35 is convenient for evaluating the spectrum
matrix when the transition matrix t is given. Since the first column and row of R(m) are 0,
the two series in (39 converge for real 1. However, it should be noted that [I—e?*** - t] ! di-
verges at 1=0, because t has an eigen value equal to 1. Therefore, 89 is valid except at 1=0.
Now, let us obtain a formula for an element of the matrix S(1). To calculate an element,

we introduce K-dimensional unit vectors u, by the relationship,

U= [6/:,1, 5/{,2’ Y 6k,K]ty (k=17 21 Tty K)~ (36)
Using (36), we get Sy,»(1) as
Sm,n(/l)zuin * S(l) L P (37)

= — Ryn(0) 0, - V + [I— e + §]-1 - V-1 R(0) - u,
+u, - RO) - [V ]! I—e #2171 Ve, 39

Using the formula for a regular matrix A and column vectors X and y3)9),

iO x! 0 Y"
A x A’
‘.A‘lo = — y = — , (39)
x y N A

we obtain a closed form expression of an element of the spectrum matrix,
" 0 - ”

V!-R) -u, I—exp@mil) - t
| I—exp2mid) « t||

- o
V1RO *u, I—exp(—2mid) - t

Sm,n(/2 ) = _Rm,n (O) -

_ ; 49
[ I—exp(—27id) - t]| ’ “
where

- m—1 -, m-1 m-1 1

v, ) (Ul —<y,, >) ‘G

o) (W =Ly - o
Vieu,=| - |, V1-R(0) *u,= . . @)

o] L (o™ =<y ™) - g

When m=n=2, our equation 40 agrees with a known formula3) for the power spectrum
of y». Therefore, (0 is regarded as a generalization of the known result. Our formulas @0 and
(39 are convenient for evaluating the spectrum matrix when the transition matrix t is given. As
d and t commonly have eigen values equal to 1, the numerator and denominator in 40 vanish
at A=0. However, lim;_oSu,» (1) gives the correct value for S, ,(0). This means that special
caution is needed in numerical calculations. In what follows, we derive another formula for
the spectrum matrix that is free from such a drawback and is suitable for numerical calcula-

tion.
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5. Representation by Unit Random Vectors

We first consider the Markov chain that takes the numerical states in (1). Then, making a
mapping from the numerical states in (1) to vector states in (12, we obtain the equation (18 for
the vector Y,. Let us consider another transformation from the vector states (12 to unit vectors
in the K-dimensional space.

Since V™! + V=I, we obtain the relationship between vector states vy in (12 and unit vec-
tors Uy,

V1. vi=u. 42
By this transformation, Y, is transformed into a K-dimensional unit vector Qa,

an[Qn(]-), Qn(z), Yy Qn(K)]tZV—l°Yny

K
2Q.(k)=1, 43
k=1

where an element of Q, is a binary sequence by @2,

0, yn#v
Quky=1 " 7™ 0
17 yn = Uy

which is one only when y, =v;. By the transformation 43, the AR equation (18 becomes a
linear AR equation for unit vector sequence,
Q.=T(xs) * Qu-1. (45)
Taking the ensemble average of this equation and using 3, we obtain another representation
of the stationary probability,
q=<{Q»=V1-KYp. 46)
In terms of Q, we may define the joint probability distribution P,=[P,(k, [)], where
P,(k, 1)=Prob{y,=vi, Ymn=01}, as
P,={Q.®Q,_»

=V1.Y,®Y,_» - [V]!
=V'-R(n) - [V]'+q Q¢ )
Inserting 29 and (1) into this, we obtain the well known formula :
[¢¢ 0 0 - 0]
0 ¢ 0 - 0

P”:tn . . . e o L (48)

L0 0 0O - ggl
where the diagonal matrix is Py, which appeared in (8] above. The relation ¢47) means that the
joint probability distribution P, can be constructed from the correlation matrix R(#) and the
stationary probability q. This may be useful for designing a Markov signal with known prob-
ability distribution and correlation function.
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6. Linear AR Equation with Constant Coefficient Matrix

As can be seen in (17), the vector Y, is a redundant expression of the Markov chain, be-
cause the first element of Y, is 1. Removing such redundancy, we represent the Markov chain
by the (K—1)-dimension vector y,,

Vo=t vl o w1, )
which is related with Y,=[1, y,]’. Then, we rewrite (18 as a linear AR equation for the vec-
tor sequence

Y»=E(2,) +G(x) * yau-y, 60
which is a vector extension of the discrete-valued AR equation introduced previously5)8).
Here, E(x) is a (K—1) vector function and G(z) is a (K—1) X (K—1) matrix futction,

[ Dl,o(l') ] [ Dl,l(l') Dl,z(l') D1,K—1(l‘) ]
Dz,o(-r) Dz,1($) Dz,z(l') D2,K—1(x)
E(x)= . , G(x)= . . . . 61)
| Dg_1,0(x) i i Dx_11(x) Dg-12(x) ** Dg_1x-1(x) i
From 61) and 1) one easily finds the relationship,
1 0
D(x)—[E(x) Gx) | 2

Since E (x,) is an independent stochastic sequence, however, 60 means that the vector y,
again becomes a Markov sequence.

Let us calculate the average vector y,>, the (K—1) X (K—1) correlation matrix C (m)
and the (K—1) X (K—1) spectrum matrix s(4) from (0.

Writing the averages

- 10
e=<E(z,)>, g=<{G(z.)7, d=[ ] 63
€ g
we obtain from 23,
10
t=[t, 1=V { ] -V, (64
e g
which gives a characteristic equation for eigen value A,
lA-1I-t|=(-D |4 -I—g]=0. -~ (59)

We have assumed that t has an eigen value of 1 with simple multiplicity, and that any other
eigen values are less than unity in modulus. Thus, any eigen value of g becomes less than un-
ity in modulus. This will be used below.
Solving (60 by iteration, we obtain a series representation

Y2=E(z,) +G(x2) * E(zp-1) +G(z2) * G(2n-1) * E(p_2) +-7, (6)
which again shows that y, depends on the present input x, and the past inputs Z,_, with m>
0. Since z, is an independent sequence, term by term averaging gives the average vector
yw,

{yp>=etg-etg’-etg’ et 67
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=[I-g]'-e 68)
As any eigen value of g is less than unity in modulus, the right-hand side of 67 always con-
verges to a constant vector (8. Equation 68 is useful for calculating the average vector numer-
ically. ‘
Let us define the (K—1) X (K —1) correlation matrix C (m). Subtracting the average

value, we put

Z,=y.—<yw, 69

to define the (K—1) X (K—1) correlation matrix C(m) by,
Cn)=(Z®Z,_p, (60
C(n)=C'(—n), C(0)=C*0), (61)

which is related to R(#) by 279 and C(0) is obtained from @31) above.
So far, we have described a discrete-valued AR equations with random coefficients.
However, we can obtain a linear AR equation for Z,, where the cofficient matrix is constant.

Rewriting (0, we obtain such a linear AR equation,

2,=g*Zy1TW,, 62
where W, is a (K—1) vector random sequence,
W,=[G(z) —g] * yor+E(z) —e. 63
It can be shown that the vector W, is white noise with zero average,
W,» =0, {W,, ®W.>=0,,,0, (64)
where 0 is the covariance matrix of W,
6=0¢'=C(0)—g-C() - g" (69
Even though W, explicitly depends on y,-; in 63, one can easily find from (63),
W, ®y, »=W,QZ, ,>=0, m=1. 66)

These relationships mean that (62 is a conventional AR equation with discrete-valued white
noise excitation W,. In other words, (62 is a linear prediction formula for the Markov chain.
We note that this is the first time such a formula has been introduced.
Multiplying Z._,, with a positive # to the both sides of 62 and taking the ensemble aver-
age, we obtain an equation for C(m),
C(m)=g-Clm—1), m=1, 67
which along with (61 yields
Clm) = g”-C), m=1 . "
C) - [g']l™ m<0 :
Next, let us calculate the spectrum matrix s(A) as a Fourier transformation of the correlation
matrix. Using (69, we obtain

s()=  Cm) - em 69
= 31 g™ mC(0) + 3 C(0) + [g! ] - g—2mima 70
m=0 m=1

= I_ezm‘zg 171+ C(0) +e~27*C(0) - g’ - [ I_e—27ri1gt ]-1 )
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=[I_eZ7ti1g]—l . 6. . [I_e—Zﬂilgt]—l’ (72)
where two series in (70 converge uniformly in A because any eigen values of g are less than
unity in modulus. Therefore, (79 is a useful formula for calculating the spectrum matrix

numerically.

7. Function of Markov Chains

In some applications, a random sequence given by a function of a finite Markov chain is
a subject of interest. We include here brief remarks on such a case. We consider a random

sequence S, generated by a Markov chain y,,

.anh(yn) =hot+h' - Y, 73
where %y and h are scalar and vector constants, respectively,
h=[h, hs -, hx]". (74)

Even when y, is a K-valued Markov chain, 3, is not always a Markov chain and takes K
different values at most. After simple calculation, we obtain the average {B,>, correlation Cs

(n) and spectrum Sg(2) as,

{Bn>=ho+h! "+ {yn, (75)
Co(n)=L(Br—<Br) * (Bo—<B»)>=h!-C(n) * h, (76)
Sp(A)= _i Co(m) + M=t - §(1) - h. "

This relationship implies that the correlation matrix s(A) is completely in the sense that the
power spectrum of a stationary sequence generated by any function of the Markov chain ¢, is

represented by s(A4).

8. Simple Application to an Inverse Problem

In the theory of finite Markov chains, the transition probability is always given apriori.
However, an inverse probleml10 that determines the transition probability from a given sta-
tionry probability, correlation function and other statistical properties has not been solved. For
a special case where the correlation function is exponential, however, we gave a simple
solution,11) where the transition probability is determined by a given stationary probability
and correlation length. The solution, which was found intuitively without theoretical back-
ground, makes it possible to design a discrete-valued sequence with an arbitrary probability
distribution.

In this section, however, we clarify that such a simple solution is related to a linear
discrete-valued equation, which is a special case of the non-linear discrete-valued AR equation
13.

If we put Dy,(x)=0, (I=2, 3, -, K—1) in (13, we obtain a linear discrete-valued AR
equation,

Yn=D1,0(x2) + D11 (22) * Y1, (78
where we assume that the coefficient functions satisfy the conditions,
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Dyo(z) + Dy (xn) =0, Dlz,l(-rn) =Dy, (xn). (79
Under these conditions, one easily finds
¥, =D/ (zs) +Dia(z) -y, (m=1, 2, -+, K—1). 80
This is a linear discrete-valued equation for y,’, and implies that y, again becomes a Markov
chain for m=2, 3, ‘-, K—1. Equation @0 also means that G(x) in (2 and its average g in
(63 become diagonal. '
If we put
g=<{Di(z)>, 0<g<1, ()
it can be shown from (4 and (8 that the transition probability t=[1,;] becomes
oy =qt (0ri—qx) * g ®2)

which was found intuitively in a previous paper!D. As can be easily seen, 82 enjoys (3) and
has an eigen vector q=[q1, ¢», ***, gx]’ with an eigen value of 1. From (6), 20 and @2, the

coefficient functions can be defined as
0, 0<zxLl—yg

= 33

D=1, g<as, &9
k-1 k

Dio(x)=v;, Q—g)2Zq<x<0—g)2q, (k=1, 2, -+, K). 84
=1 =1

where D, o(x) is a binary function with values of only 1 or 0, and D;,(x) is a multi-step func-
tion of x. Here, it is important to say that ¢;'s are arbitrary positive numbers enjoying (5).

Since x, is uniformly distributed in the interval [0, 1], we obtain from 80 and (84),
<y;”>=—<££nM= 3 v, *qr, (m=1, 2, -, K—1). 85)
1—g k=1
This directly indicates that y» has the probability distribution given by ¢;’s. From (78 and (80),
we obtain the correlation functions,

Cra(m) =gy = <y>) * W= <y
=y =Ly - Ly) - g™, (k, I=1, 2, -, K-1), 89
which is an exponential correlation function with a correlation length —1/In(g). Therefore,
the transition probability 82 and the AR equation (78 are uniquely determined by a stationary
probability and a correlation length.

It is well known that conventional AR and ARMA models define a continuous-valued
random sequence with various power spectra. However, they do not work well for non-Gaus-
sian random sequences. This is essentially due to the central limit theorem in the probability
theory. However, the linear discrete-valued equation (/8 may define discrete-valued sequence
with any probability distributions, because positive ¢,’s are arbitrary numbers under the condi-
tion (5). In fact, stationary random sequences with several probability distributions such as
uniform distribution, Laplace distribution with spikes and Weibull distribution were generated
in a computer.1D
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9. Conclusions

A finite Markov chain with a stationary probability is commonly discussed in terms of
the transition probability on an abstract sample space. In this paper, however, we demons-
trated that the Markov chain can be expressed as a K-dimensional vector sequence or unit
vector sequence in the K-dimensional space. We studied AR representations for such a vector
sequence. Using such AR representations, we have derived an explicit formula for the spec-
trum matrix, which has a drawback due to the redundancy of the K-dimensional vector ex-
pression. Removing the redundancy, we introduced another expression where the Markov
chain was regarded as a (K—1)-dimensional vector sequence, which enjoys an AR equation
with constant coefficient matrix and white noise excitation. Then, we obtained another formu-
la for the average vector, the correlation matrix and the spectrum matrix.

The AR representations and formulas may be applied to the theory of nonlinear predic-
tion and spectrum analysis of Markov signals. These formulas are also useful for solving in-
verse problems which determine a transition probability from a given probability distribution,
known correlation function, and other statistical properties. However, such an inverse prob-

lem, which was solved in a special linear case, will be left for future study.
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