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Chapter 1

Introduction

In the modern control theory, ordinary differential equations are usually employed to de-
scribe system dynamics. While they are well suited to many practical control problems,
dymanical systems instinsically have some delays due to transmissions of signals, materials
or informations. Most simply, if one uses feedback control techniques, the feedback struc-
tures naturally involve propagation delays. Differential equations that include time-delay
factors are called delay differential equations or time-delay systems in terms of the con-
trol engineering. In practical situations, in addition to such feedback controllers, sensers,
actuators or digital computers might be equipped in the system construction and these com-
ponents also inhenrently have some time-delays owing to completions of their responses.
Thus, the time-delays are essential features for system dynamics and therefore time-delay
systems have been greatly concerned by many researchers and developed stability or robust
stability analysis methods and control techniques up to now.

Unlike delay-free systems, behavior of time-delay systems depends on not only the
present states but also the past ones. If one considers linear time-delay systems, their
paticular characteristics are exposed by applying the Laplace transform. More specifically,
they form certain transcendental functions in the frequency domain and have infinitely-
many characteristic roots. Such infinitely-many roots are not perfectly computable in the
practical viewpoint, so that representative ones have to be picked out for accounting their
behavioral characteristics. Therefore, the state transitions are not completely transparent
and thus effective methods are desired to expose the stability features. The above men-
tioned facts exhibit the distinctive difficulty in dealing with time-delay systems and give a
motivation for the investigation.

Most of the existent stability analysis methods rely on the well-knowm Lyapunov’s
second methods, whose analogies in the context of time-delay systems are called Lyapunov-
Krasovskii methods or Lyapunov-Razumikhin methods, in the time-domain. Alternatively
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2 CHAPTER 1. INTRODUCTION

in the frequency-domain, observation of the characteristic roots in the imaginary axis taking
advantage of their parametric continuities. The former has a broad applicability regardless
of whether linear or nonlinear and time-invariant or time-varying, whereas it suffered from
conservativeness due to arbitrariness of the Lyapunov functions or functionals because the
general forms can be hardly constructed. On the other hand, the latter often provides some
complicated test algorithms or needs sweeping of the imaginary axis as the price for yielding
exact results. As the same frequency-domain approach, the Lambert W function, which is a
key tool of this thesis, has been first applied to linear time-delay system analysis earnestly,
to the author’s knowledge, in [4], although the suggestion has been made in [15] or more
previously. The virtue of this function is to be able to explicitly express the characteristic
roots of a class of linear time-delay systems, and make therefore exact and direct observation
of them possible. Furthermore, each characteristic root can be easily computed with the
help of Mathematica, Maple or Matlab Symbolic Math Toolbox, since they have a function
for computing the Lambert W function. Due to these merits, the drawbacks of the above
two approach can be overcome. However, this approach is suffered from a limitation of
available system class. This point will be detailed later.

Turning to control problems, the Lyapunov methods are still available with the afore-
mentioned advantages and disadvantages. As a pole placement method, finite spectrum
assignment has been developed, which is categorized as the same schemes with Smith pre-
dictor or state predictor. Using these control methods, stabilization problems of linear
time-delay systems are degenerated into delay-free ones, for which conventional pole place-
ment techniques can be fully utilized. The Lambert W function offers a new pole placement
technique such as reallocation of all the poles with preserving the infiniteness, i.e. without
such a degeneralization to the delay-free case. A sort of the finite spectrum assignment for
spectrally controllable systems requires time-integrations in the feedback configurations.
However, in practical situations, integrations have to be numerically computed by quadra-
ture methods, and it is reported in [96] that such quadratures cause destabilization of the
closed-loop systems. This thesis proposes a new control scheme combinig the Lambert W
function pole placement with non-predictive decoupling control of [87], which does not give
rise to the above mentioned problem. This control scheme, furthermore, enables to compute
stability delay margin of the closed-loop systems thanks to the uncanceled delay terms to
which the softwares implementing the computation of the Lambert W function are applied.

In what follows, the organization of this thesis is in order.

In Chapter 2, firstly a short introduction of linear time-delay systems is given with
their formulations and some applications of them are shown thereafter. In the subsequent
sections, existent stability analysis methods and control techniques are overviewed and the
standpoint of this thesis is also addressed. Then, a formal introduction of the Lambert
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W function is given, stressing the important property of this function for the stability
analysis. Finally, how to adopt the Lambert W function as a tool for stability analysis of
linear time-delay systems is shown and fundamental stability and robust stability criteria
are presented.

In Chapter 3, robust stability criteria are derived based on the fundamental criteria.
The obtained criteria result in extreme point results and boundary implications in the pres-
ence of prescribed uncertainties. The extreme point result implies that stability all over
uncertainty regions can be determined on only some boundary points in the regions. The
boundary implication is a generalization of the extreme point result in such a way that
stability all over prescribed uncertainty regions is determined on their boundaries. They
both facilitate robust stability check, whereas it should be remarked that available systems
for these stability criteria are rather restricted due to the definition of the Lambert W
function.

In Chapter 4, a stabilization technique for linear time-delay systems is developed by
means of the Lambert W function. For this purpose, decoupling control is applied as
a controller design technique. The reason of using the decoupling control is that it can
modify given linear time-delay systems into the suitable forms to the Lambert W function
approach. In this sense, it can overcome the inherent rectriction of this function with respect
to available system class. Based on the decoupling control, a new pole placement technique
using this function is proposed for the aim of stabilization of the decoupled systems. In
this context, the proposed stabilization method may well be said to be a combined method
of the Lambert W function approach with the decoupling control.

In Chapter 5, as a possible application of the present approach, additional dynamics
induced by some model transformations of linear time-delay systems is investigated by the
Lambert W function. Such model transformations are introduced in order to derive delay-
dependent stability conditions in the use of the Lyapunov methods. Additional dynamics
arises when the model transformations are applied to the target time-delay systems and this
causes conservativeness of the obtained stability conditions. Nevertheless, if the additional
dynamics is stable, such stability regression does not occur. This fact motivates to study
the stability of the additional dynamics. Although the additional dynamics stability has
been well researched by some authors [24–26,47,48,50], this thesis gives a new insight using
the Lambert W function into the study. As shown there, this function is again well suited
to the additional dynamics analysis and able to analyze the stability characteristics of the
additional dynamics of several types of model transformations with several advantages.
Especially the first-order and the second-order transformations are studied in this thesis.

The thesis is concluded in Chapter 6 with remarks and some comments concerning
future developments.





Chapter 2

Background and Preliminaries

2.1 Linear Time-Delay Systems

In the control engineering field, a linear system

ẋ(t) = Ax(t) (2.1)

is usually employed as a system model for estimating and improving system performance,
where A is an appropriate dimensional matrix, x(t) system states and t time of the system.
However, most of artificial systems naturally include some delays due to transmitting sig-
nals or materials, estimating control signals, sensor responses and actuator motions. If one
considers feedback controlled systems, time-delays exist in any components of the system
configurations as shown in Figure 2.1. If such time-delays are sufficiently small, crucial
troubles may not arise. However, if not, it is possible that time-delays not only deterio-
rate system performance but also even destroy the stability of system behavior [6, 24, 28].
This shows the importance of investigating time-delay systems. It is common to pick out
dominant delays and discard uninfluential ones when modeling and controlling time-delay
systems.

Taking time-delays into account, a linear time-delay system or linear retarded time-delay
system is defined by

ẋ(t) = Ax(t) + Bx(t − τ), (2.2)

where A and B are coefficient matrices, x(t) system states and τ > 0 stands for a time-
delay. If τ = 0, the system (2.2) corresponds to the delay-free system (2.1) by replacing A

of (2.1) by A + B of (2.2).

If an initial state (or value) x(0) is given to the system (2.1), there exists a unique
solution with respect to the state variables. On the other hand, for the existence of a
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6 CHAPTER 2. BACKGROUND AND PRELIMINARIES

Figure 2.1: Actual feedback controlled systems.

unique solution in the system (2.2), an initial function, not a value, must be given in the
interval from τ past to the initial time 0:

x(t) = φ(t), t ∈ [−τ, 0]. (2.3)

In order to solve the differential equation (2.2), let us bring it to the frequency domain
by the Laplace transform. Letting L[·] be the Laplace transform, the system (2.2) can be
described in the frequency domain as

sX(s) − φ(0) = AX(s) + B

(
e−τsX(s) +

∫ τ

0
e−stφ(t − τ)dt

)
, (2.4)

where X(s) = L[x(t)]. Further modify (2.4) to

(sI − A − Be−τs)X(s) = φ(0) + B

∫ τ

0
e−stφ(t − τ)dt

⇔ X(s) = (sI − A − Be−τs)−1

(
φ(0) + B

∫ τ

0
e−stφ(t − τ)dt

)
. (2.5)

Accordingly, the solutions can be obtained by operating the inverse Laplace transform to
X(s) in (2.5). For this, the characteristic equation

det[ sI − A − Be−τs ] = 0 (2.6)

must be solved to find the poles for applying the residue theorem. It is well known that the
equation (2.6) has infinitely many solutions and cannot be solved algebraically. Therefore,
one has to rely on numerical methods, but the solutions are never exhibited in the complete
forms in the practical sense.
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Even though the solutions of (2.2) are not in hand, the stability can be examined with
the characteristic equation (2.6). A definition of stability or pricisely asymptotic stability
of the system (2.2) is as follows:

Definition 2.1 The linear time-delay system (2.2) is stable (or precisely asymptotically
stable) if

lim
t→∞

x(t) = 0. (2.7)

Relating to the characteristic equation, stability is redefined as in the following defini-
tion.

Definition 2.2 The linear time-delay system (2.2) is stable (or precisely asymptotically
stable) if all the solutions of (2.6) lie in the complex open left half-plane C−. Furthermore,
the real part of the rightmost solution is called stability exponent, that represents the effect
of the most dominant characteristic root on the system behavior.

Some generalizations can be made by adding more delayed terms to (2.2) as

ẋ(t) =
N∑

i=0

Aix(t − iτ), (2.8)

where Ai’s are coefficient matrices. This system is called commensurate linear time-delay
system. In this thesis, the stability of the system (2.8) is not analyzed because it is cannot
be dealt with by the Lambert W function. However, stabilization of it is possible if some
appropriate structural reconstruction can be made by feedback controllers. This subject
is deferred to Chapter 4. If the states x of (2.8) are delayed by at least two base time-
delays which are independent each other, such systems are called incommensurate time-
delay systems which make the analysis more complicated.

By defining a delay operator, a convenient representation of the system (2.8) can be
obtained. The delay operator ∆ is defined as

∆x(t) = x(t − τ). (2.9)

Using the operator ∆, the system (2.8) is expressed as

ẋ(t) =
N∑

i=0

Ai∆ix(t). (2.10)

Letting

A(∆) =
N∑

i=0

Ai∆i, (2.11)
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(2.10) is rewritten as an analogy to the delay-free system (2.1):

ẋ(t) = A(∆)x(t). (2.12)

The Laplace transform of ∆ is quite comprehensible. Operating L to (2.9) results in

L[∆x(t) ] = e−τsX(s). (2.13)

Now, setting σ = e−τs, (2.13) is written as

L[∆x(t) ] = σX(s). (2.14)

Roughly speaking, σ is the Laplace transform of ∆. By virtue of (2.14), the characteristic
equations of (2.2) and (2.8) can be expressed in terms of σ as

det[ sI − A − Bσ ] = 0 (2.15)

and

det [ sI − A(σ) ] = 0 (2.16)

respectively.

2.2 Applications of Time-Delay Systems

Time-delay systems have great potential to practical applications as imagined from their
natural features.

As the most basic applications of time-delay systems, process control in chemical indus-
tries should be mentioned [72, 106]. It usually has delays due to material transportations,
thus time-delay systems are more suitable as system models than delay-free systems.

In the last two decades, the vast number of papers have been published on the subject
of networked control systems [36, 59, 99, 101]. If feedback controllers were apart from the
objective systems in the distance and connected with networked lines, managing the com-
munication delays in the data transmissions became an issue and therefore it was the case
of applying time-delay systems. In the networked systems, as the standard configurations,
there are two independent delays being possibly time-varying or probabilistic within the
feedback loop. Moreover, packet loss and bandwidth constrains should be also taken into
account in the networked control systems.

Sometimes in the networked control systems, feedback control tasks might be left to a
human operator. The human might require the haptic informations from the target systems
so that he can operate as he wants. This control scheme is called bilateral teleoperation
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expected to utilize for missions in the space, deep-sea, dangerous zones and medical practices
[33,73,92].

From the other aspect, controlling date transmissions may be targeted: this scheme is
called congestion control. As a congestion control strategy, the TCP (Transmission Control
Protocol) is usually used in the Internet. However, the TCP sometimes causes long and
variable delays due to retransmissions of lost packets and therefore it is not suitable in
real-time data transfer such as video streaming. For the purpose of compensating this
insufficiency of the TCP, some researchers have made attempts to add feedback control
structures to network configurations, resulting in feedback controlled time-delay systems
[5, 64,97].

Recent developments of the applications to the network controlled systems are well
showcased in [14].

Furthermore, there are many engineering applications as enumerated in the following:
internal combustion engines [24,43], active suspensions [38], neural networks [62,72], chatter
control in metal cutting processes [24, 103], semiconductor lasers [60] and so on [28, 106].
Besides engineering, time-delay systems are frequently exploited for describing biological
phenomena such as growth of a single species, spread of infections and circulatory systems
of humans [28,72,82,106].

As mentioned previously, time-delays may destabilize the systems. However, there are
interesting utilizations of time-delay systems that may sound paradoxical; that is to use the
time-delays for the purpose of stabilization.

Delayed feedback control has made an impact on the controlling chaos issue [81, 100].
This control method consisted of difference feedback between present states and one period
past states on periodic orbits. While the delayed feedback control did not need precise
knowledge of periodic orbits such that claimed in the OGY method [78], it suffered from
the so-called odd number limitation. In [32, 54, 55], the delayed feedback control has been
adapted to stabilization problems of uncertain steady states involved, for example, in in-
verted cart-pendulum systems on a varying slope or passive walking robots descending a
gentle slope.

Another application was a sort of active vibration absorbers called delayed resonator
[24, 76]. It consists of delayed feedback controller inserted into oscillatory systems for
absorbing vibrations more efficiently.

From the theoretical viewpoint, it has been proven that a second-order oscillatory system
ÿ(t) + ω2

0y(t) = u(t), which could be stabilized with derivative feedback u(t) = kẏ(t) but
never stabilized with proportional feedback u(t) = ky(t), could be also stabilized with
delayed feedback u(t) = ky(t− τ) where τ > 0 is a time-delay [1,72]. This result have been
extended to higher-order differential equations in [52,74].
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2.3 Existent Stability Analysis Methods

In this section, existent stability analysis methods for time-delay systems are overviewed.

If one considers to apply the classical techniques for delay-free systems such as the
Nyquist plot and the Routh-Hurwitz criterion for delay systems, the former would be avail-
able, indeed it is often used for stability performance check of the systems, but the latter
is not practical [72]. Generally, to apply the delay-free techniques involves difficulties since
time-delay systems are infinite dimensional. This fact motivates to develop simple and
easily computable stability criteria for time-delay systems.

The Lyapunov-Krasovskii method is one of usual methods for stability analysis of time-
delay systems [19,29,31,40,56,57,80]. The advantage of this method quite lies in its genaral
applicability. It is almost free from a system class restriction; it can be applied to linear,
nonlinear, time-invariant and time-varying systems, and provide delay-independent and/or
delay-dependent1 stability criteria according to system specifications. A recent tendency of
this direction is to modify the existence conditions of the Lyapunov-Krasovskii function-
als to some tractable linear matrix inequality (LMI) conditions. This tendency seems to
be strengthened by the development of efficient algorithms for solving LMIs [7], which is
actually implemented by the software such as Matlab or Scilab. However, this approach
involves intrinsic conservativeness due to restrictions on forms of the Lyapunov-Krasovskii
functionals for producing LMI conditions. This fact leads to a trade-off between compu-
tational accuracy and simplicity. In [49, 51], Kharitonov et al. have tackled constructing
problems of the complete Lyapunov-Krasovskii functional [28], which provides necessary
and sufficient stability conditions, whereas they faced difficulties in resolving the essen-
tial complexity of the complete construction. In the last decade, numerous papers have
been published in order to reduce the conservativeness of the Lyapunov-LMI method. As a
result, key points of the reducing techniques could be narrowed down to three [40, Introduc-
tion]. As an alternative to the Lyapunov-Krasovskii functional, the Lyapunov-Razumikhin
function, not functoinal, is sometimes used to derive LMI stability conditions, nevertheless
the Krasovskii type approach has the majority in the literature since the Razumikhin type
generally yields conservative results than the Krasovskii one.

It should be noted that in [56, 57] model transformation techniques are adapted for
obtaining delay-dependent and/or delay-independent stability conditions. However, the
model transformation gives rise to consevativeness of the resultant conditions, because

1The term delay-independent means that stability or other conditions do not include time-delay amounts,

i.e. conditions satisfied for any time-delays systems. Otherwise, they are called delay-dependent conditions.

If one has no time-delay information, then the delay-independent types work efficiently. If not, one had

better use delay-dependent conditions rather than the delay-independent ones because the latter generally

leads to conservative results.
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additional dynamics is brought into the transformed systems. If the additional dynamics
is stable, then the stability of the transformed systems is equivalent to the original one.
Although the stability of the additional dynamics is fully investigated in [24–26,47,48,50],
a new insight into this analysis technique is given in Chapter 5 by using the Lambert W
function. This function yields an explicit expression of the eigenvalues of the additional
dynamics.

Other than the Lyapunov methods, various types of stability analysis methods have
been also investigated.

In [68, 69], easily checkable criteria have been derived by a comparison of the matrix
measure and the matrix norm. The Tsypkin’s criterion [72] was also a basic result for
delay-independent conditions of rational transfer functions with an input delay.

In [41, 42], Kamen has established fundamental delay-independent stability criteria for
commensurate time-delay systems. He used the two-variable quasi-polynomials generated
by replacing the exponential factors in the characteristic functions by an individual vari-
able. Chen et al. have improved the Kamen’s results by returning to the original quasi-
polynomials from the two-variable one, and constructed computationally effective methods,
so-called frequency-sweeping tests [10–13]. By carrying out the tests, one could check delay-
independent and/or delay-dependent stability of either commensurate or incommensurate
systems and even robust stability.

Olgac’s group has evolved computational strategies for estimating complete stability
delay margin based on the Rekasius’ lemma [18,77,84]. In paticular, in [18] they introduced
a notion of building block such that it could separate infinitely extended time-delay spaces
where the characteristic functions were vanished on the imaginary axis into a finite kernel
space and its copies by utilizing the periodicity of exponential terms with a pure imaginary
number, and organized a graphical test using this notion in which one could observe a stable
map spanned by incommensurate time-delay axes.

Now let us focus on robust stability. Robust stability of time-delay systems usually has
two meanings: one is time-delay robustness and the other is that of system coefficients.
Conventionally, if one says “time-delay systems are robustly stable”, then it usually imply
robustness of system coefficients and time-delay robsutness is regarded as delay-dependent
stability. In what follows, the review proceeds in this manner.

For robust stability analysis, the Lyapunov-Krasovskii and Lyapunov-Razumikhin meth-
ods are still available. Indeed, robust stability LMI conditions can be obtained by a similar
way to the case of the nominal stability [19,29,31,40].

In eigenvalue analysis viewpoints, the Edge theorem can be proven in terms of lin-
ear time-delay systems [20]. The Edge theorem is such that if quasi-polynomial families
are configured polytopically, the families are stable if and only if their every edge quasi-
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polynomials are stable. The subsequent paper [44] has concerned with convex directions
of segment quasi-polynominals under which a segment quasi-polynomial is stable if and
only if its vertex quasi-polynomials are both stable. The number of test quasi-polynomials
justifying the Edge theorem can be reduced by means of the convex directions. If given
polytopes of quasi-polynomials can be specified as interval or diamond forms, some further
reductions or so-called “implications” of stability can be made [44,45,53].

The real or complex stability radii measure allowable perturbations for preserving the
stability of linear time-delay systems [35, 71]. Although the complex stability radii are
unpractical and conservative, their computations can be implemented by more tractable
tasks than the real ones in general.

For further results, refer to the textbook [24], the survey papers [27, 46, 72, 85] and
references therein.

Finally, let us introduce a new tool in this research field named Lambert W function (or
product log function in terms of the computer software Mathematica) which has received
some researchers’ attention among not only time-delay system researches but also the other
engineering fields and mathematical problems since it was given the name in [15]. To the
author’s knowledge, [4] was the first paper that exploited the function for stability analysis
of time-delay systems in earnest. This function is a key tool throughout this thesis too.
More details of this function are addressed in Section 2.5.

2.4 Existent Stabilization Methods

Let us review existent stabilization methods for time-delay systems in this section.
Even for time-delay systems, classical PID control is still workable in a large number of

practical situations, especially industrial plants [2, 106].
Smith predictor is also a classical but fundamental tool for controlling time-delay systems

[2, 106]. This is a unique tool for time-delay systems, because this estimates predicted
outputs against time-delays. Resultant systems after the predictions behave as if they have
no time-delay; as a result one can take advantage of design methods for delay-free systems.
However, the Smith predictor based control restricts objective systems to only stable ones.
Modified Smith predictor removes this restriction, i.e. it can be applied to even unstable
systems with certain (troublesome) approximations [106].

State predictor is an analogy to the modified Smith predictor for state-space models. It
estimates not future outputs but future states of the target systems [22, 75]. As expected,
resultant closed-loop systems match to delay-free systems. Theoretically speaking, state
predictor does not claim that stable systems are preassigned. More precisely, if the feed-
back law is completely computed, the closed-loop systems can be stabilized whether the
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target systems are stable or not; however that is unrealistic in the implementation stage as
suggested below.

Finite spectrum assignment is such pole placement design method that infinitely de-
stributed pole maps of linear time-delay systems are rearranged into finite ones; resultant
systems are like delay-free. If given systems are reachable, then finite spectrum assginment
can be accomplished by a procedure of [70] (for Bezout approach [16]). Finite spectrum
assignment for spectrally controllable systems, which include reachable systems, has been
thoroughly studied too [63, 98] (for Bezout approach [93]). If systems are only stabilizable
that is a relaxed condition of reachability, then a similar design can be made in the price
of leaving infinitely many stable uncontrolled poles [21].

In the implementation stages of the modified Smith predictor, state predictor and fi-
nite spectrum assignment for spectrally controllable systems, integration operations are
demanded in the feedback loops so that desired input signals can be adequately provided.
In practical situations, however, integrals must be calculated by some numerical method.
If quadrature methods such as rectangular, trapezoidal or Simpson methods have been
employed for the calculations, it has been comfirmed in [96] that such the numerical ap-
proximations might break down the stability of the closed-loop systems. This phenomenon
has been well analyzed in [17, 65, 66] and the textbook [106] and they have also developed
some techniques to overcome this shortcoming. Note that the procedures for reachable or
stabilizable time-delay systems (the Morse’s procedure [70] etc.) do not cause the above
mentioned problems since the designed controllers would not include any integral terms.

H∞ control scheme has been established for time-delay systems as well as delay-free sys-
tems. The H∞ control problems could be formulated into solvablity conditions of algebraic
Reccati equations constrained via design parameters [58,106].

The Lyapunov-Krasovskii (and the Lyapunov-Razumikhin) methods are available again
for controller synthesis [67, 105] and even H∞ problems [19, 61]. As an analogy to the
stability analysis, LMI conditions for stabilization and/or robust stabilization can be derived
by a common way.

To the best of the author’s knowledge, control methods using the Lambert W function
have not been well studied. For this reason, in Chapter 4, this thesis presents a Lambert
W function method that combines a new pole placement technique using this function with
a decoupling control scheme of [87].

2.5 Lambert W Function Approach

The Lambert W function has been familier in the field of engineering, physics and math-
ematics since it was given the name in [15] or the caluculation module was built in the
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computer algebra software Maple in some years before. For instance, it has been shown
that the Lambert W function could describe a solution to a problem of computing the range
of projectile in viscous fluids [79]. Besides, it can be well suited to linear time-delay system
analysis as desired in this thesis; for this direction, see the literature [4,37,39,102,103]. For
the other applications, see [8, 9, 15,23,30,86,95] and references therein.

The merit of using the Lambert W function quite lies on that it can algebraically solve
the characteristic equations of scalar linear time-delay systems [4]. This makes one possible
to explicitly express the characteristic roots of the systems and easily compute them with
the help of Mathematica, Maple or Matlab which has a function to calculate the Lambert W
function. Moreover, it helps to study the qualitative features of them and always supplies
an exact analysis being free of conservativeness. The aforementioned stability analysis
methods almost rely on certain simplifications causing conservativeness (for example the
Lyapunov-Krasovskii method), some complicated algorithms for providing exact solutions
or observation of the characteristic roots on the imaginary axis neglecting the distance from
the imaginary axis. It is clear that the Lambert W function approach has an advantage
over those methods. However, it imposes a restriction to a class of available systems and
this point is the main drawback of the Lambert W function approach.

In this thesis, to overcome the restriction on the available system class, decoupling
control is utilized for the purpose of making changes of system structures. In this strategy,
stablization is simultaneously achieved with decoupling by making use of the Lambert
W function. This method can be compared with the predictive control such as the finite
spectrum assignment. While the finite spectrum assignment based on spectrally controllable
systems requires integral terms in the feedback laws, the Lambert W function approach
combined with the decoupling control is free of them, as a result, it does not give rise
to the implementation problems. Moreover, by leaving the delay effect in the closed-loop
configurations, it enables to be easy to compute delay margin for stability of the closed-loop
systems. It should be emphasized that the proposed pole assignment can be done as easier
as the finite spectrum assignment thanks to a certain crucial property of the Lambert W
function.

The next subsection explains about the Lambert W function and its crucial property
for stability analysis of linear time-delay systems. In the subsequent subsection, underlying
theories on the stability analysis using this function are addressed.

2.5.1 Lambert W Function

This subsection is proceeded based on the introduction paper of the Lambert W function
[15].
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The Lambert W function (or product log function) is defined as the solutions w ∈ C of
the equation

wew = z (2.17)

for z ∈ C and denoted by the symbol W , i.e.

w = W (z). (2.18)

As indicated by the name “product log function”, it is an extension of the logarithm.
The numerical computation procedure attaining a sufficiently precise evaluation has been
established in Mathematica, Maple and Matlab Symbolic Math Toolbox.

The equation (2.17) has infinitely many solutions, namely the Lambert W function is
an infinitely many-valued function, in other words it has an infinite number of branches.
Each branch is distinguished by a subscript k as Wk, k = 0,±1,±2, · · · ,±∞, especially
W0 is called principal branch. For the sake of simplicity, W∞ and W−∞ are regarded as
“a function” respectively. In fact, limk→±∞ Wk(z) tends to complex infinity and the above
simplification does not lead to inconsistency. The range of each branch is shown in Figure
2.2.

Remark 2.1 The range of the Lambert W function is symmetric with respect to the real
axis.

The boundaries depicted in Figure 2.2 are images of branch cuts in the z-plane. Let us
define the branch cut of each branch in the following. W0 has a branch cut linking to W1

and W−1 which is defined as

BC0 :=
{

a + j0
∣∣∣∣ −∞ < a ≤ −1

e

}
. (2.19)

As seen from Figure 2.2, W1 adjoins to W0 and W−1 in the lower side and to W2 in the
upper side and W1 has three branch cuts BC0 as a link to W0,

BC1 :=
{

a + j0
∣∣∣∣ − 1

e
< a ≤ 0

}
(2.20)

to W−1 and
BC := BC0 ∪ BC1 (2.21)

to W2. W−1 has the same but upside-down branch cuts to W1. The other branches Wk,
k = ±2,±3, · · · ,±∞ have the branch cut BC in both of the lower and upper sides. In
Figure 2.3, 2.4 and 2.5, the correspondences between the z-plane and the w-plane in terms
of W0, W1 and W−1 are shown respectively. Restricting the argument in the z-plane to
(−π, π], the image of the argument +π of the branch cut represented by the bold line in
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Figure 2.2: Ranges of Wk, k = 0,±1,±2, · · · .

the z-plane corresponds to the upper boundary of W0 in the w-plane and the argument
−π represented by the dashed line corresponds to the lower boundary in these figures. The
markings A-F indicate the corresponding points between the two planes. The ranges of the
quadrants in the z-plane are also written in the w-plane.

Remark 2.2 When a curve, say L, which has no intersection to the branch cuts with the
z-plane is mapped by W , the images Wk(L), k = 0,±1, · · · ,±∞ describe continuous curves
and Wk, k = 0,±1, · · · ,±∞ are bijective.

The following lemma plays a key role throughout the thesis.

Lemma 2.3 For z /∈ BC0,

max
k=0,±1,··· ,±∞

Re[ Wk(z) ] = Re[ W0(z) ] (2.22)

holds. For z ∈ BC0,

max
k=0,±1,··· ,±∞

Re[ Wk(z) ] = Re[ W0(z) ] = Re[ W−1(z) ] (2.23)

holds.

Lemma 2.3 can be observed from Figure 2.6 intuitively. Figure 2.6 shows curves Wk(Cr),
k = 0,±1,±2, · · · where

Cr := {rejθ | θ ∈ (−π, π]} (2.24)
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Figure 2.6: Wk(Cr), k = 0,±1,±2, · · · where Cr := {rejθ | θ ∈ (−π, π] for (a) r < −1/e,
(b) r = −1/e and (c) r > −1/e.

represents a circle centered the origin with a radius of r for (a) r < −1/e, (b) r = −1/e and
(c) r > −1/e. In the case (a) where Cr has no intersection with BC0, W0(Cr) is apart from
the other branches. Turning to the case (b) where Cr contacts BC0, W0(Cr) is connected to
the other branches. Then they are merged in the case (c) where Cr intersects to BC0. For
all the cases, the curve W0(Cr) is placed in the rightmost side among the all branches; this
fact illustrates (2.22). When the intersection of Cr and BC0, say P , which emerges in the
case (b) and (c), is mapped, W0(P ) and W−1(P ) appear on the upper and lower boundary
of W0 respectively, and thus (2.23) holds.

Lemma 2.3 has been anticipated by a case study in [4], whereas in this thesis, the formal
proof for this is given in Appendix A. In the appendix, especially, Lemma A.1 and A.2 are
cited in the subsequent discussion, so they should be cast a glance.

2.5.2 Adaptation to Stability Analysis of Linear Time-Delay Systems

In this subsection, underlying theories in the application of the Lambert W function to
linear time-delay systems are stated with which the argument of the thesis begins.

First consider a complex-valued linear scalar time-delay system

ẋ(t) = αx(t) + βx(t − τ), (2.25)

where α, β, x(t) ∈ C and τ > 0 is a time-delay. From Definition 2.2, the system (2.25) is
stable if and only if the roots of the characteristic quasi-polynomial

p0(s) := s − α − βe−τs (2.26)
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all lie in the complex open left half-plane.
Let us transform the characteristic equation p0(s) = 0 as follows:

s − α − βe−τs = 0 ⇔ s − α = βe−τs

⇔ (s − α)eτs = β

⇔ (s − α)eτ(s−α) = βe−τα

⇔ τ(s − α)eτ(s−α) = τβe−τα. (2.27)

Combining (2.27) with (2.17) and (2.18) leads to the following further transformation [4].

τ(s − α) = W (τβe−τα)

⇔ s =
1
τ
W (τβe−τα) + α. (2.28)

It should be stressed that (2.28) is an explicit expression of the characteristic roots of the
system (2.25). The expression (2.28) is favorable for exploring qualitative features of them
and the branches of W enable us to identify the positions of all of them in the complex plane
at a glance and compute them readily with the help of Mathematica, Maple or Matlab.

The explicit expression (2.28) immediately offers the following stability condition which
is fundamental in this thesis.

Lemma 2.4 The linear scalar time-delay system (2.25) is stable if and only if

SW (α, β, τ) := Re
[
1
τ
W0(τβe−τα) + α

]
< 0. (2.29)

Moreover, the value of SW (α, β, τ) stands for the stability exponent directly.

Proof The characteristic root s = W0(τβe−τα)/τ +α is always in the rightmost among all
of the characteristic roots s = Wk(τβe−τα)/τ + α, k = 0,±1, · · · ,±∞ by virtue of Lemma
2.3, so that the lemma follows by Definition 2.2. ¤

Remark 2.3 In the case (2.23) of Lemma 2.3, as there are two rightmost roots correspond-
ing to W0 and W−1, either the former or the latter serves as the critical root for stability.

Now return to the linear multivariable time-delay system

ẋ(t) = Ax(t) + Bx(t − τ), (2.30)

where A,B ∈ Cn×n. In order to derive a stability condition for the system (2.30), the
following assumption is required.
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Assumption 2.1 The characteristic quasi-polynomial of the linear time-delay system
(2.30) is equivalent to

(s − α1 − β1e
−τs) · · · (s − αn − βne−τs), (2.31)

where αi, βi ∈ C, i = 1, · · · , n.

Remark 2.4 If A and B are simultaneously triangularizable for which a necessary and
sufficient condition is that the commutator AB − BA is nilpotent [83], then there is a
nonsingular matrix that transforms A and B to triangular matrices. Assumption 2.1 is
then fulfilled where the diagonal elements of the triangularized matrices are embedded
into αi and βi, i = 1, · · · , n in (2.31). In [83], simultaneous triangularization theories are
intensively researched. For the multiple time-delay system (2.8), a similar argument can be
pursued but a class of the systems that allows the above assumption is terribly limited.

If Assumption 2.1 is made, Lemma 2.4 implies the stability condition for the multivari-
able system (2.30).

Lemma 2.5 Under Assumption 2.1, the linear time-delay system (2.30) is stable if and
only if

SW (αi, βi, τ) < 0, i = 1, · · · , n. (2.32)

Moreover, the value of
max

i=1,··· ,n
SW (αi, βi, τ) (2.33)

stands for the stability exponent.

Furthermore, general robust stability conditions in terms of the Lambert W function
can be obtained straightforwardly from Lemmas 2.4 and 2.5. Let Ωα and Ωβ be compact
sets in C and α, β and τ be uncertain parameters prescribed by

α ∈ Ωα, β ∈ Ωβ , τ ∈ [τ , τ ]. (2.34)

Then the following lemma which implies delay-dependently robustness of stability is obvious
from Lemma 2.4.

Lemma 2.6 The linear scalar time-delay system (2.25) with the uncertainties prescribed
by (2.34) is robustly stable if and only if

max
α∈Ωα,β∈Ωβ ,τ∈[τ ,τ ]

SW (α, β, τ) < 0 (2.35)
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Turning to the multivariable system (2.30), under Assumption 2.1, let Ωα
i and Ωβ

i ,
i = 1, · · · , n be compact sets in C and αi, βi, i = 1, · · · , n and τ be uncertain parameters
prescribed by

αi ∈ Ωα
i , βi ∈ Ωβ

i , i = 1, · · · , n, τ ∈ [τ , τ ]. (2.36)

The following lemma is again obvious from Lemma 2.5.

Lemma 2.7 Under Assumption 2.1, the linear time-delay system (2.30) with the uncer-
tainties prescribed by (2.36) is robustly stable if and only if

max
αi∈Ωα

i ,βi∈Ωβ
i ,τ∈[τ ,τ ]

SW (αi, βi, τ) < 0, i = 1, · · · , n (2.37)

Note that Lemmas 2.6 and 2.7 do not reveal where the robust stability is determined
in the uncertainties (2.34) or (2.36). If uncertainties are prescribed by suitable forms, the
critical part for the robust stability can be specified on extreme points or boundary of the
uncertainties. These properties are proven in Chapter 3.

It should be also noticed that Assumption 2.1 is rather restrictive. However, even if
Assumption 2.1 cannot be made for given systems, it might be fulfilled again provided that
some structural changes of the systems are carried out by feedback controllers. In Chapter
4, it will be shown that Decoupling of the systems makes that possible.

The Lambert W function approach is still available for the additional dynamics analysis
induced by the model transformations utilized in the Lyapunov approaches. This topic is
discussed in Chapter 5.





Chapter 3

Stability Analysis

In this chapter, robust stability of a linear time-delay system

ẋ(t) = Ax(t) + Bx(t − τ), (3.1)

where A,B ∈ Cn×n, x(t) ∈ Cn and τ > 0 is a time-delay, is investigated by the Lambert
W function. In practical situations, system modeling might be carried out in the real field
rather than complex one. Nevertheless, even for real A and B, if they are triangularized,
the resultant triangular matrices possibly have complex elements. Since the Lambert W
function puts no border between real-valued and complex-valued systems, if anything, the
complex systems might be rather preferable for the robust stability conditions obtained
in this chapter. Naturally, the complex-valued systems are more expressive than the real-
valued ones. Indeed, behavior of semiconductor lasers in [60] is modeled as complex-valued
time-delay systems. Furthermore, if complex-valued neural networks with delay ( [104] for
delay-free cases) are linearized, then complex-valued linear time-delay systems are required.
The more applications of the complex-valued systems are developed, the more powerful the
Lambert W function approach will be as expected.

In Section 3.1, extreme point results are elucidated with respect to the robust stability
of the linear time-delay system (3.1) provided that suitable uncertainties are prescribed.
Although the result is confined to the scalar systems, it can be applied to the multivariable
ones if the coefficient matrices of (3.1) are simultaneously trianguralizable (see Remark 2.4)
or just both of them upper (or lower) triangular matrices.

In Section 3.2, the extreme point results are generalized to boundary implications when
more flexible uncertainties are assigned. The result is also limited to the scalar systems,
simultaneous triangularizability of the system matrices makes it possible to adjust to the
multivariable ones again.

In Section 3.3, illustrative examples are presented, giving guidances on the procedures

23
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to apply the results in Sections 3.1 and 3.2. Meanwhile, an important technique to measure
the time-delay margin guaranteeing the robust stability of the target systems is also shown
in this section. Then, this chapter is concluded with some remarks in Section 3.4.

3.1 Extreme Point Results

Consider a scalar linear time-delay system

ẋ(t) = αx(t) + βx(t − τ), (3.2)

where α = αR + jαI , β = βrejβθ
with αR, αI , βr, βθ ∈ R, x(t) ∈ C and τ > 0 is fixed. Let

Ωα and Ωβ be
Ωα := {αR + jαI | αR ∈ [αR, αR], αI ∈ [αI , αI ]},
Ωβ := {βrejβθ | βr ∈ [βr, β

r], βθ ∈ [βθ, β
θ]},

(3.3)

where αR ≤ αR, αI ≤ αI , 0 ≤ βr ≤ β
r and βθ ≤ β

θ, and suppose that the system (3.2) has
uncertainties prescribed by

α ∈ Ωα, β ∈ Ωβ . (3.4)

The forms of Ωα and Ωβ are as depicted in Figure 3.1.
In this section, the argument proceeds along a line that finds out α ∈ Ωα and β ∈ Ωβ

where SW (α, β, τ) is maximized for the sake of the connection with Lemma 2.6. In what
follows, the variable τ in SW (α, β, τ) is dropped because τ is a fixed-value and put

zw := τβe−τα. (3.5)

Let us reveal monotonicity of SW (α, β) with respect to αR first.

Lemma 3.1 SW (α, β) is a monotone increasing function of αR.

Proof For simplicity, SW (α, β) is rewritten as SW (αR) because αI and β can be regarded
as constant.

When β = 0, the lemma is obvious since SW (αR) = αR. Assume β 6= 0. According to
the relation between zw and the branch cut of W0, separate occasions are dealt with.

(i) The case of zw 6∈ BC0 = {a + j0 | −∞ < a ≤ −1/e}.

W0(zw) is analytic by Lemma A.1. Differentiating SW (αR) with respect to αR leads
to

dSW (αR)
dαR

=
1
τ
Re

[
dW0(zw)

dzw

dzw

dαR

]
+

dαR

dαR

= Re
[
− W0(zw)

1 + W0(zw)

]
+ 1, (3.6)
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Figure 3.1: Forms of Ωα and Ωβ in (3.4).

which is written as

−ξ0(1 + ξ0) + η2
0

(1 + ξ0)2 + η2
0

+ 1 (3.7)

by setting W0(zw) = ξ0 + jη0. The fact that ξ0 > −1 (since zw 6= −1/e) implies
(3.7)> 0, i.e. dSW (αR)/dαR > 0. This proves that SW (αR) is a monotone increasing
function of αR for zw 6∈ BC0.

(ii) The case of zw ∈ B̃C0 := {a + j0 | −∞ < a < −1/e}.

Defining a function

W01(z) :=

{
W0(z), Im(z) ≥ 0
W1(z), Im(z) < 0

, (3.8)

(3.8) is analytic in B̃C0. Letting S̃W (αR) := Re [W01(zw)] /τ + αR,

dS̃W (αR)
dαR

= Re
[
− W01(zw)

1 + W01(zw)

]
+ 1 (3.9)

holds and dS̃W (αR)/dαR > 0 is fulfilled similarly to the case (i). This shows that
S̃W (αR) is again monotone increasing with respect to αR, so that SW (αR) is too since
S̃W (αR) = SW (αR) for zw ∈ B̃C0.

(iii) The case of zw = −1/e.

Finally, consider the behavior of SW (αR) at αR such that zw = τβe−τ(αR+jαI) = −1/e.
Noting that zw varies radially along the lines centered at the origin according to αR,
it is true that zw = −1/e only if the argument of zw remains π for arbitrary αR. This
allows to fix one’s eyes to the negative real axis without loss of generality. The cases
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(i) and (ii) suggest that SW (αR) is a monotone increasing function with respect to αR

in the neighborhood of z = −1/e. Futhermore, SW (αR) is continuous at αR satisfying
zw = −1/e and hence SW (αR) is non-decreasing as well at this point. ¤

Here switch to consider βr. As preliminaries, let us assign variables to the domain and
the range of the Lambert W function (2.18) as

z = a + jb, w = ξ + jη. (3.10)

Substituting (3.10) into (2.17) gives the equations

a = eξ(ξ cos η − η sin η), (3.11)

b = eξ(η cos η + ξ sin η). (3.12)

To identify the maximal points of SW (α, β) with respect to βr, consider the image of a
line segment

Sg := {p(c + jd) | p ∈ [p, p]}, (3.13)

by W0, where c, d ∈ R and p < p. Then

cp = eξ(ξ cos η − η sin η), (3.14)

dp = eξ(η cos η + ξ sin η) (3.15)

follow from (3.11) and (3.12). The aim in the subsequent paragraphs is to prove that the
maximum of Re[ W0(Sg) ] is taken at either of the extreme points of the segment (3.13).

Suppose that c 6= 0 and d 6= 0. Eliminating p from (3.14) and (3.15) generates

ξ =
d tan η + c

d − c tan η
η. (3.16)

O
Re(z)

Im(z)

-π

-π/2

π/2

π

O-1
Re(w)

Im(w)

Figure 3.2: Sg in the z-plane and W0(Sg) in the w-plane.
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For (3.16), the principal branch W0 corresponds to

ξ =
d tan η + c

d − c tan η
η, η < η < η, (3.17)

where η = tan−1(d/c) − π and η = tan−1(d/c) under the assumption tan−1(·) ∈ (0, π).
Figure 3.2 shows the correspondence of the line (3.13) with the image mapped by W0.

In this paragraph, it is proven that (3.17) is leftward convex. Differentiating ξ with
respect to η gives

dξ

dη
=

(c2 + d2)(1 + tan2 η)η
(d − c tan η)2

+
d tan η + c

d − c tan η
, (3.18)

and differentiating dξ/dη further gives

d2ξ

dη2
=

2(c2 + d2)(1 + tan2 η)
(d − c tan η)2

(ξ + 1). (3.19)

It is realized from (3.18) and (3.19) that dξ/dη < 0 and dξ/dη > 0 for η = tan−1(d/c+ε)−π

and η = tan−1(d/c − ε) with sufficiently small ε > 0 respectively and d2ξ/dη2 > 0 since
ξ > −1, i.e. dξ/dη is monotone increasing for η ∈ (η, η). According to the Intermediate
Value Theorem and the monotonicity of dξ/dη, there exists a η ∈ (η, η) such that dξ/dη = 0.
These facts indicate the graph of (3.17) is leftward convex.

Put points z = p(c + jd) and z = p(c + jd) where on the segment (3.13), and suppose
that contrary to the claim, the maximum of Re[ W0(Sg) ] is taken at a middle point z0 =
p0(c+jd), p0 ∈ (p, p) between z and z. Then, W0(z) and W0(z) lie on more left than W0(z0)
in the w-plane. However, since W0(Sg) is a continuous curve and bijective (Remark 2.2)
and the leftward-convexity implies the right side of the graph is open, the curve W0(Sg)
must be overlapped in a certain interval. This is contradictory to the fact that the mapping
is bijective. Namely, the maximum of Re[W0(z) ] must be taken at either z or z (see Figure
3.3).

In the case of c = 0 and d 6= 0 which are the extreme cases of the previous one, W0(Sg)
again forms a leftward-convex continuous curve and W0 is proven to be bijective. Therefore,
the similar argument can be repeated, leading to the same conclusion (see Figure 3.4).

The case of c 6= 0 and d = 0 has one singularity at the point W0(−1/e) = −1. Nev-
ertheless, the similar argument can be maintained as conjectured by the shape of W0(Sg)
and the fact that W0(Sg) is a continuous curve and bijective (see Figure 3.5).

The above discussion yields the following lemma, which elucidates the maximal points
of SW (α, β) with respect to βr.

Lemma 3.2 Let α and βθ be constant. Then,

max
βr∈[βr,β

r
]
SW (α, βrejβθ

) = max
{

SW (α, βrejβθ
), SW (α, β

r
ejβθ

)
}

. (3.20)
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Figure 3.3: Mapping of Sg by W0 in the case of c 6= 0 and d 6= 0.

Figure 3.4: Mapping of Sg by W0 in the case of c = 0 and d 6= 0.

Figure 3.5: Mapping of Sg by W0 in the case of c 6= 0 and d = 0.
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Proof As βr varies in [βr, β
r], zw moves along a segment similar to (3.13) and the extreme

points of its locus correspond to βr and β
r. The lemma follows from the above discussion.

¤

Finally, it remains to consider αI and βθ. Both of them are embedded into the argument
of zw. Therefore they can be treated like as one variable. The following lemma clarifies the
remaining maximal points of SW (α, β) with respect to αI and βθ.

Lemma 3.3 Let αR and βr be constant and define

Cαβ :=
{

ej(βθ−ταI)
∣∣∣ αI ∈ [αI , αI ], βθ ∈ [βθ, β

θ]
}

. (3.21)

(I) If Cαβ crosses the positive real axis,

max
αI∈[αI ,αI ],βθ∈[βθ,β

θ
]

SW (α, β) = SW (αR, βr). (3.22)

(II) If Cαβ does not cross the positive real axis,

max
αI∈[αI ,αI ],βθ∈[βθ,β

θ
]

SW (α, β) = max
{

SW (αR+jαI , βrejβ
θ

), SW (αR+jαI , βrejβθ

)
}

.

(3.23)

Proof When βr = 0, the lemma is obvious since SW (α, β) = αR. Let βr > 0. Define

Cαβ
zw

:=
{

zw

∣∣∣ αI ∈ [αI , αI ], βθ ∈ [βθ, β
θ]

}
. (3.24)

Note that Cαβ
zw is either an arc or a circle and Cαβ is the argument of Cαβ

zw .

(I) The case where Cαβ crosses the positive real axis.

Lemma A.2 claims that the maximum of Re[ W0(zw) ] on Cαβ
zw is taken at the inter-

section of Cαβ
zw with the positive real axis. Noting that this intersection occurs at

zw = τβre−ταR
, the lemma holds.

(II) The case where Cαβ does not cross the positive real axis.

Since Cαβ
zw does not represent a full circle, i.e. Cαβ

zw is an arc, it has two candidate
extreme points corresponding to {αI , β

θ} and {αI , βθ}. Lemma A.2 says that the
maximum of Re(W0(zw)) on Cαβ

zw is taken at either of those extreme points. ¤

Remark 3.1 Figure 3.6 shows the positions of the crucial points in Cαβ of Lemma 3.3 for
the robust stability with respect to αI and βθ.
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Figure 3.6: The crucial points for the robust stability in Cαβ : the cases (I) and (II) of
Lemma 3.3.

Combining Lemmas 3.1, 3.2 and 3.3 yields the following extreme point result on the
robust stability of the scalar system (3.2) with the uncertainties (3.4).

Theorem 3.4 The scalar linear time-delay system (3.2) with the uncertainties prescribed
by (3.4) is robustly stable for the fixed time-delay τ > 0 if and only if

(I) for Cαβ crossing the positive real axis,

max
{

SW (αR, βr), SW (αR, β
r)

}
< 0. (3.25)

(II) for Cαβ not crossing the positive real axis,

max
{

SW (αR + jαI , βrejβ
θ

), SW (αR + jαI , β
r
ejβ

θ

),

SW (αR + jαI , βrejβθ

), SW (αR + jαI , β
r
ejβθ

)
}

< 0. (3.26)

Proof Lemmas 3.1, 3.2 and 3.3 tell where the maximal points of SW (α, β) with respect to
αR, βr and αI -βθ are taken in the uncertainties (3.4) respectively. In this way, the theorem
associated with Lemma 2.6 is true. ¤

Figures 3.7 and 3.8 show the critical points for the robust stability of the system (3.2)
with (3.4) at which Theorem 3.4 is satisfied. Accordingly, extreme point results hold true
concerning the robust stability of (3.2) if the regions for uncertainties in the coefficients are
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Ωα

Re

Im

Ωβ

Re

Im

Figure 3.7: Points determining robust stability in the case (I) of Theorem 3.4: they lie
on the solid line and their locations depend on the delay τ .

Ωα

Re

Im

Ωβ

Re

Im

Figure 3.8: Points determining robust stability in the case (II) of Theorem 3.4.

suitably prescribed: for the non-delay term an axis-parallel box and for the delay term a
sector form.

Now change the subject to the multivariable system (3.1). Put Assumption 2.1 on the
system (3.1) and let αi and βi, i = 1, · · · , n in (2.31) be uncertain parameters prescribed
by

αi ∈ Ωα
i , βi ∈ Ωβ

i , i = 1, · · · , n, (3.27)

where
Ωα

i := {αR
i + jαI

i | αR
i ∈ [αR

i , αR
i ], αI

i ∈ [αI
i , α

I
i ]}, i = 1, · · · , n

Ωβ
i := {βr

i e
jβθ

i | βr
i ∈ [βr

i
, β

r
i ], β

θ
i ∈ [βθ

i
, β

θ
i ]}, i = 1, · · · , n

(3.28)

where αR
i ≤ αR

i , αI
i ≤ αI

i , 0 ≤ βr
i
≤ β

r
i and βθ

i
≤ β

θ
i , i = 1, · · · , n.

Theorem 3.4 provides the following robust stability condition for the system (3.1) with
the uncertainties (3.27).
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Corollary 3.5 Under Assumption 2.1, the linear time-delay system (3.1) whose charac-
teristic quasi-polynomial is (2.31) with the uncertainties prescribed by (3.27) is robustly
stable for the fixed time-delay τ > 0 if and only if given

Cαβ
i :=

{
ej(βθ

i −ταI
i )

∣∣∣ αI
i ∈ [αI

i , α
I
i ], β

θ
i ∈ [βθ

i
, β

θ
i ]

}
, i = 1, · · · , n, (3.29)

(I) for Cαβ
i , i = 1, · · · , n crossing the positive real axis,

max
{

SW (αR
i , βr

i
), SW (αR

i , β
r
i )

}
< 0, i = 1, · · · , n (3.30)

are satisfied respectively.

(II) for Cαβ
i , i = 1, · · · , n not crossing the positive real axis,

max
{

SW (αR
i + jαI

i , β
r
i
ejβ

θ
i ), SW (αR

i + jαI
i , β

r
i e

jβ
θ
i ),

SW (αR
i + jαI

i , β
r
i
ejβθ

i ), SW (αR
i + jαI

i , β
r
i e

jβθ
i )

}
< 0,

i = 1, · · · , n (3.31)

are satisfied respectively.

Proof It is obvious from Theorem 3.4 and Lemma 2.7. ¤

3.2 Boundary Implications

Let us reconsider scalar linear time-delay system (3.2), where, however the uncertainties
are modified into

α ∈ Ω̂α, β ∈ Ω̂β , (3.32)

Figure 3.9: Forms of Ω̂α and Ω̂β in (3.32).
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where Ω̂α is a compact set whose real-valued maximums are identical for all imaginary
parts and Ω̂β is an arbitrary compact set as depicted in Figure 3.9. Clearly, Ω̂α and Ω̂β are
more general than Ωα and Ωβ in (3.3). The goal of this subsection is to prove boundary
implications of stability, the property that such a stability property as robust stability is
determined on the boundaries of the uncertainties, of the system (3.2) with the uncertainties
(3.32). It is notable that the results of this section is generalizations of the previous extreme
point results.

The argument is begun with an elemental result of complex functions which is an analogy
to the Maximum Principle [3].

Lemma 3.6 Let Ω be a nonempty connected open set in the complex plane. Suppose
f(z) is an analytic function in Ω and Re[ f(z) ] is continuous in the closure Ω. Then the
maximum of Re[ f(z) ] on Ω is taken on the boundary ∂Ω.

Proof The proof proceeds in the same way as that of the Maximum Principle [3] regarding
to the modulus of f(z). ¤

The next lemma is needed to prove that Lemma 3.6 also holds true for the Lambert W
function.

Lemma 3.7 Re[ W0(z) ] is monotone decreasing in BC0. Re[ Wk(z) ], k = ±1, · · · ,±∞ are
monotone decreasing in B̃C := BC \ {0}.

Proof Fisrt note in the definition of B̃C that the zero is excluded from BC . The reason
is that Re[ Wk(z) ], k = ±1, · · · ,±∞ diverge to −∞ as z → 0.

The images of the branch cuts, W0(BC0) and Wk(B̃C), k = ±1, · · · ,±∞ can be repre-
sented in terms of w-variables ξ and η in (3.10) as follows:

W0(BC0) =
{

−η

tan η
+ jη

∣∣∣∣ η ∈ [0, π)
}

, (3.33)

Wk(B̃C) =
{

−η

tan η
+ jη

∣∣∣∣ η ∈ (2kπ, (2k + 1)π)
}

, k = 1, · · · ,∞, (3.34)

W−1(B̃C) =
{

−η

tan η
+ jη

∣∣∣∣ η ∈ (−π, 0]
} ∪

{ξ + j0 | ξ ∈ (−∞,−1)} , (3.35)

Wk(B̃C) =
{

−η

tan η
+ jη

∣∣∣∣ η ∈ ((2k + 1)π, (2k + 2)π)
}

, k = −2, · · · ,−∞. (3.36)

Note that {−η/ tan η + jη | η ∈ (−π, 0]} and {ξ + j0 | ξ ∈ (−∞,−1)} in (3.35) correspond
to W−1(BC0) and W−1(B̃C1) where B̃C1 := B̃C \ BC0 respectively.
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Substituting ξ = −η/ tan η into (3.11) yields

a(η) = e
−η

tan η

(
− η

tan η
cos η − η sin η

)
= e

−η
tan η

(
−η cos2 η + η sin2 η

sin η

)
= −e

−η
tan η

η

sin η
. (3.37)

Differentiating (3.37) with respect to η further provides

da

dη
= −e

−η
tan η

− tan η + η
cos2 η

tan2 η
· η

sin η
− e

−η
tan η

sin η − η cos η

sin2 η

= −e
−η

tan η

(
−η cos η

sin2 η
+

η2

sin3 η
+

1
sin η

− η cos η

sin2 η

)
= − e

−η
tan η

sin3 η
(−2η cos η sin η + η2 + sin2 η)

= − e
−η

tan η

sin3 η
(−η sin 2η + η2 + sin2 η). (3.38)

Defining
γ(η) = −η sin 2η + η2 + sin2 η (3.39)

and differentiating γ(η) with respect to η gives

dγ

dη
= − sin 2η − 2η cos 2η + 2η + sin 2η

= 2η(1 − cos 2η). (3.40)

For η ∈ (2kπ, (2k + 1)π), k = 0, 1, · · · ,∞, γ(η) > 0 is true because dγ/dη > 0 and
γ(0) = 0 and hence we have da/dη < 0. Since a(η) is continuous at η = 0 from (3.37), it
follows that a(η) is a monotone decreasing fucntion of η ∈ [0, π) and η ∈ (2kπ, (2k + 1)π),
k = 1, · · · ,∞. This observation proves that η(a), which is the inverse function of a(η), is
monotone decreasing in a ∈ BC0 when BC0 is mapped by W0 and a ∈ B̃C when B̃C is
mapped by Wk, k = 1, · · · ,∞.

For η ∈ ((2k + 1)π, (2k + 2)π), k = −1, · · · ,−∞, γ(η) > 0 is verified from the fact
that dγ/dη < 0 and γ(0) = 0, so da/dη > 0. Similarly we can show that a(η) is monotone
increasing in η ∈ (−π, 0] and η ∈ ((2k + 1)π, (2k + 2)π), k = −2, · · · ,−∞. This time, it
is justifies that η(a) is monotone increasing in a ∈ BC0 when BC0 is mapped by W−1 and
a ∈ B̃C when B̃C is mapped by Wk, k = −2, · · · ,−∞.

Furthermore, ξ = −η/ tan η is monotone increasing in each interval of η ∈ (2kπ, (2k +
1)π), k = 0, 1, · · · ,∞ and monotone decreasing in η ∈ ((2k + 1)π, (2k + 2)π), k =
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−1, · · · ,−∞. In this way, it turns out that ξ(a) is a monotone decreasing function of
a ∈ BC0 in the case where BC0 is mapped by W0 and W−1, i.e. both of Re[ W0(z) ] and
Re[ W−1(z) ] are in z ∈ BC0, and a ∈ B̃C in the other case where B̃C is mapped Wk,
k = 1,±2, · · · ,±∞, i.e. Re[ W0(z) ], k = 1,±2, · · · ,±∞ are in z ∈ B̃C .

In the rest of the proof, we deal with the remaining case where B̃C1 is mapped by W−1

in which W−1(B̃C1) = {ξ + j0 | ξ ∈ (−∞,−1)}. Substituting η = 0 into (3.11), we have

a(ξ) = ξeξ. (3.41)

Differentiating (3.41) with respect to ξ gives

da

dξ
= eξ(1 + ξ). (3.42)

It is easy to see that da/dξ < 0 for ξ ∈ (−∞,−1). Therefore, a(ξ) in (3.41) is monotone
decreasing in ξ ∈ (−∞,−1), that is, the inverse function ξ(a) is monotone decreasing in
a ∈ B̃C1, in other words Re[W−1(z) ] is in z ∈ B̃C1. The proof is now completed. ¤

Now the Maximum Principle for Re[Wk(z)], k = 0,±1, · · · ,±∞ can be elucidated by
Lemmas A.1, 3.6 and 3.7.

Lemma 3.8 Let Ω be a region as in Lemma 3.6. The maximum of Re[ Wk(z) ], k =
0,±1, · · · ,±∞ on Ω is taken on ∂Ω.

Proof The proof can be carried out in the same way for each of Re[ Wk(z) ], k = 0,±1, · · · ,

±∞. Thus only the W0 case is proven. Discussions for the other branches can be done by
replacing W0 and BC0 with Wk’s and BC respectively.

(i) The case where Ω does not include any part of BC0.

Lemma A.1 proves that W0(z) is analytic in Ω. Furthermore, Re[ W0(z) ] is continuous
in Ω (see Remark 2.2). Then, Lemma 3.6 readily gives the result.

(ii) The case where Ω includes some part of BC0.

In this case, W0(z) is not analytic in Ω because W0(z) is not differentiable in terms
of complex functions at z ∈ BC0. However, Ω can be separated by BC0 into several
sub-regions where W0(z) can be analytic. Let these sub-regions be Ω1, · · · , Ωm, m ≥
1 (for some typical situations, see Figure 3.10). Note that the boundary of each
Ω1, · · · , Ωm corresponds to ∂Ω and BC0. As in the case (i), W0(z) is analytic in each
Ω1, · · · , Ωm and Re[ W0(z) ] is continuous in each Ω1, · · · ,Ωm. Therefore, Lemma 3.6
implies that the maximum of Re[ W0(z) ] on each Ω1, · · · , Ωm is taken on ∂Ω1, · · · , ∂Ωm

respectively, that is, the maximum of Re[ W0(z) ] on Ω is taken on either ∂Ω or BC0.
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Figure 3.10: Typical decomposition of Ω: (a) m = 4. (b) m = 1.

Now because of Lemma 3.7, it turns out that the maximum of Re[W0(z) ] on BC0 is
taken at the leftmost point. Moreover, BC0 intersects with ∂Ω at the leftmost point
since Ω is bounded and BC0 infinitely extends leftward in the complex plane. Hence,
we can conclude that the maximum of Re[ W0(z) ] on Ω is taken on ∂Ω. ¤

From Lemmas 2.6, 3.1 and 3.8, a boundary implication of stability of the system (3.2)
with the uncertainties (3.32) holds.

Theorem 3.9 Define the right edge of Ω̂α as

∂rΩ̂α := {αR + jαI | αI ∈ [αI , αI ]} (3.43)

and the set Ω̂ and function ŜW (z) as

Ω̂ := {τβe−τα | α ∈ ∂rΩ̂α, β ∈ Ω̂β}, (3.44)

ŜW (z, αR) :=
1
τ
Re[ W0(z) ] + αR. (3.45)

The system (3.2) with the uncertainties (3.32) is robustly stable for the fixed time-delay
τ > 0 if and only if

max
z∈∂Ω̂

ŜW (z, αR) < 0. (3.46)

Proof For all β, SW (α, β, τ) is maximized in α ∈ ∂rΩ̂α by Lemma 3.1. Thus,

max
α∈Ωα,β∈Ωβ

SW (α, β, τ) = max
α∈∂rΩ̂α,β∈Ωβ

SW (α, β, τ) (3.47)
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holds. Note that

{SW (α, β, τ) | α ∈ ∂rΩ̂α, β ∈ Ω̂β} = {ŜW (z, αR) | z ∈ Ω̂}. (3.48)

Because Ω̂ is a bounded closed set, Re[ W0(z) ] for z ∈ Ω̂ is maximized in ∂Ω̂ due to Lemma
3.8. Hence,

max
z∈Ω̂

ŜW (z, αR) = max
z∈∂Ω̂

ŜW (z, αR) (3.49)

follows. Consequently,

max
α∈Ωα,β∈Ωβ

SW (α, β, τ) = max
z∈∂Ω̂

ŜW (z, αR) (3.50)

is realized and then the theorem is proven by Lemma 2.6.

Remark 3.2 It naturally follows that with any ˆ̂Ω such that ∂Ω̂ ⊆ ˆ̂Ω ⊆ Ω̂, the condition
(3.46) can be rewritten to ∀z ∈ ˆ̂Ω, ŜW (z, αR) < 0. Note that for Ω̂α the only rightmost
edge influences on the robust stability.

Remark 3.3 Thanks to the assumption about the form of Ω̂α and Ω̂β , Lemma 2.6 can be
reduced to a one-parametric search problem from two-parametric one by Theorem 3.9. If
Ω̂α is allowed to be any bounded closed set without restriction on the real part of α, this
reduction cannot be fulfilled due to the second term of SW .

Remark 3.4 If Ω̂α and Ω̂β are given as a box-type and a sector-type uncertainties respec-
tively, Theorem 3.9 can be further reduced to the extreme point result given in Section 3.1.

By the similar way to the previous section, Theorem 3.9 can be directly extended to the
multivariable system (3.1) under Assumption 2.1. Suppose that the uncertain parameters
αi and βi, i = 1, · · · , n in (2.31) vary within the constraint

αi ∈ Ω̂α
i , βi ∈ Ω̂β

i , i = 1, · · · , n, (3.51)

where the definitions of Ω̂α
i and Ω̂β

i , i = 1, · · · , n are similar to Ω̂α and Ω̂β respectively.
Theorem 3.9 can be generalized to the following boundary implication of stability for

the system (3.1) with the uncertainties (3.51).

Corollary 3.10 Under Assumption 2.1, given the right edge of Ω̂α
i , i = 1, · · · , n as

∂rΩ̂α
i := {αR

i + jαI
i | αI

i ∈ [αI
i , α

I
i ]}, i = 1, · · · , n (3.52)

and
Ω̂i := {τβie

−ταi | αi ∈ ∂rΩ̂α
i , βi ∈ Ω̂β

i }, i = 1, · · · , n, (3.53)
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the linear time-delay system (3.1) whose characteristic quasi-polynomial is (2.31) with the
uncertainties prescribed by (3.51) is robustly stable for the fixed time-delay τ > 0 if and
only if

max
z∈∂Ω̂i

ŜW (z, αR
i ) < 0, i = 1, · · · , n. (3.54)

Proof It is obvious from Theorem 3.9 and Lemma 2.7. ¤

3.3 Illustrative Examples

The robust stability criteria obtained in the previous sections are demonstrated by the
following examples. The first example demonstrates the extreme point result and the
second one the boundary implication.

Example 3.1 Consider the time-delay system (3.1) with

A =

[
αR αI

−αI αR

]
, αR ∈ [−0.08, 0.02], αI ∈ [−6,−5],

B =

[
βr cos βθ βr sin βθ

−βr sinβθ βr cos βθ

]
, βr ∈ [0.5, 1.5], βθ ∈ [0.8, 1.5],

(3.55)

where αR, αI , βr and βθ are uncertain parameters. Since A and B are commutative
matrices, the Schur theorem [34] can be applied to triangularize A and B simultaneously
as

U−1AU =

[
αR + jαI 0

0 αR − jαI

]
,

U−1BU =

[
βrejβθ

0
0 βre−jβθ

]

by the unitary matrix

U =


1√
2

1√
2

j
1√
2

−j
1√
2

 .

Then, the characteristic quasi-polynomial is factorized as

det U−1 det[ sI − A − Be−τs ] detU

= (s − (αR + jαI) − βrejβθ
e−τs)(s − (αR − jαI) − βre−jβθ

e−τs). (3.56)
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The uncertainties are rewritten as

α ∈ Ωα, β ∈ Ωβ ,

Ωα = {αR + jαI | αR ∈ [−0.08, 0.02], αI ∈ [−6,−5]},
Ωβ = {βrejβθ | βr ∈ [0.5, 1.5], βθ ∈ [0.8, 1.5]}.

(3.57)

We are interested in the delay τ that makes the uncertain quasi-polynomial (3.56) and
(3.57) robustly stable. Note that for treating the quasi-polynomial (3.56) with respect to
the stability, we have only to concentrate on the left factor of (3.56). Therefore, Theorem
3.4 is applied to the uncertain quasi-polynomial

s − α − βe−τs (3.58)

with (3.57).
As τ increases from 0, the case specified in Theorem 3.4 popps up as follows.

0 < τ <
2π − 1.5

6
: (II)

2iπ − 1.5
6

≤ τ ≤ 2iπ − 0.8
5

: (I) for i = 1, 2, 3, 4

2iπ − 0.8
5

< τ <
2(i + 1)π − 1.5

6
: (II) for i = 1, 2, 3, 4

10π − 1.5
6

≤ τ : (I)

In order to check Theorem 3.4, the graphs of (3.25) and (3.26) where τ is a variable
are visualized as in Figure 3.11. Such the graphs can be easily composed with the help of
the Mathematica command “ProductLog” which calculates any branches of the Lambert
W function. Of course, this can be done by Maple and Matlab as well. Figure 3.11 tells
that the above system is robustly stable for 0.23 < τ < 0.42.

Example 3.2 Let the coefficient matrices of the time-delay system (3.1) be

A =

[
αR αI

−αI αR

]
, B =

[
βR βI

−βI βR

]
, (3.59)

where αR, αI , βR and βI are real uncertain parameters. Note that A and B are simulta-
neously triangularisable and the scalar complex-valued system

ẋ(t) = (αR + jαI)x(t) + (βR + jβI)x(t − τ) (3.60)

whose characteristic quasi-polynomial is

s − (αR + jαI) − (βR + jβI)e−τs (3.61)
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Figure 3.11: (a) The thin line and the thick line represents the graph of (3.26) and (3.25)
respectively. (b) Blowup of the stable interval in the graph (a). For visualizability, the
graphs are scaled by τ .

Figure 3.12: Ω̂α in (3.62) and Ω̂β in (3.63).

is equivalent to the system (3.59) in stability likewise to the previous example.

With functions

αR(R,αI) := R(cos(12αI − 8π) − 1) − 0.1,

β(r, θ) :=


(0.15 + r)ej(−π

6
(θ−0)+ π

3
(θ−1)), θ ∈ [0, 1),(

0.15 + rejπ(θ−1)
)
e−j π

6 , θ ∈ [1, 2),

(0.15 − r)ej(−π
3
(θ−2)+ π

6
(θ−3)), θ ∈ [2, 3),(

0.15 + rejπ(θ−4)
)
e−j π

3 , θ ∈ [3, 4),
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the uncertainties are supposed to be expressed by

Ω̂α =
{
αR(R,αI) + jαI

∣∣ R ∈ [0, 1], αI ∈
[

2π
3 , 5π

6

]}
, (3.62)

Ω̂β = {β(r, θ) | r ∈ [0, 0.03], θ ∈ [0, 4)}. (3.63)

The shapes of Ω̂a and Ω̂b are depicted as in Figure 3.12. Note that both Ω̂a and Ω̂b are non-
convex sets. We are now interested in the delay margin guaranteeing the robust stability
of the system (3.60) with the uncertainties (3.62) and (3.63).

We have

Ω̂ =
{
τβ(r, θ)e0.1τe−jταI ∣∣ αI ∈

[
2π
3 , 5π

6

]
, r ∈ [0, 0.03], θ ∈ [0, 4)

}
. (3.64)

Set ϕ(τ) = −π
3 − 5π

6 τ and ϕ(τ) = −π
5 − 2π

3 τ and define

z(τ, θ) :=


(0.15 + 0.03)ej(ϕ(τ)(θ−0)−ϕ(τ)(θ−1)), θ ∈ [0, 1),(
0.15 + 0.03ejπ(θ−1)

)
ejϕ(τ), θ ∈ [1, 2),

(0.15 − 0.03)ej(ϕ(τ)(θ−2)−ϕ(τ)(θ−3)), θ ∈ [2, 3),(
0.15 + 0.03ejπ(θ−4)

)
ejϕ(τ), θ ∈ [3, 4),

Cz := {τe0.1τz(τ, θ) | θ ∈ [0, 4)}.

Then, ∂Ω̂ = Cz or ∂Ω̂ ⊂ Cz holds depending on the τ values. Figure 3.13 shows the relations
between ∂Ω̂ and Cz for τ = 5 and τ = 13. The condition (3.46) of Theorem 3.9 is therefore
equivalent to ∀z ∈ Cz, ŜW (z,−0.1) < 0, i.e. ∀θ ∈ [0, 4), ŜW (τe0.1τz(τ, θ),−0.1) < 0 for the
fixed τ (see also Remark 3.2).

In order to obtain the desired delay margin, we should plot the function ŜW (τe0.1τz(τ, θ),
−0.1) versus τ and θ using “Plot3D” function and “ProductLog” function of Mathematica
as shown in Figure 3.14. In Figure 3.14, the two intervals of τ such that the surface of the
function ŜW does not mount up the horizontal plane for all θ ∈ [0, 4) correspond to the
delay margins satisfying the condition ∀θ ∈ [0, 4), ŜW (τe0.1τz(τ, θ),−0.1) < 0, and they
are indicated by the two areas between the two pairs of the bold lines: one corresponds to
τ = 0.29, 1.50, the other corresponds to τ = 3.51, 3.78. From this figure, it can be verified
that the system (3.60), namely the system (3.59), with the uncertainties (3.62) and (3.63)
is robustly stable for 0.29 < τ < 1.50 or 3.51 < τ < 3.78.

3.4 Concluding Remarks

In this chapter, robust stability of linear systems with a single delay have been investigated
by means of the Lambert W function. As to this, the extreme point results and the boundary
implications of stability were elucidated in Section 3.1 and 3.2 respectively. The extreme
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Figure 3.13: The bold line and the dashed line represent ∂
˜̂Ω and Cz respectively: (a)

∂Ω̂ = Cz holds for τ = 5. (b) ∂Ω̂ ⊂ Cz holds for τ = 13.

point results reduced a robust stability check of the linear time-delay system (3.1) to a
simple test in a few boundary points. The boundary implications, which are generalizations
of the extreme point results, converted a two-parametric search problem demanded when
checking the robust stability using Lemma 2.6 or 2.7 to a single-parametric one.

The virtue of the Lambert W fucntion is that the critical characteristic root for their
stability can be picked out among the all characteristic roots. As a result, it gives us
simple and exact stability criteria for a class of linear time-delay systems, more specifically
such a class as those that fulfills Assumption 2.1. Furthermore, it can be numerically
computed using Mathematica, Maple or Matlab and therefore the extreme point results and
boundary implications can be easily checked as demonstrated in Section 3.3. Assumption 2.1
corresponds to a simultaneously triangularizable condition in the state space (see Remark
2.4). This class may be rather restrictive and, as a matter of fact, it is equivalent to a set
of scalar systems. The essential reason of making this assumption is that the Lambert W
function is defined as a scalar function. In [39, 102], some extensions to the matrix form
of the Lambert W function have been attempted. They were at the inchoate stage and
therefore have room for improvement.

The Lambert W function approach can be applied to only single time-delay systems
such as (3.1), so it is not suitable to multiple delay systems. In the subsequent chap-
ter, commensurate time-delay systems are attempted to cope with by a control technique.
Meanwhile, the restriction as to the simultaneous triangularizability can be overcome in
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Figure 3.14: ŜW (τe0.1τz(τ, θ),−0.1) against τ ∈ (0, 8) and θ ∈ [0, 4).

some sense.
This chapter is concluded with the remark that the progress of the Lambert W function

approach for the linear time-delay systems are still underway.





Chapter 4

Stabilization Strategy

In this chapter, a new stabilization strategy is developed in the framework of the Lambert W
function approach. As mentioned in the previous chapters, for making use of the Lambert
W function, Assumption 2.1 has to be put into target systems. In order to relax this
restriction, one may consider that some structural changes are made to the systems by
feedback controllers. In this chapter, decoupling control [87] is adopted for this purpose,
which reorganizes the target systems into more suitable forms for the Lambert W function
approach. Note that for the complete forms so as to fit the Lambert W function, further
restrictions might be imposed to the decoupled systems.

In Section 4.1, a decoupling technique of [87] for linear commensurate time-delay systems
are reviewed. The paper [87] only addresses the decoupling technique but does not mention
stabilization problems. For the sake of stabilization of decoupled systems, a novel pole
placement technique taking advantage of the Lambert W function is proposed in Section
4.2. Combining this technique with the decoupling control, a new stabilization scheme is
given in Section 4.3. This scheme is examined in Section 4.4 by numerical examples. Section
4.5 gives further comments concerning the topics of this chapter.

4.1 Decoupling Control

Generally speaking, systems are said to be decoupled if the input-output dependency is
altered into one-to-one dependency by feedback controllers. In [87], a decoupling control
method for linear time-delay systems is given in terms of matrix forms. This section outlines
this control scheme.

45
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Consider a commensurate linear time-delay system with m-inputs and m-outputs

ẋ(t) =
Na∑
i=0

Aix(t − iτ) +
Nb∑
i=0

Biu(t − iτ),

y(t) =
Nc∑
i=0

Cix(t − iτ),

(4.1)

where x(t) ∈ Rn denotes states, u(t) ∈ Rm inputs, y(t) ∈ Rm outputs, τ > 0 a constant
time-delay, Ai ∈ Rn×n, i = 0, 1, · · · , Na, Bi ∈ Rn×m, i = 0, 1, · · · , Nb, Ci ∈ Rm×n,
i = 0, 1, · · · , Nc and Na, Nb and Nc are non-negative integers. Define a delay operator ∆
as in (2.9) and give matrix representations

A(∆) :=
Na∑
i=0

Ai∆i, B(∆) :=
Nb∑
i=0

Bi∆i, C(∆) :=
Nc∑
i=0

Ci∆i. (4.2)

Then, the time-delay system (4.1) is redefined as

ẋ(t) = A(∆)x(t) + B(∆)u(t),
y(t) = C(∆)x(t).

(4.3)

Note that the elements of A(∆), B(∆) and C(∆) are all classified into a real polynomial
ring of ∆ denoted by R[∆].

Taking Laplace transform of the system (4.3), the transfer function matrix

Go(s, σ) = C(σ)(sI − A(σ))−1B(σ), (4.4)

with σ = e−τs as in (2.14), is obtained. Here, it is noticed that a polynomial matrix M(∆)
bears the same structure to the frequency domain, that is formally L[M(∆) ] = M(σ).
This is also true even for rational function matrices of ∆.

The first step to decouple the system (4.3) is to find out non-negative integers ni,
i = 1, · · · ,m according to the procedure below: for each i = 1, · · · ,m, substitute, if any,
the minimum positive integer k ≤ n such that ci(σ)Ak−1(σ)B(σ) 6≡ 0, where ci(σ) is the
ith row of C(σ) and (≡) means “identically equal”, into ni, if not, let ni = n. The aim in
the decoupling scheme of [87] is to achieve input-output in dependency

y
(ni)
i (t) +

ni−1∑
k=0

µik(∆)y(k)
i (t) = λi(∆)vi(t), i = 1, · · · ,m (4.5)

by feedback control law
u(t) = F (∆)x(t) + G(∆)v(t), (4.6)

where v(t) ∈ Rm is external inputs, yi(t) and vi(t) represent the ith element of y(t) and v(t)
respectively, µik(∆) ∈ R[∆], k = 0, · · · , ni−1, i = 1, · · · ,m, λi(∆) ∈ R[∆], i = 1, · · · ,m,
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F (∆) ∈ Rm×n(∆) and G(∆) ∈ Rm×m(∆) in which R(∆) denotes real rational functions
of ∆. The diagonal transfer function matrix of the system (4.5) is

Gc(s, σ) = diag

[
λ1(σ)

sn1 +
∑n1−1

k=0 µ1k(σ)sk
, · · · ,

λm(σ)
snm +

∑nm−1
k=0 µmk(σ)sk

]
. (4.7)

Here, ni, i = 1, · · · ,m stand for the number of integrators included in the ith path of the
decoupled system (4.5).

The paper [87] targets its own goal such that the feedback (4.6) is realized by non-
predictive, stable and regular rules: they are defined as follows.

Definition 4.1 A rational function matrix M(σ) is non-predictive if all the denominators
of the elements have a nonzero constant. The feedback law (4.6) is non-predictive if both
F (σ) and G(σ) are non-predictive.

Definition 4.2 A rational function matrix M(σ) is stable if for all the denominators of
the elements the moduli of the roots are all greater than one1. The feedback law (4.6) is
stable if both F (σ) and G(σ) are stable.

Definition 4.3 The feedback law (4.6) is regular if G(σ) is nonsingular and G−1(σ) is
non-predictive2.

Based on the above system construction, define some parameters providing decoupla-

1The roots of a polynomial p(e−τs) all lie in the complex open left half-plane if and only if the moduli

of the roots of p(σ) are all greater than one.
2In [87], although the regularity is defined by adding stability of G−1(σ) to the above conditions, stability

of G−1(σ) does not seems be claimed in the feedback law even though we cite here their statement.
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bility by non-predictive, stable and regular feedback as below:

D̂(σ) :=


c1(σ)An1−1(σ)B(σ)

...
cm(σ)Anm−1(σ)B(σ)

 , (4.8)

Ê(σ) :=


c1(σ)An1(σ)

...
cm(σ)Anm(σ)

 , (4.9)

ˆ̂
E(σ) :=



n1−1∑
k=0

µ1k(σ)c1(σ)Ak(σ)

...
nm−1∑
k=0

µmk(σ)cm(σ)Ak(σ)


, (4.10)

Λ(σ) := diag [ λ1(σ), · · · , λm(σ) ] , (4.11)

νi := min
{

k ∈ Z+

∣∣∣∣ lim
z→0

1
zk

ci(z)Ani−1(z)B(z) 6= 0
}

, i = 1, · · · ,m, (4.12)

ˆ̂
D(σ) :=


1

σνi
c1(σ)An1−1(σ)B(σ)

...
1

σνm
cm(σ)Anm−1(σ)B(σ)

 , (4.13)

E(σ) := Ê(σ) + ˆ̂
E(σ), (4.14)

ai := min
{

k ∈ Z+

∣∣∣∣ lim
z→0

zk

[(
D̂−1(z)

)T
]

i

< ∞
}

, i = 1, · · · ,m, (4.15)

bi := max

{
k ∈ Z+

∣∣∣∣∣ lim
z→0

1
zk

ei(z) < ∞

}
, i = 1, · · · ,m, (4.16)

Γ := {σ 6= 0 | det D̂(σ) = 0}, (4.17)

where Z+ represents non-negative integer set, [ (D̂−1(z))T ]i is the ith row of the matrix
(D̂−1(z))T and ei(z) the ith row of E(σ). Notice that ˆ̂

D(σ) ∈ Rm×m[σ].
Then, Theorem 4.4 below gives a condition for the existence of non-predictive, stable

and regular feedback law (4.6) such that the system (4.3) is decoupled to (4.5) [87].

Theorem 4.4 The linear time-delay system (4.3) can be decoupled to the system (4.5)
with non-predictive, stable and regular feedback (4.6) if and only if the following conditions
are all satisfied:

(I) Letting ˆ̂
D0 be the constant term of ˆ̂

D(σ), ˆ̂
D0 is nonsingular.
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(II) ∀σ ∈ Γ, |σ| > 1 or Γ = ∅.

(III) bi ≥ ai, i = 1, · · · ,m hold for given µik(σ), k = 0, 1, · · · , ni−1, i = 1, · · · ,m.

Chosen Λ(σ) as
λi(σ) = σνiwi(σ), i = 1, · · · ,m, (4.18)

where wi(σ), i = 1, · · · ,m are arbitrary real polynomials of σ with nonzero constant terms,
the feedback law

F (σ) = −D̂−1(σ)E(σ) (4.19)

G(σ) = D̂−1(σ)Λ(σ), (4.20)

can transform the system (4.3) into the decoupled form as follows:

C(σ) (sI − A(σ) − B(σ)F (σ))−1 B(σ)G(σ)

= diag

[
λ1(σ)

sn1 +
∑n1−1

k=0 µ1k(σ)sk
, · · · ,

λm(σ)
snm +

∑nm−1
k=0 µmk(σ)sk

]
. (4.21)

Remark 4.1 In Theorem 4.4, the condition (I) guarantees the existence of a decoupling
feedback law with regular G(σ), (II) the stability of the feedback and (III) the non-
predictiveness of it. While (I) and (II) are ruled by the given system construction, one
can handle (III) with the design parameters µik(σ)’s.

4.2 Pole Assignment by the Lambert W Function

In this section, a new pole placement technique for a quasi-polynomial

s − α − βe−τs, (4.22)

where α, β ∈ C, is proposed by making use of the Lambert W function. More specifically,
the objective of this section is to obtain the pole locations such that every real parts of the
roots of (4.22) are less than an arbitrarily chosen value. Difficulty of this objective is that
once one intends to assign a pole s0 ∈ C− to (4.22), the pair of α and β achieving this
assignment exists infinitely and locations of the other poles are ambiguous, possibly in the
right half-plane. Therefore, α and β must be assigned under proper conditions and this
task cannot be accomplished in a trivial way.

As stated in Subsection 2.5.2, the roots of (4.22) are expressed by the Lambert W
function W as

s =
1
τ
W (τβe−τα) + α. (4.23)
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Moreover, the root

s =
1
τ
W0(τβe−τα) + α (4.24)

is always in the rightmost of all the roots by Lemma 2.3. If the desired pole s0 is em-
bedded into (4.24), then it is ensured that s0 exists in the right position than the others.
Accordingly, the problem is to solve the equation

s0 =
1
τ
W0(τβe−τα) + α (4.25)

for α and β.
Now let zw = τβe−τα be unknown. Assume that α is given a priori. Then, α has to

meet
α ∈ Wα

0 :=
{
−1

τ
W0(zw) + s0

∣∣∣∣ zw ∈ C
}

(4.26)

so as to fulfill (4.25). The region Wα
0 is as depicted in Figure 4.1. For a given α ∈ Wα

0 , if
β satisfies

β = (s0 − α)eτs0 , (4.27)

then it is ensured that s0 is one of the roots of (4.22) and lies in the rightmost of all the
roots.

Conversely, consider the situation where one selects β a priori. Convert (4.25) to

α = s0 −
1
τ
W0(τβe−τα). (4.28)

Substituting (4.28) into (4.22) and assuming (4.22) is vanished, we have

1
τ
W0(τβe−τα) − βe−τs0 = 0

⇔ W0(τβe−τα) = τβe−τs0 (4.29)

⇔ β =
eτs0

τ
W0(τβe−τα). (4.30)

Thus, β has to obey

β ∈ W β
0 :=

{
eτs0

τ
W0(zw)

∣∣∣∣ zw ∈ C
}

, (4.31)

in which W β
0 forms as in Figure 4.1. Meanwhile, from (4.29) and the definition of the

Lambert W function (2.17) and (2.18),

τβe−τs0eτβe−τs0 = τβe−τα

⇔ eτβe−τs0−τs0 = e−τα

⇔ −τα = τβe−τs0 − τs0 + j2πk, k ∈ Z

⇔ α = −βe−τs0 + s0 + j
2πk

τ
, k ∈ Z, (4.32)
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Figure 4.1: Regions of Wα
0 and W β

0 : the dashed curves are out of them.

is obtained, where Z denotes the integer set. Here, recall the requirement (4.26) for α such
that s0 falls into the principal branch of W . Keeping this in mind, when β is given as in
(4.31), k = 0 is necessary in (4.32), otherwise α deviates from Wα

0 since −βe−τs0 +s0 ∈ Wα
0

has to hold and the vertical width of Wα
0 is at largest 2π/τ taken in the left infinity (see

Figure 4.1). As a consequence, for a given β ∈ W β
0 , α ought to be as

α = −βe−τs0 + s0. (4.33)

The above argument is summarized as the statement below.

Theorem 4.5 For arbitrary s0 ∈ C, suppose that α is given as in (4.26) a priori and β

as in (4.27) a posteriori, or conversely β is given as in (4.31) a priori and α as (4.33) a
posteriori. Then, the quasi-polynomial (4.22) has s0 as the rightmost root.

Remark 4.2 Intuitively speaking, Theorem 4.5 is such a pole placement technique that
makes the rightmost pole s0 corresponding to the principal branch of W , say a master pole,
dominate the other poles corresponding to Wk, k = ±1, · · · ,±∞, say slave poles, to follow
the left or under (see Remark 2.3) of the master pole. The locations of the slave poles
are not arbitrary but depends on the allocations by the branches Wk, k = ±1, · · · ,±∞.
Meanwhile, the real part of the master pole stands for the stability exponent of the obtained
pole locations.

Remark 4.3 If there are some constraints on α or β, arbitrary assignment of s0 might not
be achieved; for example, if α is restricted to zero, then the real part of s0 must be greater
than −1/τ as inferred from Figure 4.1.
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Remark 4.4 If one chooses as β = 0, the obtained pole locations are equivalent to delay-
free ones, that is (4.22) only has a pole α. The other poles of (4.22) diverge to the left
infinity likewise to finite spectrum assignment [63], indeed s = Wk(0)/τ + α → −∞, k =
±1,±2, · · · ,±∞.

4.3 Stabilization by the Lambert W Function and Decou-

pling Control

Combining the pole placement technique by the Lambert W function proposed in the pre-
vious section with the decoupling control, a new control starategy is given in this section.

To begin with, simply multiplying the denominators of (4.7) results in(
sn1 +

n1−1∑
k=0

µ1k(σ)sk

)
· · ·

(
snm +

nm−1∑
k=0

µmk(σ)sk

)
. (4.34)

Then, (4.34) may correspond to the characteristic quasi-polynomial of the closed-loop sys-
tem det[ sI −A(σ)−B(σ)F (σ) ]. If not, one should be cautious about the existence of the
hidden modes, especially unstable ones.

Let us factorize (4.34) into the suitable form for the Lambert W function approach:

sn1 +
n1−1∑
k=0

µ1k(σ)sk = (s − α10 − β10σ) · · · (s − α1,n1−1 − β1,n1−1σ),

... (4.35)

snm +
nm−1∑
k=0

µmk(σ)sk = (s − αm0 − βm0σ) · · · (s − αm,nm−1 − βm,nm−1σ).

As expected, stability of (4.34) is governed by (4.35). Remind that µik(σ), k = 0, 1, · · · , ni−
1, i = 1, · · · ,m are design parameters, that is one can handle the characteristics, especially
stability, of (4.34) with selection of αik and βik, k = 0, 1, · · · , ni−1, i = 1, · · · ,m.

Summing up, a stabilization procedure by the Lambert W function and the decoupling
control is summarized as the following algorithm.

Algorithm 4.1
step1: Compute ni, D̂(σ), νi,

ˆ̂
D(σ) for i = 1, · · · ,m and Γ. Then check whether both (I)

and (II) of Theorem 4.4 are true or not. If positive, go to the next step. If negative,
stabilization by this approach is failed.

step2: Let

sni +
ni−1∑
k=0

µik(σ)sk = (s−αi0−βi0σ) · · · (s−αi,ni−1−βi,ni−1σ), i = 1, · · · ,m. (4.36)
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Then for each i = 1, · · · ,m, expand the right-hand side of (4.36) and substitute the
coefficients of sk, k = 0, 1, · · · , ni−1 into µik(σ), k = 0, 1, · · · , ni−1 respectively.

step3: Compute Ê(σ) and ai, i = 1, · · · , m. Estimating ˆ̂
E(σ) and E(σ), for each i =

1, · · · ,m constraints imposed on αik and βik, k = 0, 1, · · · , ni−1 are clarified by the
condition (III) of Theorem 4.4. For each i = 1, · · · ,m, bi ≥ ai is valid if and only if
the terms of ei(σ) with orders of σ, if any, being less than ai are all vanished.

step4: Based on the constraints on αik’s and βik’s, choose the master poles sik ∈ C−,
k = 0, 1, · · · , ni−1, i = 1, · · · ,m assigned to (s − αik − βikσ), k = 0, 1, · · · , ni−1,
i = 1, · · · , m respectively, and then find out αik and βik, k = 0, 1, · · · , ni−1, i =
1, · · · ,m following Theorem 4.5. If there is a pole whose real part cannot be negative,
stabilization is failed.

step5: Decide Λ(σ) accoding to (4.18) and again compute ˆ̂
E(σ) and E(σ) using αik’s and

βik’s obtained in the previous step. Now the feedback law (4.19) and (4.20) can be
in hand. Check whether

det[ sI − A(σ) − B(σ)F (σ) ] =
m∏

i=1

(s − αi0 − βi0σ) · · · (s − αi,ni−1 − βi,ni−1σ) (4.37)

holds or not. If positive, stabilization is accomplished. If negative, there are hidden
modes estimated by

det[ sI − A(σ) − B(σ)F (σ) ]∏m
i=1(s − αi0 − βi0σ) · · · (s − αi,ni−1 − βi,ni−1σ)

. (4.38)

If the hidden modes are all stable, stabilization is still done. Otherwise, it is failed.

step6: Finish.

Remark 4.5 Algorithm 4.1 might be unsuccessful in the steps 1, 4 and 5 because of unde-
couplability of the given system, too severe constraints for non-predictiveness of feedback
and existence of unstable hidden modes respectively.

Remark 4.6 When there is no hidden mode, stability exponent of the resultant closed-
loop system corresponds to the greatest real part among the master poles chosen in the step
4. If there are stable hidden modes, it is possibly determined by the poles of the modes.
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4.4 Illustrative Examples

The stabilization algorithm derived in the previous section is demonstrated by the numerical
examples. The first example illustrates the straightforward case where any hidden modes
do not occur. In the second example, one way to deal with hidden modes is presented.

Example 4.1 Let coefficient matrices and a time-delay in (4.3) be [87]

A(∆) =

 1 0 0
0 1 ∆
1 0 0

 , B(∆) =

 2 + ∆ ∆
0 0
0 1

 , C(∆) =

[
1 0 0
0 1 0

]
,

τ = 0.5.

Note that this system is unstable. In this example, it is aimed to stabilize this system and
estimate stability delay margin of the closed-loop system. Algorithm 4.1 gives the following
results.

step1: Compute the parameters n1, n2, D̂(σ), ν1, ν2,
ˆ̂
D(σ) and Γ:

n1 = 1, n2 = 2, D̂(σ) =

[
2 + σ σ

0 σ

]
,

ν1 = 0, ν2 = 1,
ˆ̂
D(σ) =

[
2 0
0 1

]
+

[
σ σ

0 0

]
,

Γ = {σ 6= 0 | (2 + σ)σ = 0} = {−2}.

It is easy to see that (I) and (II) of Theorem 4.4 are both satisfied.

step2: Letting

s + µ10(σ) = s − α10 − β10σ,

s2 + µ21(σ)s + µ20(σ) = (s − α20 − β20σ)(s − α21 − β21σ),

µ10(σ), µ20(σ) and µ21(σ) are set as

µ10(σ) = −α10 − β10σ,

µ20(σ) = α20α21 + (α20β21 + α21β20)σ,+β20β21σ
2

µ21(σ) = −α20 − α21 + (−β20 − β21)σ.

step3: Ê(σ) and a1, a2 are obtained as

Ê(σ) =

[
1 0 0
σ 1 σ

]
, a1 = 0, a2 = 1.
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Since a1 = 0, α10 and β10 can be chosen freely. From the estimations of ˆ̂
E(σ) and

E(σ) and the fact a2 = 1, the σ0 terms of e2(σ), which equal to

e2(σ) =
[

α20α21 1 − α20 − α21 + α20α21 α20α21

]
,

must be all zero. A pair of
α20 = 1, α21 = 0

is one of the achievable choices. The above setup corroborates the assertion that
b1 = a1 = 0 and b2 = a2 = 1, and thus (III) of Theorem 4.4 is fulfilled.

step4: In this step, master poles, say s10, s20 and s21, are assigned to (s − α10 − β10σ),
(s−α20−β20σ) and (s−α21−β21σ) respectively. Since α10 is free, s10 can be elected
arbitrarily, so let

s10 = −5.

If one chooses as
α10 = −10

a priori, then
β10 = 5e−5

automatically follows by Theorem 4.5. Note that α20 = 1 and α21 = 0 have been
already given in the previous step. Therefore, choices of s20 and s21 are bounded by
these constraints. If

s20 = −0.8, s21 = −2

are given, the constraints are satisfied as conjectured by the ranges of Wα
0 . Subse-

quently,
β20 = −1.8e−0.4, β21 = −2e−1

are again automatic by Theorem 4.5.

step5: Let
Λ(σ) = diag[ 1, σ ].

ˆ̂
E(σ) and E(σ) are recalculated as in the following:

ˆ̂
E(σ) =

 10−5e−5σ 0 0

0 −1+1.8e−0.4σ+3.6e−1.4σ2 −σ+
(
2e−1+1.8e−0.4

)
σ2

 ,

E(σ) =

 11 − 5e−5σ 0 0

σ 1.8e−0.4σ + 3.6e−1.4σ2
(
2e−1 + 1.8e−0.4

)
σ2

 .
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Thus the feedback law (4.19) and (4.20) can be obtained as

F (σ) =


e5(−11 + σ) + 5σ

e5(2 + σ)
9σ(e + 2σ)
5e1.4(2 + σ)

(10 + 9e0.6)σ2

5e(2 + σ)

−1 −9(e + 2σ)
5e1.4

−(10 + 9e0.6)σ
5e

 ,

G(σ) =

 1
2 + σ

− σ

2 + σ

0 1

 .

Furthermore, since

det[ sI − A(σ) − B(σ)F (σ) ] = (s − α10 − β10σ)(s − α20 − β20σ)(s − α21 − β21σ)

takes place, any hidden modes do not emerge. As a result, the decoupled system

ẏ1(t) + 10y1(t) − 5e−5y1(t − 0.5) = v1(t),

ÿ2(t) − ẏ2(t) +
9e−0.4 + 10e−1

5
ẏ2(t − 0.5)

−2e−1y2(t − 0.5) +
18e−1.4 − 10e−1

5
y2(t − 1) = v2(t − 0.5),

whose transfer function matrix is

diag
[

1
s + 10 − 5e−5σ

,
σ

(s − 1 + 1.8e−0.4σ) (s + 2e−1σ)

]
,

is stabilized.

step6: Finish.

Finally, let us estimate stability delay margin of the decoupled system. For this, one
should compose graphs of SW (α10, β10, τ), SW (α20, β20, τ) and SW (α21, β21, τ) with respect

Figure 4.2: SW (α10, β10, τ)
against τ .

Figure 4.3: SW (α20, β20, τ)
against τ .

Figure 4.4: SW (α21, β21, τ)
against τ .
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to τ . Figures 4.2–4.4 drawn with the help of Mathematica show that the decoupled system
is stable for 0 < τ < 0.87. The occurances of SW (α10, β10, τ) = −5, SW (α20, β20, τ) = −0.8
and SW (α21, β21, τ) = −2 can be confirmed at τ = 0.5 in these graphs. It should be noted
that one can carry out this task with Maple or Matlab.

Example 4.2 Consider the time-delay system (4.3) with [94]

A(∆) =

 ∆ 1 + 2∆ ∆
2 + 2∆ 3 3∆
1 + 2∆ 1 + ∆ 1 + ∆

 , B(∆) =

 0 0
1 0
0 1

 , C(∆) =

[
1 1 0
0 0 1

]

τ = 1.

This system is unstable, therefore first it is stabilized and then stability delay margin of
the closed-loop system are estimated by the same way to the previous example. Algorithm
4.1 leads to the following results.

step1: Compute the parameters n1, n2, D̂(σ), ν1, ν2,
ˆ̂
D(σ) and Γ:

n1 = 1, n2 = 1, D̂(σ) =

[
1 0
0 1

]
,

ν1 = 0, ν2 = 0,
ˆ̂
D(σ) =

[
1 0
0 1

]
,

Γ = ∅.

So (I) and (II) of Theorem 4.4 are satisfied.

step2: For given

s + µ10(σ) = s − α10 − β10σ,

s + µ20(σ) = s − α20 − β20σ,

we have

µ10(σ) = −α10 − β10σ,

µ20(σ) = −α20 − β20σ.

step3: Ê(σ) and a1, a2 are obtained as

Ê(σ) =

[
2 + 3σ 4 + 2σ 4σ

1 + 2σ 1 + σ 1 + σ

]
, a1 = 0, a2 = 0.

Hence there is no constraint on α10, β10, α20 and β20, i.e. bi ≥ ai, i = 1, 2 hold true
for any selection of α10, β10, α20 and β20.
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step4: Master poles s10 and s20 assigned to (s−α10−β10σ) and (s−α20−β20σ) respectively
can be freely chosen. Now we set

s10 = −10, s20 = −10,

α10 = −20, α20 = −20,

Then Theorem 4.5 gives

β10 = 10e−10, β20 = 10e−10.

step5: Let
Λ(σ) = diag[ 1, 1 ],

and ˆ̂
E(σ) and E(σ) result in

ˆ̂
E(σ) =

 20 − 10e−10σ 20 − 10e−10σ 0

0 0 20 − 10e−10σ

 ,

E(σ) =

 22 + (3 − 10e−10)σ 24 + (2 − 10e−10)σ 4σ

1 + 2σ 1 + σ 21 + (1 − 10e−10)σ

 .

Consequently, the feedback law (4.19) and (4.20) is given as

F (σ) = −E(σ)

G(σ) =

[
1 0
0 1

]
.

Here, we can see that

det[ sI − A(σ) − B(σ)F (σ) ] 6= (s − α10 − β10σ)(s − α20 − β20σ),

so that the closed-loop system involves some hidden modes. They show up by the
evaluation

det[ sI − A(σ) − B(σ)F (σ) ]
(s − α10 − β10σ)(s − α20 − β20σ)

= s + 1 + σ.

Stablity of the hidden mode s + 1 + σ can be readily tested by the Lambert W
function. Indeed the function SW yields

SW (−1,−1, 1) = −0.605 < 0.

Following Lemma 2.4, it is confirmd that the hidden mode s + 1 + σ is stable, and
thus the resultant decoupled system

ẏ1(t) + 20y1(t) − 10e−10y1(t − 1) = v1(t),

ẏ2(t) + 20y2(t) − 10e−10y2(t − 1) = v2(t),
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with the transfer function matrix

diag
[

1
s + 20 − 10e−10σ

,
1

s + 20 − 10e−10σ

]
,

is also stable.

Stability delay margin of the decoupled system can be observed in Figures 4.5 and 4.6,
the latter illustrates the hidden mode, indicating that the closed-loop system is stable for
any τ > 0.

4.5 Concluding Remarks

This chapter has proposed a new control scheme for the commensurate linear time-delay
system (4.3) based on the decoupling control of [87] and the pole placement technique by
the Lambert W function. This pole placement technique was developed in Section 4.2 and
the guideline was addressed in Theorem 4.5. The procedure for achieving stabilization was
sammurized in Algorithm 4.1.

The decoupling control of [87] leads to non-predictive feedback. Therefore, the proposed
stabilization method does not suffer from the troubles caused by the predictive controls
entailing numerical integrations as mentioned in Section 2.4. However, since the proposed
method is founded on the decoupling control of [87], it becomes unavailable if the non-
predictive control, which demands the condition (III) of Theorem 4.4, cannot be admitted.
In this case, one has to use general rational function controllers resulting in to carry out
some predictive control instead of the non-predictive one.

In Example 4.2, emergence of hidden modes in the closed-loop systems became a prob-
lem. Fortunately, their stability could be checked by the Lambert W function in this

Figure 4.5: SW (αi0, βi0, τ), i = 1, 2
against τ . Figure 4.6: SW (−1,−1, τ) against τ .
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example. However, if this function is not available, one has to use other methods for sta-
bility check of hidden modes. To draw up general guidelines for dealing with such modes
is left to a future investigation.

The proposed pole placement technique is a generalization of the finite spectrum assign-
ment. An advantage over the finite spectrum assignment is to be easy to compute stability
delay margin of the closed-loop systems as demonstrated in Section 4.4. This is due to
leaving the delay effect on the closed-loop systems unlike the class of predictive controls.
To further bring out the contrast between the proposed method and the finite spectrum
assignment is one of interesting issues.



Chapter 5

Additional Dynamics Analysis

This chapter concerns another issue; stability of additional dynamics of linear time-delay
systems induced by model transformations. Similarly to the hereto chapters, the Lambert
W function is employed for this purpose.

Model transformations are needed when some kinds of the Lyapunov approaches are
adopted [24,56,57]. However, such transformations bring about additional dynamics to the
transformed systems and as a result conservative stability conditions may be derived. If
the additional dynamics is stable, such consevativeness is not involved. This suggests an
importance of stability analysis of the additional dynamics. Indeed, this has been intensively
done in [24–26,47,48,50], yet this thesis revisits this topic and gives a new insight into the
issue taking advantage of the Lambet W function.

This chapter is organized as follows. In Section 5.1, additional dynamics is digested
and the underlying problem is exposed. In paticular, first-order and second-order model
transformations are dealt with in this thesis. In Section 5.2, stability of additional dynam-
ics is investigated in terms of the Lambert W function and stability and robust stability
conditions are given for each of the first-order and second-order transformations. Section
5.3 presents numerical examples and from these examples an inclusion relation between the
first-order and second-order transformations is elucidated. Section 5.4 gives a conclusion of
this chapter.

5.1 Additional Dynamics

This first section gives the introduction of additional dynamics induced by model transfor-
mations of linear time-delay systems based on [25,26].

Consider a linear single time-delay system

ẋ(t) = Ax(t) + Bx(t − τ), (5.1)

61
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where A,B ∈ Rn×n, x(t) ∈ Rn and τ > 0 is a time-delay. In the identity

x(t − τ) = x(t) −
∫ 0

−τ
ẋ(t + θ)dθ, (5.2)

replacing ẋ(t + θ) by (5.1), one can obtain

x(t − τ) = x(t) −
∫ 0

−τ
[Ax(t + θ) + Bx(t − τ + θ) ]dθ. (5.3)

Substituting (5.3) into (5.1) results in the additional dynamics system such as

ẋ(t) = (A + B)x(t) − B

∫ 0

−τ
[ Ax(t + θ) + Bx(t − τ + θ) ]dθ. (5.4)

Note that the system (5.4) is classified as so-called distributed time-delay systems. The
above process yielding the transformed system (5.4) from the original one (5.1) is called
first-order model transformation.

Subsequently, substitute (5.4) into ẋ(t + θ) in (5.2) as follows:

x(t − τ) = x(t) −
∫ 0

−τ

[
(A + B)x(t + θ)

− B

∫ 0

−τ
[ Ax(t + θ + φ) + Bx(t − τ + θ + φ) ]dφ

]
dθ. (5.5)

When (5.5) is embedded into the original system (5.1), we have

ẋ(t) = (A + B)x(t) − B

∫ 0

−τ

[
(A + B)x(t + θ)

− B

∫ 0

−τ
[ Ax(t + θ + φ) + Bx(t − τ + θ + φ) ]dφ

]
dθ. (5.6)

The process which transforms the original system (5.1) to the distributed time-delay system
(5.6) is this time called second-order model transformation.

The transformed systems (5.4) and (5.6) are utilized in order to derive some kind of
stability conditions for the original one (5.1) by combining with the Lyapunov methods [24,
56,57]. However, it should be emphasized that the transformed systems are not equivalent
to the original system (5.1) in terms of stability. Namely, the transformed systems might
provide conservative results. Let us explain this nature in the following.

Let po(s) and pt(s) be the characteristic quasi-polynomials of the original system (5.1)
and the transformed system (5.4) of the first type respectively. Then, letting pa(s) be the
characteristic function of the additional dynamics, pt(s) is formulated as

pt(s) = po(s)pa(s), (5.7)
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where
pa(s) = det

[
I − 1 − e−τs

s
B

]
(5.8)

and po(s) = det[ sI − A − Be−τs ]. Thus, it can be realized that the additional dynamics
arises only from B, i.e. the delay term. The roots of additional dynamics are called
additional eigenvalues. Since the equation pa(s) = 0 is equivalent to

1 − λi
1 − e−τs

s
= 0, i = 1, · · · , n, (5.9)

where λi, i = 1, · · · , n are the eigenvalues of B, they can be computed as the solutions of
(5.9).

If the system (5.4) is stable, i.e. all of the roots of pt(s) lie in C−, it is necessary that
the original system (5.1) and the additional dynamics are also stable because the roots of
po(s) and pa(s) must be all in C−. However, its converse is not true. Even though pt(s) is
unstable, it is unclear whether po(s) or pa(s) is unstable or both of them are unstable. It can
be also seen that the stablity of po(s) and pt(s) are equivalent only if under the assumption
that pa(s) is stable. Conversely, the assumption that pa(s) is unstable immediately involves
the result that pt(s) is unstable. Summarizing the above observations, the supposition that
pa(s) is stable makes the stability of the transformed and original systems equivalent. On
the other hand, when pa(s) is unstable, the transformed system (5.4) is also unstable but
the stability of the original system (5.1) cannot be inferred from this fact, namely the model
transformation makes no sense.

Let p2t(s) and p2a(s) be the characteristic functions of the transformed system (5.6)
and the additional dynamics in terms of the second type respectively. In the similar way,
p2t(s) is formed as

p2t(s) = po(s)p2a(s), (5.10)

where p2a(s) is defined by

p2a(s) = det

[
I − 1 − e−τs

s
B +

(
1 − e−τs

s
B

)2
]

. (5.11)

The additional eigenvalues of the second type are derived from the equations

1 − λie
j π

3
1 − e−τs

s
= 0, i = 1, · · · , n,

1 − λie
−j π

3
1 − e−τs

s
= 0, i = 1, · · · , n.

(5.12)

It is obvious from (5.10) that a similar argument to the first type is maintained for the
stability analysis of p2t(s), po(s) and p2a(s).

Summing up this section, we arrive at the following statement which gives the motivation
for the additional dynamics analysis [24–26,47,48,50].
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Theorem 5.1 The transformed system (5.4) induced by the first-order model transforma-
tion or (5.6) induced by the second-order model transformation is equivalent to the original
time-delay system (5.1) in terms of stability if and only if the additional dynamics yielded
from each transformation is stable.

We take note that the formulae (5.9) and (5.12) have suitable forms for applying the
Lambert W function. In the subsequent section, the stability of the additional dynamics is
investigated for each transformation by means of this function.

5.2 Stability Analysis by the Lambert W Function

5.2.1 Stability of the First Type Additional Dynamics

First, the additional dynamics induced by the first-order model transformation described
by (5.9) is investigated. For the sake of simplicity, the subscript of λi is omitted in what
follows, that is λ represents the arbitrary eigenvalues of B.

Suppose −λτ 6= −1. This means that any additional eigenvalues are not at the origin
because (5.9) is vanished by s = 0 if and only if −τλ = −1. Thanks to this supposition,
(5.9) can be modified as follows:

1 − λ
1 − e−τs

s
= 0 (5.13)

⇔ s − λ + λe−τs = 0

⇔ (s − λ)eτs = −λ

⇔ (s − λ)eτ(s−λ) = −λe−τλ

⇔ τ(s − λ)eτ(s−λ) = −τλe−τλ. (5.14)

Using the definition of the Lambert W function (2.17) and (2.18), (5.14) can be further
modified as

τ(s − λ) = W (−τλe−τλ)

⇔ s =
1
τ
W (−τλe−τλ) + λ, (5.15)

which gives an explicit expression of the additional eigenvalues.

Remark 5.1 One should be cautious that even if (5.15) is satisfied for s = 0, this does not
imply that (5.13) has the root s = 0 because of the assumption s 6= 0.

Now define a function AE : C → C as

AE(z) := W0(zez) − z. (5.16)
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The following lemma elucidates a crucial feature of the function AE .

Lemma 5.2 For any z ∈ C, Re[ AE(z) ] ≥ 0 holds true.

Proof Let y = zez. Note that this forms (2.17). Then, for a given z ∈ C, there is a k ∈ Z,
where Z denotes a integer set, such that

z = Wk(y). (5.17)

Replacing zez in (5.16) by y and z by Wk(y), we have

AE(y) = W0(y) − Wk(y). (5.18)

From Lemma 2.3,

Re[W0(y) − Wk(y) ] ≥ 0 (5.19)

is fulfilled for any y ∈ C and k ∈ Z. Connecting (5.18) with (5.19) yields the conclusion.
¤

Lemma 5.2 yields the following stability condition for the additional dynamics of the
first type.

Theorem 5.3 The additional dynamics induced by the first-order model transformation
is stable if and only if the conditions (I) and (II) are both satisfied:

(I) AE(−τλ) = 0,

(II) −τλ 6∈ W0(BC0).

Here, BC0 is as defined in (2.19).

Proof Reformulate (5.15) as

sk =
1
τ
W (−τλe−τλ) + λ, k = 0,±1, · · · ,±∞ (5.20)

associated with the identity AE(−τλ) = τs0.
(Necessity): To prove by the contradiction, first assume AE(−τλ) 6= 0. Then, AE(−τλ)
lies in the complex close right half-plane excluding the origin from Lemma 5.2. Therefore,
it turns out that the additional eigenvalue s0 also lies in the right half-plane; thus the
additional dynamics is unstable.
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Now, under the assumption AE(−τλ) = 0, i.e. s0 = 0, further assume −τλ ∈ W0(BC0).
Since −τλ = W0(−τλe−τλ) due to AE(−τλ) = 0, −τλe−τλ ∈ BC0 is implied by the
assumption −τλ ∈ W0(BC0). Furthermore, Remark 2.1 indicates

s−1 =
1
τ
W−1(−τλe−τλ) + λ

=
1
τ
W ∗

0 (−τλe−τλ) + λ

= s∗0 − λ∗ + λ

= −λ∗ + λ

= 2Im[ λ ]j 6∈ C−, (5.21)

with (∗) being the complex conjugate symbol. (5.21) involves instability of the additional
dynamics and therefore the necessity is valid.
(Sufficiency): Assume that (I) and (II) are satisfied. Note that (I) is equivalent to s0 = 0.
Then, since −τλ is contained in W0, −τλe−τλ 6∈ BC0 has to be required by (II). Recalling
(2.22) of Lemma 2.3, Re[ sk ] < Re[ s0 ] = 0, k = ±1, · · · ,±∞ is true. Moreover, (II)
ensures −τλ 6= −1 (see Figure 2.3), so that s = 0 is not a solution of (5.13) although
s0 = 0. Consequently, all of the additional eigenvalues have negative real parts and thus
the theorem is proved. ¤

Remark 5.2 While −τλe−τλ 6∈ BC0 guarantees (II) of Theorem 5.3, this is not a necessary
condition for (II) due to the multi-valuedness of W . As a counter example, −τλ ∈ W1(BC0)
obviously implies −τλe−τλ ∈ BC0.

Noting that AE(−τλ) = 0 can be rewritten as −τλ = W0(−τλe−τλ), Corollary 5.4
below is a straightforward extension of Theorem 5.3.

Corollary 5.4 The additional dynamics induced by the first-order model transformation
is stable if and only if

−τλ ∈ W0(Bc
C0), (5.22)

where Bc
C0 denotes the complement of BC0.

Remark 5.3 [47, Lemma 7] and [25, Theorem 3 and Corollary 4] can be derived from
Corollary 5.4. In particular, it can be shown that there is no delay margin for stability
except for it in [25]1.

1This fact has been proven in [25] apparently. However the proof was certainly dropped.
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In the rest of this subsection, consider the robust stability of the first type additional
dynamics. Let λ be uncertain parameter and prescribed by the polytope Pλ defined by

λ ∈ Pλ :=

{
nλ∑
i=1

γiλ
i

∣∣∣∣∣
nλ∑
i=1

γi = 1, γ1, · · · , γnλ
≥ 0

}
, (5.23)

where λ1, · · · , λnλ ∈ C. Because W0(Bc
C0) in Corollary 5.4 is a convex set as shown in the

above part of Lemma 3.2, an extreme point result takes place.

Proposition 5.5 Suppose that the additional dynamics induced by the first-order model
transformation has the uncertainty prescribed by λ ∈ Pλ. Then it is robustly stable if and
only if Theorem 5.3 or Corollary 5.4 is fulfilled for λ1, · · · , λnλ .

5.2.2 Stability of the Second Type Additional Dynamics

This subsection focuses on the stability of the second type additional dynamics. As is
obvious from (5.12), the results are immediate by replacing λ in the previous subsection
with λie

j π
3 and λie

−j π
3 , i = 1, · · · , n. Again let us drop the subscript of λi for simplicity.

Theorem 5.3 can be modified to the suitable form for the second type transformation.

Theorem 5.6 The additional dynamics induced by the second-order model transformation
is stable if and only if all of the following conditions (I), (II), (III) and (IV) are satisfied:

(I) AE(−τλej π
3 ) = 0,

(II) AE(−τλe−j π
3 ) = 0,

(III) −τλej π
3 6∈ W0(BC0),

(IV) −τλe−j π
3 6∈ W0(BC0).

Remark 5.4 Likewise to Remark 5.2, −τλe±j π
3 e−τλe±j π

3 6∈ BC0 is only sufficient but not
necessary for −τλe±j π

3 6∈ W0(BC0).

The multiplier e±j π
3 carries out the ±π/3 rotation around the origin. The following

result is evident from Corollary 5.4.

Corollary 5.7 The additional dynamics induced by the second-order model transforma-
tion is stable if and only if

−τλ ∈ W
π
3

0 (Bc
C0) ∩ W

−π
3

0 (Bc
C0), (5.24)

here W θ
0 (Bc

C0) stands for the θ rotation around the origin of W0(Bc
C0).
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Remark 5.5 The second type additional dynamics has been studied in [26]. A similar
assertion to Remark 5.3 can be made for the same reason.

Now switch to the robust stability investigation. Since W
π
3

0 (Bc
C0) and W

−π
3

0 (Bc
C0) are

convex sets, W
π
3

0 (Bc
C0)∩W

−π
3

0 (Bc
C0) is also convex. If the same uncertainty is priscribed, a

slight modification of Proposition 5.5 allows us to obtain the following criterion.

Proposition 5.8 Suppose that the additional dynamics induced by the second-order model
transformation has the uncertainty prescribed by λ ∈ Pλ. Then it is robustly stable if and
only if Theorem 5.6 or Corollary 5.7 is fulfilled for λ1, · · · , λnλ .

5.3 Illustrative Examples

The first example demonstrates the robust stability condition obtained in the previous
section.

Example 5.1 Let λ, one of the eigenvalues of B in the system (5.1), be uncertain parameter
prescribed by the polytope

λ ∈

{
3∑

i=1

γiλ
i

∣∣∣∣∣
3∑

i=1

γi = 1, γ1, γ2, γ3 ≥ 0

}
,

where
λ1 = 0.5 + j0.5, λ2 = 0.5 − j0.5, λ3 = −4.

The robust stability of the above uncertain additional dynamics in terms of the first-order
transformation is checked with stability delay margin using Proposition 5.5 in the following.

According to Proposition 5.5, depict graphs of |AE(−τλ1)|, |AE(−τλ2)| and |AE(−τλ3)|
versus time-delay τ as in Figures 5.1–5.3 using the “ProductLog” function of Mathematica.
It is verified that the additional dynamics is robustly stable for 0 < τ < 1.57 from these

Figure 5.1: |AE(−τλ1)|
against τ .

Figure 5.2: |AE(−τλ2)|
against τ .

Figure 5.3: |AE(−τλ3)|
against τ .
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figures. When one intends to find out stability delay margin like this example, one can
be uncareful about the condition (II) of Theorem 5.3 since it is inevitably broken at the
stability limit of τ .

The second example illustrates an inclusion relation between the first-order and second-
order transformations.

Example 5.2 Let τ = 1 and λ = −3. For this case,

|AE(−τλ)| = 0,

−τλe−τλ = 60.26 6∈ BC0,

|AE(−τλej π
3 )| = 4.42

are observed. According to Theorem 5.3 and 5.7 and reminding Remark 5.2, this additional
dynamics is stable in the sense of the first type but unstable in the second type.

For the same τ , change λ value to λ = 1.1. Then, we have

|AE(−τλ)| = 0.19,

|AE(−τλej π
3 )| = 0,

−τλej π
3 e−τλej π

3 = −0.63 − j0.06 6∈ BC0,

|AE(−τλe−j π
3 )| = 0,

−τλe−j π
3 e−τλe−j π

3 = −0.63 + j0.06 6∈ BC0.

Again according to Theorem 5.3 and 5.7 and Remark 5.4 this time, the additional dynamics
of the first type is unstable but the second type stable.

Furthermore, if λ = −1 for the same τ ,

|AE(−τλ)| = 0,

−τλe−τλ = 2.72 6∈ BC0,

|AE(−τλej π
3 )| = 0,

−τλej π
3 e−τλej π

3 = −0.55 + j1.55 6∈ BC0,

|AE(−τλe−j π
3 )| = 0,

−τλe−j π
3 e−τλe−j π

3 = −0.55 − j1.55 6∈ BC0

are satisfied, namely the first type and second type transformations are both stable.
The above observations illustrate that the stability regions with respect to λ for the two

types of transformation have an intersection, but they do not strictly include each other.
This fact can be visualized as in Figure 5.4. This figure also indicates that the stability
region for the second transformation is however almost included by the first type.
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Figure 5.4: Area with vertical stripes: W0(Bc
C0) and horizontal stripes: W

π
3

0 (Bc
C0) ∩

W
−π

3
0 (Bc

C0).

5.4 Concluding Remarks

In this chapter, additional dynamics, which is induced by model transformations of linear
time-delay systems, has been investigated by means of the Lambert W function. This
function could be well suited to the stability analysis of the additional dynamics, because
their characteristic functions could be algebraically solved by this function. As a result,
stability and robust stability conditions were given in terms of the first-order and second-
order model transformations.

As an alternative model transformation, there is a so-called neutral model transfor-
mation [26, 48]. Since this additional dynamics is analogous to the first-order, therefore
the second-order transformation, the Lambert W function would give the similar results to
those in Section 5.2 immediately. In general, these three transformations can be generalized
into the framework of a parametrized model transformation [26, 48]. This type of trans-
formation can be analyzed by the Lambert W function as well and consequently general
results could be provided in a trivial way.

The model transformations are introduced for utilizing some types of the Lyapunov
functions or functionals. However, the model transformations have not been used so much
in the recent tendency since derivation techniques of stability conditions were greatly im-
proved in [80]. Nowadays, less conservative results are being published one after another.
Nevertheless, once one applies stability criteria based on the model transformations, one
can enjoy handy stability test schemes, and then the additional dynamics analysis would
supply useful information on their conservativeness or usefulness.



Chapter 6

Conclusion

The main contribution of this thesis is to develop robust stability criteria and stabiliza-
tion techniques of linear time-delay systems via the Lambert W function. In the robust
stability analysis of a class of linear single delay systems explored in Chapter 3, the two
types of simplifications of robust stability conditions have been derived: one is the extreme
point result, the other is the boundary implication. Either of them can specify the crucial
positions in the prescribed untertain parameter regions for the robust stability. More specif-
ically, the extreme point result tells us that the robust stability for the box-type and the
sector-type uncertainties in the coefficients is determined by only a few boundary extreme
points of them. Given more general uncertainties, the boundary implication of stability
takes place, which addresses that the critical points for the robust stability exist on the
boundary of the uncertain regions. While they give us the effective robust stability check
schemes, the available system class is limited by the applicability of the scalar Lambert W
function, corresponding to simultaneously triangularizable systems. To relax this limitation
is a currently open issue.

In Chapter 4, a new pole placement technique using the Lambert W function has been
developed. And then combining it with the decoupling control of [87], a controller design
procedure was also devised as summarized in Algorithm 4.1. The proposed control scheme
firstly constructs a fundamental characteristic quasi-polynomial based on the most simple
ones by the decoupling controllers, and then allocates the desired poles following the guide-
line Theorem 4.5. In contrast to the finite spectrum assignment introduced in Section 2.4,
an infinite number of poles are stayed in the closed-loop systems. Meanwhile, by queueing
the uncontrolled poles on the left or under of the arbitrary assigned poles, stabilization
can be carried out by a finite number of poles in spite of the existence of infinitely many
poles. For avoiding predictive control, non-predictive decoupling controllers were adopted.
Thanks to these types of controllers, integral terms are not required in the feedback loops
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and therefore one does not encounter the implimentation problems for such as the finite
spectrum assignment based on spectrally controllable systems. Furthermore, due to the
delay terms left in the closed-loop systems, one can easily compute stability delay margin
of them using the Lambert W function.

Finally in Chapter 5, additional dynamics induced by model transformations of linear
time-delay systems has been investigated via the Lambert W function. This function can
solve the characteristic equations of the additional dynamics and give explicit expressions
of the additional eigenvalues. In particular, the first-order and second-order additional
dynamics have been investigated in this chapter, and as a result handy stability and robust
stability criteria for them were obtained due to the contribution of the W function. It
should be stressed that the obtained results can be immediately modified to the suitable
forms for a neutral model transformation and general parametrized transformation.

The advantage of using the Lambert W function is to be able to give explicit expressions
of the characteristic roots of linear time-delay systems. The characteristic roots represented
by this function can be easily computed using the computer software Mathematica, Maple
or Matlab. Furthermore, by virtue of Lemma 2.3, one can always grasp the crucial root
for stablity and this fact makes the stability features considerably transparent. It is not
so long since this function was reborn in [15], and therefore it would still have some room
for improvement. The author expects that stability analysis and stabilization techniques
using this function could be further developed by prospective researchers and the Lambert
W function approach would be qualified as one of fundamental approaches of time-delay
system analysis.



Appendix A

Proof of Lemma 2.3

Lemma A.1 below, with which the proof of Lemma 2.3 begins, asserts nonsingularity of
each branch of the Lambert W function in the complement of the branch cuts.

Lemma A.1 W0(z) is analytic in the complement of BC0, say Bc
C0 where (c) signifies a

complement of a set. Wk(z), k = ±1, · · · ,±∞ are also analytic in Bc
C .

Proof Let V (w) := wew, w ∈ C. V (w) is an analytic function and dV (w)/dw = (1+w)ew

holds. Since dV (w)/dw 6= 0 for w 6= −1, there is an analytic inverse function of V (w) in a
suitable neighborhood of w 6= −1 [3]. Then, W0(z) is the analytic inverse function of V (w)
in W0(Bc

C0). Wk(z), k = ±1, · · · ,±∞ are also the analytic inverse functions in Wk(Bc
C),

k = ±1, · · · ,±∞ respectively. ¤

Hereafter, consider the mapping of the circle Cr in (2.24). The subsequent two lemmas
shed light on monotonicities of the Lambert W function on the circle Cr concerning the
real part.

Lemma A.2 Re[ W0(rejθ) ] is a monotone increasing function of θ ∈ (−π, 0] and a mono-
tone decreasing function of θ ∈ [0, π]. Re[ Wk(rejθ) ], k = −1, · · · ,−∞ are monotone
increasing functions of θ ∈ (−π, π]. Re[ Wk(rejθ) ], k = 1, · · · ,∞ are monotone decreasing
functions of θ ∈ (−π, π].

Proof Let θ 6= π. Then, since rejθ 6∈ BC0, W0(rejθ) is analytic from Lamma A.1. Thus

Re
[
dW0(rejθ)

dθ

]
= Re

[
W0(rejθ)

1 + W0(rejθ)
j

]
(A.1)

is obtained. Setting W0(rejθ) = ξ0 + jη0, (A.1) is written as

−η0

(1 + ξ0)2 + η2
0

. (A.2)
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Since η0 < 0 for θ ∈ (−π, 0) and η0 > 0 for θ ∈ (0, π) (see Figure 2.3), (A.2) > 0 and
(A.2) < 0 are fulfilled respectively. This shows that Re[W0(rejθ) ] is monotone increasing
in θ ∈ (−π, 0) and monotone decreasing in θ ∈ (0, π). Moreover, monotonicity is preserved
at θ = 0 and π becasue of continuity of Re[W0(rejθ) ] at these points.

In the same way, Wk(rejθ), k = ±1, · · · ,±∞ are analytic for rejθ 6∈ BC by Lemma A.1
and we have

Re
[
dWk(rejθ)

dθ

]
=

−ηk

(1 + ξk)2 + η2
k

, k = ±1, · · · ,±∞, (A.3)

with Wk(rejθ) = ξk + jηk, k = ±1, · · · ,±∞. Since ηk < 0 for Wk, k = −1, · · · ,−∞ (see
Figure 2.4), (A.3) > 0 is satisfied, that is Re[ Wk(rejθ) ], k = −1, · · · ,−∞ are monotone
increasing in θ ∈ (−π, π). Similarly, since ηk > 0 for Wk, k = 1, · · · ,∞ (see Figure 2.5),
(A.3) < 0 is derived and thus Re[Wk(rejθ) ], k = 1, · · · ,∞ are monotone decreasing in
θ ∈ (−π, π). Thereby, continuity of Re[Wk(rejθ) ], k = ±1, · · · ,±∞ at θ = π keeps the
monotonicity and concludes the proof. ¤

Lemma A.3 Re[ Wk(rejθ) ], k = ±1, · · · ,±∞ are monotone increasing functions of r.

Proof Let θ 6= π. Then, rejθ 6∈ BC and Lemma A.1 endorses that Wk(rejθ), k =
±1, · · · ,±∞ are analytic. Therefore, for k = ±1, · · · ,±∞

Re
[
dWk(rejθ)

dr

]
= Re

[
Wk(rejθ)

r(1 + Wk(rejθ))

]
(A.4)

are hold true. Setting Wk(rejθ) = ξk + jηk, k = ±1, · · · ,±∞, (A.4) is written as

ξ2
k + ξk + η2

k

r((1 + ξk)2 + η2
k)

, k = ±1, · · · ,±∞. (A.5)

If ξk = Re[ Wk(rejθ) ] < −1, (A.5) > 0 holds. Namely, in this case, Re[ Wk(rejθ) ], k =
±1, · · · ,±∞ are monotone increasing with respect to r. Moreover, thanks to continuity of
Re[ Wk(rejθ) ], k = ±1, · · · ,±∞ at θ = π, monotonicity is preserved at this point.

Then consider the case where ξk = Re[ Wk(rejθ) ] ≥ −1, k = ±1, · · · ,±∞. To grasp
the sign of (A.5), let us observe the sign of the numerator of (A.5) on the boundary of W0,
that is, ξ = −η/ tan η, η ∈ (−π, π) [15]. We have

ξ2 + ξ + η2 =
η2

tan2 η
− η

tan η
+ η2

=
η

tan2 η cos2 η
(η − sin η cos η). (A.6)

It is easy to see (A.6) ≥ 0. Now fix ξ = ξc ≥ −1. Then, η takes non-negative and non-
positive values doubly; let these values be η+

c and η−c where η+
c = −η−c respectively. Note
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that η+
c = η−c = 0 when ξc = −1. Letting ξk = ξc, k = ±1, · · · ,±∞, we have ηk > η+

c

for k = +1, · · · , +∞ and ηk < η−c for k = −1, · · · ,−∞ (see Figures 2.2, 2.4 and 2.5).
Therefore, (A.5) > 0 is satisfied, namely Re[ Wk(rejθ) ], k = ±1, · · · ,±∞ are monotone
increasing with respect to r. Since Re[ Wk(rejθ) ], k = ±1, · · · ,±∞ are continuous at
θ = π, monotonicity is carried over to this point and the proof is completed. ¤

Now we are at the stage of proving Lemma 2.3 based on Lemmas A.2 and A.3.

Proof (Lemma 2.3) Since Re[ W0(0) ] = 0 and limz→0 Re[ Wk(z) ] = −∞, k = ±1, · · · ,

±∞, the lemma is immediate for z = 0, and thus assume z 6= 0.
Let N be an integer less than or equal to −2. Then Cr where r > 0 crosses the branch

cuts of both WN and WN+1, so that WN (Cr) is connected to WN+1(Cr) continuously and

Re[ WN (rejπ) ] = lim
θ→−π

Re[ WN+1(rejθ) ] (A.7)

holds. (A.7) combining with Lemma A.2 implies Re[ WN (rejθ) ] < Re[ WN+1(rejθ) ] for any
N ≤ −2 that yields

max
k=−1,··· ,−∞

Re[Wk(rejθ) ] = Re[ W−1(rejθ) ] (A.8)

for any r > 0 and θ ∈ (−π, π]. By similar reasoning,

max
k=1,··· ,∞

Re[ Wk(rejθ) ] = Re[ W1(rejθ) ] (A.9)

is fulfilled for any r > 0 and θ ∈ (−π, π].
Now assume r ≥ 1/e. Then, since Cr crosses the branch cut BC0, W−1(Cr) is connected

to W0(Cr) continuously and

Re[W−1(rejπ) ] = lim
θ→−π

Re[W0(rejθ) ] (A.10)

is met. Lemma A.2 further reveals that

inf
θ∈(−π,π]

Re[ W0(rejθ) ] = Re[ W0(rejπ) ], (A.11)

sup
θ∈(−π,π]

Re[ W−1(rejθ) ] = Re[ W−1(rejπ) ]. (A.12)

Meanwhile, symmetry of the image of W0 with respect to the real axis (Remark 2.1) entails

Re[ W0(rejπ) ] = lim
θ→−π

Re[ W0(rejθ) ]. (A.13)

From (A.13) and (A.11),

inf
θ∈(−π,π]

Re[W0(rejθ) ] = lim
θ→−π

Re[W0(rejθ) ] (A.14)
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is true and adjusting (A.12) and (A.14) to (A.10) results in

sup
θ∈(−π,π]

Re[W−1(rejθ) ] = inf
θ∈(−π,π]

Re[ W0(rejθ) ], (A.15)

that is
Re[ W−1(rejθ) ] = Re[ W0(rejθ) ] (A.16)

for any r ≥ 1/e and θ = π, i.e. rejθ ∈ BC0 corresponding to the case (2.23) since (A.11),
(A.12) and (A.15) are satisfied and

Re[ W−1(rejθ) ] < Re[ W0(rejθ) ] (A.17)

for any r ≥ 1/e and θ ∈ (−π, π) corresponding to the case (2.22). On the other hand,
W1(Cr) is connected to W0(Cr) and

lim
θ→−π

Re[W1(rejθ) ] = Re[ W0(rejπ) ] (A.18)

is obtained. This time, Lemma A.2 provides

sup
θ∈(−π,π]

Re[ W1(rejθ) ] = lim
θ→−π

Re[ W1(rejθ) ], (A.19)

and therefore
Re[ W1(rejθ) ] < Re[ W0(rejθ) ] (A.20)

for any r ≥ 1/e and θ ∈ (−π, π] because assembling (A.19), (A.18) and (A.11) involves

sup
θ∈(−π,π]

Re[W1(rejθ) ] = lim
θ→−π

Re[W1(rejθ) ] = inf
θ∈(−π,π]

Re[ W0(rejθ) ]. (A.21)

We now turn to the case of r < 1/e. In this case, Cr does not cross the branch cut BC0.
As a result, W0(Cr) is separated from the other branches (see also Figure 2.6) and we cannot
follow the above discussion. Due to Lemma A.2 and the fact that Re[ W−1(1/e · ejπ) ] = −1
and limθ→−π Re[W1(1/e·ejθ) ] = −1, we have Re[W±1(1/e·ejθ) ] ≤ −1 for θ ∈ (−π, π] where
W±1 represents W1 and W−1. Lemma A.3 deduces a further limitation Re[ W±1(rejθ) ] < −1
for all r < 1/e and θ ∈ (−π, π]. Whereas, notice that Re[ W0(rejθ) ] > −1 for θ ∈ (−π, π]
in the case of r < 1/e (see Figure 2.3). Consequently,

Re[ W±1(rejθ) ] < Re[ W0(rejθ) ] (A.22)

follows for arbitrary r < 1/e and θ ∈ (−π, π].
Lemma 2.3 can now be concluded by gathering (A.8), (A.9), (A.17), (A.20) and (A.22)

for (2.22) and (A.8), (A.9), (A.16) and (A.20) for (2.23). ¤
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