A condition for a circle domain and an infinitely generated classical Schottky group

Fumio Maitani*and Masahiko Taniguchi ${ }^{\dagger}{ }^{\ddagger}$

1 Introduction

Let Ω^{*} be a domain in $\widehat{\mathbb{C}}$ that contains ∞ and $\left\{\Omega_{n}\right\}$ be a regular exhaustion of Ω^{*}, i.e.,
(1) the boundary $\partial \Omega_{n}$ of Ω_{n} consists of a finite number of analytic Jordan curves,
(2) every component of $\Omega^{*}-\Omega_{n}$ is non compact,
(3) $\left(\Omega_{n} \cup \partial \Omega_{n}\right) \subset \Omega_{n+1}$,
(4) $\bigcup_{n=1}^{\infty} \Omega_{n}=\Omega^{*}$.

We assume that $\Omega_{2 n}-\left(\Omega_{2 n-1} \cup \partial \Omega_{2 n-1}\right)$ consists of a finite number of disjoint doubly connected domains $\left\{A_{n}^{i}\right\}_{i=1}^{k(n)}$, which we call boss rings. Let the modulus of A_{n}^{i} be $\log R / r$ when we map A_{n}^{i} conformally onto a concentric circle domain $\{z ; r<|z|<R\}$ and denote it by $m\left(A_{n}^{i}\right)$.

Take a countable number of disjoint closed Jordan domains $\left\{D_{j}\right\}_{j=1}^{\infty}$ in \mathbb{C} such that

$$
\begin{aligned}
& D_{1}, \ldots, D_{\ell(1)} \subset \Omega_{1} \\
& \quad D_{\ell(n)+1}, \ldots, D_{\ell(n+1)} \subset \Omega_{2 n+1}-\left(\Omega_{2 n} \cup \partial \Omega_{2 n}\right),(n=1,2, \ldots),
\end{aligned}
$$

and every component of $\Omega^{*}-\Omega_{n}$ meets $\bigcup_{j=1}^{\infty} D_{j}$. For every $D_{j}(j \leq \ell(n))$, let a doubly connected domain B_{n}^{j} in $\Omega_{2 n-1}-\bigcup_{i=1}^{\ell(n)} D_{i}$ divide D_{j} and $\bigcup_{j \neq i} D_{i}$, which we call a lorica ring. Set $\Omega=\widehat{\mathbb{C}}-\operatorname{Cl}\left(\bigcup_{j=1}^{\infty} D_{j}\right)$, which we call a madreporite domain.

[^0]Definition 1. We call Ω a madreporite domain with long bosses and loricae if

$$
\mu_{n}=\min \left\{\alpha_{n}, \beta_{n}\right\} \text { and } \sum_{n=1}^{\infty} \mu_{n}=\infty,
$$

where α_{n} is the minimum modulus among moduli $\left\{m\left(A_{n}^{i}\right)\right\}_{i=1}^{k(n)}$ and β_{n} is the minimum modulus among moduli $\left\{m\left(B_{n}^{i}\right)\right\}_{i=1}^{\ell(n)}$.

Definition 2. We say that a subdomain D in $\widehat{\mathbb{C}}$ is a circle domain if every boundary component of D is either a circle or a point.

We will show that a madreporite domain with long bosses and loricae is mapped conformally onto a circle domain. A madreporite domain with long bosses and loricae leads up to an infinitely generated Schottky group and relates to a condition for the group to be classical.

Definition 3. We say that a ring domain W in \mathbb{C} is nested inside another W^{\prime} if W is contained in the bounded connected component of $\mathbb{C}-W^{\prime}$.

The every boss ring A_{n+1}^{j} is nested inside a certain boss ring among $\left\{A_{n}^{i}\right\}_{i=1}^{k(n)}$.

We use the following famous classical result due to Ahlfors and Beurling.
Proposition 1. Let D be a domain in $\widehat{\mathbb{C}}$. Then every univalent holomorphic map of D into $\widehat{\mathbb{C}}$ is a Möbius transformation if and only if the complement of D in $\widehat{\mathbb{C}}$ belongs to the class N_{D}, which is, by definition, equivalent to the condition that D belongs to the class $O_{A D}$, i.e., that there are no non-constant holomorphic functions on D with finite Dirichlet energy.

In particular, if the complement E of D in $\widehat{\mathbb{C}}$ belongs to the class N_{D}, then E is totally disconnected and every biholomorphic self-homeomorphism of D is a Möbius transformation.

Various practical tests for a compact set to belong to N_{D} have been considered. See for instance [8] and [9]. We use the following formulation due to McMullen [7].

Proposition 2 (Modulus test). Let $\left\{E_{n}\right\}_{n=1}^{\infty}$ be a sequence of a finite union of disjoint un-nested ring domains (of finite moduli) such that
every component W of E_{n+1} is nested inside a component of E_{n}, and that every sequence of nested ring domains W_{n}, which is a component of E_{n}, satisfies

$$
\sum_{n=1}^{\infty} m\left(W_{n}\right)=+\infty
$$

Let E_{n}^{\prime} be the union of all bounded connected components of $\mathbb{C}-E_{n}$, and set

$$
E=\bigcap_{n=1}^{\infty} E_{n}^{\prime} .
$$

Then E is a totally disconnected compact set belonging to N_{D}.
For a madreporite domain Ω with long bosses and loricae, by this modular test, the above Ω^{*} belongs to $O_{A D}$ and $\widehat{\mathbb{C}}-\Omega^{*}$ is totally disconnected. For a point $p \in \widehat{\mathbb{C}}-\Omega^{*}$, every neighborhood of p meets $\bigcup_{j=1}^{\infty} D_{j}$. Hence $p \in$ $\mathrm{Cl}\left(\bigcup_{j=1}^{\infty} D_{j}\right)$ and $p \notin \Omega$. This shows that $\Omega \subset \Omega^{*}, \Omega=\Omega-\mathrm{Cl}\left(\bigcup_{j=1}^{\infty} D_{j}\right) \subset$ $\Omega^{*}-\mathrm{Cl}\left(\bigcup_{j=1}^{\infty} D_{j}\right)$. It is clear that $\Omega=\widehat{\mathbb{C}}-\mathrm{Cl}\left(\bigcup_{j=1}^{\infty} D_{j}\right) \supset \Omega^{*}-\mathrm{Cl}\left(\bigcup_{j=1}^{\infty} D_{j}\right)$. Thus $\Omega=\Omega^{*}-\mathrm{Cl}\left(\bigcup_{j=1}^{\infty} D_{j}\right)$. Suppose that a point $p \in \mathrm{Cl}\left(\bigcup_{j=1}^{\infty} D_{j}\right)-\bigcup_{j=1}^{\infty} D_{j}$ belongs to Ω^{*}. Then there is an $\Omega_{2 n+1}$ which contains p. We see that $p \in$ $\bigcup_{j=1}^{\ell(n+1)} D_{j}$. This is a contradiction. Therefore $p \notin \Omega^{*}$ and $\Omega=\Omega^{*}-\bigcup_{j=1}^{\infty} D_{j}$.

2 A circle domain

We are concerned with the so-called circle domain theorem of Koebe [4], which has been generalized by He and Schramm [2]. We show a circle domain theorem in the case of a domain with infinite number of boundary components. The proof is in line with the case of finite-ply connected planar domains, which is essentially the same as the original one given by Koebe [4]. See also [1] and [6]. This is a different way to that of He and Schramm in [2].

Theorem 1. Every madreporite domain Ω with long bosses and loricae can be mapped conformally onto a circle domain.

Furthermore, for two circle domains Ω_{1} and Ω_{2} that are mapped conformally onto a madreporite domain with long bosses and loricae, they are conformally equivalent if and only if there is a Möbius transformation T such that $T\left(\Omega_{1}\right)=\Omega_{2}$.

Proof. There is a conformal mapping from Ω to a domain H with horizontal slits ([8], [9]). Let h_{j} be the horizontal slit corresponding to ∂D_{j} and let $H_{n}(\subset H)$ be the part that is mapped conformally onto $\Omega_{2 n-1} \cap \Omega$.

The two H are welded along both upper edges of h_{1} and along both lower edges of h_{1}, and we obtain a doubled planar surface W_{0}. There is an anticonformal homeomorphism τ_{1} of W_{0} that fixes upper edge and lower edge of h_{1} pointwise. The half H of W_{0} has slits $\left\{h_{i}\right\}_{i=2}^{\ell(n)}$ and $H^{*}=\tau_{1}(H)$ has slits $\left\{h_{i}^{*}\right\}_{i=2}^{\ell(n)}$ corresponding to $\left\{h_{i}\right\}_{i=2}^{\ell(n)}$. For every $i(2 \leq i \leq \ell(n))$, let $\hat{W}_{0, i}^{n}$ (resp. $\left.\hat{W}_{0, i}^{n *}\right)$ be the doubled planar surface which is constructed from the W_{0} and the copy $W_{0, i}^{n}$ (resp. $W_{0, i}^{n *}$) of W_{0} welded along $h_{i}\left(\right.$ resp. $\left.h_{i}^{*}\right)$ as the same fashion as above. Let τ_{i} (resp. τ_{i}^{*}) be the anti-conformal homeomorphism of $\hat{W}_{0, i}^{n}\left(\operatorname{resp} . \hat{W}_{0, i}^{n *}\right)$ that fix the upper edge and the lower edge of h_{i} (resp. h_{i}^{*}) pointwise. The composite mapping $g_{j}=\tau_{j} \circ \tau_{1}$ (resp. $g_{j}^{*}=\tau_{j}^{*} \circ \tau_{1}$) is a conformal mapping from W_{0} to $W_{0, i}^{n}$ (resp. $W_{0, i}^{n *}$). Let W_{1}^{n} be the planar Riemann surface

$$
W_{0} \cup \bigcup_{i=2}^{\ell(n)}\left(\left(W_{0, i}^{n} \cup h_{i}\right) \cup\left(W_{0, i}^{n *} \cup h_{i}^{*}\right)\right) .
$$

Similarly we can obtain a planar Riemann surface W_{2}^{n} from W_{1}^{n} by welding $2(2 \ell(n)-3)(\ell(n)-1)$-copies of W_{1}^{n} along all slits corresponding to $\left\{h_{i}, h_{i}^{*}\right\}_{i=2}^{\ell(n)}$ of W_{1}^{n} as the same fashion as above. Repeating this process, we can construct a planar Riemann surface W_{k}^{n} from W_{k-1}^{n} and finally W_{n}^{n}. In this way W_{n}^{n} is made from many copies of H by welding along slits. Similarly let $W_{n}^{n \#}$ be made from many copies of H_{n} by welding along slits. The $W_{n}^{n \#}$ is a subdomain of W_{n}^{n}. The sequences of planar domains $\left\{W_{n}^{n}\right\}$ and $\left\{W_{n}^{n \#}\right\}$ are increasing. Finally we obtain a planar Riemann surface $W=\bigcup_{n=1}^{\infty} W_{n}^{n}$. The $\left\{W_{n}^{n \#}\right\}$ is a regular exhaustion of W. Every τ_{j} can be extended to an anti-conformal involution T_{j} of W which fixes h_{j} pointwise. Now, by the uniformization theorem due to Klein, Poicaré, and Koebe, we can regard $W_{n}^{n \#}, W_{n+1}^{(n+1) \#}$, and W as domains in $\widehat{\mathbb{C}}$, which are denoted by S_{n}, S_{n+1}, S. By the conditions of long bosses and loricae, there is a finite union E_{n} of disjoint un-nested annuli that divides ∂S_{n+1} and ∂S_{n}, whose component is mapped conformally onto a boss ring A_{n}^{i} or a lorica ring B_{n}^{j}. The minimum modulus of the components is μ_{n}. Thus, by Proposition 2, we see S belongs
to $O_{A D}$. We have anti-conformal involutions of S corresponding to T_{j} and denote them by the same symbol. Since the complement of S in $\widehat{\mathbb{C}}$ belongs to N_{D}, every T_{j} should be a Möbius transformation pre-composed by the complex conjugate. The T_{j} fixes every point on the Jordan curve C_{j} in S corresponding to ∂D_{j}. Then C_{j} should be a circle in $\widehat{\mathbb{C}}$. The domain $\Omega_{0}(\subset S)$ corresponding to the half H of W_{0} is mapped conformally onto Ω. Every C_{j} is a boundary component of Ω_{0} and, by $\widehat{\mathbb{C}}-S \in N_{D}$, the other boundary component is a point, which implies the first assertion. A conformal mapping from Ω_{1} to Ω_{2} is extended to a domain belonging to $O_{A D}$ as above S, hence the second assertion is clear from Proposition 1.

3 Infinitely generated Schottky group

Consider a set

$$
\mathcal{C}=\left\{C_{j}, C_{j}^{\prime} \mid j \in \mathbb{N}\right\}
$$

of countably infinite number of pairs of simple closed curves in \mathbb{C} such that not only these curves but also the interiors of them are mutually disjoint. Here, the interior of a simple closed curve C is the bounded connected component of $\mathbb{C}-C$. The other component, together with ∞, is called the exterior of C. Let $D_{j}\left(\right.$ resp. $\left.D_{j}^{\prime}\right)$ be the union of $C_{j}\left(\right.$ resp. $\left.C_{j}^{\prime}\right)$ and the interior of C_{j} $\left(\right.$ resp. $\left.C_{j}^{\prime}\right)$, and denote $\Omega(\mathcal{C})=\widehat{\mathbb{C}}-\mathrm{Cl}\left(\bigcup_{j=1}^{\infty}\left(D_{j} \cup D_{j}^{\prime}\right)\right)$.

We further assume that the exterior of C_{j} is mapped onto the interior of C_{j}^{\prime} by a Möbius transformation g_{j} for every j.

Definition 4. Let G be the group generated by all g_{j} defined as above. If G is discontinuous outside a compact totally disconnected set in $\widehat{\mathbb{C}}$, then we call G an infinitely generated Schottky group with respect to the family \mathcal{C}.

Here, if all elements of \mathcal{C} are circles, then we call G an infinitely generated classical Schottky group.

Remark 1. We use, in [10], the tameness condition and the modified Maskit condition as requirement for an infinitely generated Schottky group. When the tameness condition and the modified Maskit condition are satisfied, $\Omega(\mathcal{C})$
becomes a madreporite domain with long bosses and loricae. Here the tameness condition is the following: There is an increasing sequence $\left\{N_{i}\right\}_{i=1}^{\infty}$ of positive integers such that, for every $N=N_{i}$, there is a ring domain A_{i} of constant modulus $d>0$ which separates $\left\{C_{j}, C_{j}^{\prime} \mid j=1, \cdots, N\right\}$ from $\left\{C_{j}, C_{j}^{\prime} \mid j \geq N+1\right\}$ and is nested inside A_{i-1}. Also, the modified Maskit condition is the following: For every element C_{j} of \mathcal{C}, there is a ring domain B_{j} of constant modulus $d>0$ such that B_{j} separates C_{j} from $\mathcal{C}-\left\{C_{j}\right\}$. The tameness condition clearly implies that $\mathrm{Cl}\left(\bigcup_{j=1}^{\infty} D_{j}\right)-\bigcup_{j=1}^{\infty} D_{j}$ is a single point. The A_{i} is a boss ring and $\left\{B_{j}\right\}_{j=1}^{N_{i}}$ are lorica rings. In this case $\alpha_{i}=\beta_{i}=\mu_{i}=d$ and $\sum_{i=1}^{\infty} \mu_{i}=\infty$.

Let Ω be a madreporite domain with long bosses and loricae that satisfies the following condition:

1. $\ell(n)$ is even and denote it $2 \ell(n)^{*}$,
2. for $j\left(1 \leq j \leq \ell(n)^{*}\right)$ there is a Möbius transformation g_{j} which maps from outside of $D_{2 j-1}$ to inside of $D_{2 j}$.

Then $g_{j}\left(\partial D_{2 j-1}\right)=\partial D_{2 j}$ and g_{j}^{-1} maps from outside of $D_{2 j}$ to inside of $D_{2 j-1}$. Let G be the group generated by all $\left\{g_{j}\right\}_{j=1}^{\infty}$ and call it the group associated to a madreporite domain Ω with long bosses and loricae.

Theorem 2. Let G be the group associated to a madreporite domain Ω with long bosses and loricae. Then G is an infinitely generated Schottky group with respect to $\mathcal{C}=\left\{\partial D_{2 j-1}, \partial D_{2 j}\right\}$.

Proof. For a set A in $\widehat{\mathbb{C}}$, put

$$
\psi_{n}(A)=\bigcup_{j=1}^{\ell(n)^{*}}\left(g_{j}(A) \cup g_{j}^{-1}(A)\right) \cup A .
$$

Set

$$
S_{1, n}=\psi_{n}(\Omega) \cup \bigcup_{j=1}^{\ell(n)} \partial D_{j}, \quad S_{1, n}^{*}=\psi_{n}\left(\Omega_{2 n-1} \cap \Omega\right) \cup \bigcup_{j=1}^{\ell(n)} \partial D_{j},
$$

and

$$
S_{2, n}=\psi_{n}\left(S_{1, n}\right), \ldots, S_{n, n}=\psi_{n}\left(S_{n-1, n}\right), S=\bigcup_{n=1}^{\infty} S_{n, n}
$$

$$
S_{2, n}^{*}=\psi_{n}\left(S_{1, n}^{*}\right), \ldots, S_{n, n}^{*}=\psi_{n}\left(S_{n-1, n}^{*}\right)
$$

Then S is a planar domain and $\left\{S_{n, n}^{*}\right\}$ is a regular exhaustion. By the conditions of long bosses and loricae, there is a finite union E_{n} of disjoint unnested ring domains which divides $\partial S_{n+1, n+1}^{*}$ and $\partial S_{n, n}^{*}$, whose component is mapped conformally onto a boss ring A_{n}^{i} or a lorica ring B_{n}^{j}. The minimum modulus of the components is μ_{n}. Thus we see S belongs to $O_{A D}$. Therefore $\widehat{\mathbb{C}}-S$ of G is totally disconnected and G is an infinitely generated Schottky group.

We call S the developing domain of Ω with respect to G.

4 Infinitely generated classical Schottky group

Following Maskit [6], we introduce a Riemann surface with a symmetry.
Definition 5. We say that a Riemann surface R is P-symmetric with respect to a family of disjoint simple closed curves $\mathcal{L}=\left\{L_{j}\right\}$ if the following conditions are satisfied;
(1) there is a family $\mathcal{G}=\left\{\gamma_{j} \mid j \in \mathbb{N}\right\}$ of simple closed curves such that every γ_{j} is freely homotopic to L_{j} on R and R has an anti-conformal self-homeomorphism f which fixes every γ_{j} pointwise.
(2) $R-\bigcup_{j=1}^{\infty} \gamma_{j}$ is a planar domain.

It is easy to see that all γ_{j} are geodesics with respect to the hyperbolic metric on R. In particular, elements of \mathcal{G} are mutually disjoint. The simple closed curves $\left\{\gamma_{j}\right\}$ play a role of mirrors of R. It always has another mirror by which $R-\bigcup_{j=1}^{\infty} \gamma_{j}$ is a symmetric planar domain.

We call $\mathcal{G} P$-mirrors and f a P-symmetric homeomorphism with respect to \mathcal{L}.

For a Riemann surface R by an infinitely generated Schottky group G, the simple curve on R corresponding to C_{j} is denoted by L_{j} for every j. Set $\mathcal{L}=\left\{L_{j} \mid j \in \mathbb{N}\right\}$ and call it the Schottky marking of R corresponding to G.

Definition 6. We say that the Schottky marked Riemann surface R is P symmetric if R is P-symmetric with respect to the Schottky marking.

Proposition 3. Let \mathcal{C} satisfy the tameness condition and the modified Maskit condition. If the Schottky marked Riemann surface R is P-symmetric, then $R-\bigcup_{j=1}^{\infty} \gamma_{j}$ is mapped conformally onto a madreporite domain with long bosses and loricae.

Proof. By the modified Maskit condition for \mathcal{C}, the hyperbolic lengths of all P-mirrors $\left\{\gamma_{j}\right\}$ are less than a uniform constant. This is the same for the geodesic γ_{i}^{\prime} in R freely homotopic to the essential simple closed curve in every ring domain A_{i} of tameness condition. By using the collar lemmas, there are disjoint ring domains $\left\{\tilde{B}_{j}\left(\supset \gamma_{j}\right)\right\}$ and $\left\{\tilde{A}_{i}\left(\supset \gamma_{i}^{\prime}\right)\right\}$ with a constant modulus, and there is a regular exhaustion $\tilde{\Omega}_{i}$ such that $\tilde{\Omega}_{2 i}-\mathrm{Cl}\left(\tilde{\Omega}_{2 i-1}\right)$ is a ring domain with a constant modulus. This shows that $R-\bigcup_{j=1}^{\infty} \gamma_{j}$ is mapped conformally onto a madreporite domain with long bosses and loricae.

Now, we can state a theorem, which is a natural generalization of a theorem of Maskit in [6].

Theorem 3. Let G be the group associated to a madreporite domain Ω with long bosses and loricae. Further suppose that the corresponding Schottky marked Riemann surface R is P-symmetric. Then G is classical.

Proof. Let $\mathcal{G}=\left\{\gamma_{j} \mid j \in \mathbb{N}\right\}$ be P-mirrors and let f be a P-symmetric homeomorphism with respect to the Schottky marking $\mathcal{L}=\left\{L_{j} \mid j \in \mathbb{N}\right\}$ of R. From the construction, there exists a set

$$
\Gamma=\left\{\tilde{\gamma}_{2 j-1}, \tilde{\gamma}_{2 j} \mid j \in \mathbb{N}\right\}
$$

of countable infinite number of pairs of simple closed curves in $\widehat{\mathbb{C}}$ such that $\tilde{\gamma}_{2 j-1}$ and $\tilde{\gamma}_{2 j}$ are projected to γ_{j} on R and the exterior of $\tilde{\gamma}_{2 j-1}$ is mapped by the Möbius transformation g_{j} onto the interior of $\tilde{\gamma}_{2 j}$ for every j. Let \tilde{D}_{j} be the closed Jordan domain whose boundary is $\tilde{\gamma}_{j}$ and $\tilde{\Omega}=\widehat{\mathbb{C}}-\mathrm{Cl}\left(\bigcup_{j=1}^{\infty} \tilde{D}_{j}\right)$. The developing domain \tilde{S} of $\tilde{\Omega}$ with respect to G is the same as that of Ω with respect to G. Hence \tilde{S} belongs to $O_{A D}$. For every j, f can be lifted to an anticonformal homeomorphism τ_{j} of \tilde{S} which has $\tilde{\gamma}_{j}$ as the fixed point set. Thus τ_{j} is a Möbius transformation pre-composed by the complex conjugate. It follows that $\tilde{\gamma}_{2 j-1}$ and hence also $\tilde{\gamma}_{2 j}=g_{j}\left(\tilde{\gamma}_{2 j-1}\right)$ should be a circle. Therefore G is classical.

ACKnowledgements. The authors express their sincere thanks to the referee for his-her careful reading and valuable comments.

References

[1] L. Ford, Automorphic Functions (2nd ed.), AMS Chelsea Publishing (2004).
[2] Z. He and O. Schramm, Fixed points, Koebe uniformization and circle packing, Ann. of Math. 137 (1993), 369-406.
[3] R. Hidalgo and B. Maskit, On neoclassical Schottky groups, Trans. Amer. Math. Soc. 358 (2006), 4765-4792.
[4] P. Koebe, Abhandlungen zur Theorie der Konformen Abbildung; iV, Math. Z. 7 (1920), 235-301.
[5] B. Maskit, Kleinian groups, Grund. math. Wiss., Springer 287 (1988).
[6] B. Maskit, Remarks on m-symmetric Riemann surfaces, Lipa's legacy, Contemporary Math. 211 (1997), 433-446.
[7] C. McMullen, Complex dynamics and renormalization, Ann. Math. Studies 135, Princeton univ. press (1994).
[8] L. Sario and M. Nakai, Classification theory of Riemann surfaces, Grund. math. Wiss., Springer 164 (1970).
[9] L. Sario and K. Oikawa, Capacity functions, Grund. math. Wiss., Springer 149 (1969).
[10] M. Taniguchi and F. Maitani, A condition for an infinitely generated Schottky group to be classical, Annual Rep. Graduate School, Nara Women's University 27 (2012), 181-188.

[^0]: *Emeritus professor, Kyoto Institute of Technology
 ${ }^{\dagger}$ Department of Mathematics, Faculty of Science, Nara Women's University
 ${ }^{\ddagger}$ The second author is supported by Grant-in-Aid for Scientific Research (C) 23540202 and (B) 20340030

