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1 Introduction

Let Q* be a domain in C that contains co and {2, } be a regular exhaus-
tion of 2, i.e.,
(1) the boundary 0%, of Q, consists of a finite number of analytic Jordan
curves,
(2) every component of Q* — €, is non compact,
(3) (Qn U 8971) - Qn-i—la
(4) U, Q0 = 0

We assume that g, — (Q9,_1 U 0Q9,_1) consists of a finite number of
disjoint doubly connected domains {A;L}ffi), which we call boss rings. Let
the modulus of A’, be log R/r when we map A’, conformally onto a concentric
circle domain {z;r < |z| < R} and denote it by m(A?).

Take a countable number of disjoint closed Jordan domains {D;}52, in C
such that

Dy, ..., Dyqy C €y,
Domy+1s - Doty C Qangr — (Q2n U 08s,,), (n=1,2,...),

and every component of 0" —Q, meets |J;Z, D;. For every D; (j < €(n)), let
a doubly connected domain B in an_l/\_ Uf(:"l) D, divide D; and |J iz Dis
which we call a lorica ring. Set @ = C — CI(U;Z, D;), which we call a

madreporite domain.
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Definition 1. We call 2 a madreporite domain with long bosses and loricae

if .
tyn, = min{a,, 5, } and Z”” = 00,
n=1
where «, is the minimum modulus among moduli {m(A?)}*" and 3, is the

minimum modulus among moduli {m(B:)}:
Definition 2. We say that a subdomain D in C is a circle domain if every

boundary component of D is either a circle or a point.

We will show that a madreporite domain with long bosses and loricae is
mapped conformally onto a circle domain. A madreporite domain with long
bosses and loricae leads up to an infinitely generated Schottky group and

relates to a condition for the group to be classical.

Definition 3. We say that a ring domain W in C is nested inside another

W' if W is contained in the bounded connected component of C — W',

The every boss ring A’ 41 is nested inside a certain boss ring among
{A }k(n)
nti=1"

We use the following famous classical result due to Ahlfors and Beurling.

Proposition 1. Let D be a domain in C. Then every univalent holomorphic
map of D into C is a Mébius transformation if and only if the complement
of D in C belongs to the class Np, which is, by definition, equivalent to the
condition that D belongs to the class O ap, i.e., that there are no non-constant
holomorphic functions on D with finite Dirichlet energy.

In particular, if the complement E of D in C belongs to the class Np,
then E is totally disconnected and every biholomorphic self-homeomorphism

of D is a Mobius transformation.

Various practical tests for a compact set to belong to Np have been
considered. See for instance [8] and [9]. We use the following formulation
due to McMullen [7].

Proposition 2 (Modulus test). Let {E,}>°, be a sequence of a finite

union of disjoint un-nested ring domains (of finite moduli) such that



every component W of E, 1 is nested inside a component of E,, and that
every sequence of nested ring domains W,, which is a component of E,,

satisfies
oo

Z m(W,,) = +oo.

Let E! be the union of all bounded connected components of C — E,,, and

E = ﬁ E..
n=1

Then FE is a totally disconnected compact set belonging to Np.

set

For a madreporite domain €) with long bosses and loricae, by this modular
test, the above 2* belongs to O4p and C—Qis totally disconnected. For
a point p € C - Q*, every neighborhood of p meets U;; D;. Hence p €
CIU;Z, D;) and p ¢ Q. This shows that Q@ C Q*, Q =Q — Cl(UZ, D;) C
Q" = CIU;Z, Dy). Ttis clear that Q = C— Cl(U;2, D;) D Q* = CIU;Z, Dy).
Thus @ = Q*—ClU;Z, D;). Suppose that a point p € CI(UZ, D;)—U;2, D;
belongs to €2*. Then there is an (29,1 which contains p. We see that p €
Uﬁ(:nfl) Dj. This is a contradiction. Therefore p ¢ Q* and Q = Q*—J}Z, D;.

2 A circle domain

We are concerned with the so-called circle domain theorem of Koebe
[4], which has been generalized by He and Schramm [2]. We show a circle
domain theorem in the case of a domain with infinite number of boundary
components. The proof is in line with the case of finite-ply connected planar
domains, which is essentially the same as the original one given by Koebe
[4]. See also [1] and [6]. This is a different way to that of He and Schramm
in [2].

Theorem 1. Fvery madreporite domain €2 with long bosses and loricae can
be mapped conformally onto a circle domain.

Furthermore, for two circle domains €y and €y that are mapped con-
formally onto a madreporite domain with long bosses and loricae, they are
conformally equivalent if and only if there is a Mdbius transformation T such

that T(Ql) = Qg.



Proof. There is a conformal mapping from 2 to a domain H with hori-
zontal slits ([8], [9]). Let h; be the horizontal slit corresponding to dD; and
let H,(C H) be the part that is mapped conformally onto {25,_1 N €.

The two H are welded along both upper edges of h; and along both lower
edges of hy, and we obtain a doubled planar surface W,. There is an anti-
conformal homeomorphism 7 of Wy that fixes upper edge and lower edge of
hy pointwise. The half H of W has slits {hi}f(:"; and H* = 7 (H) has slits
{hj‘}f(:n; corresponding to {hl}f(:"Q) For every i (2 < i < /{(n)), let WU"Z (resp.
ng) be the doubled planar surface which is constructed from the W, and
the copy W, (resp. Wgi) of Wy welded along h; (resp. hj) as the same
fashion as above. Let 7; (resp.7;") be the anti-conformal homeomorphism of
VV&- (resp.ng;‘ ) that fix the upper edge and the lower edge of h; (resp. h})
pointwise. The composite mapping g; = 7; o 7 (resp. g; = 70 1) is a
conformal mapping from Wy to W, (resp. Wg7). Let Wi be the planar
Riemann surface

£(n)
Wo U [ (W5, U k) U (Wgs U ).
i=2

Similarly we can obtain a planar Riemann surface W3 from W{* by welding
2(20(n)—3)(£(n)—1)-copies of W}* along all slits corresponding to {h;, h }f(:";
of W as the same fashion as above. Repeating this process, we can construct
a planar Riemann surface W}' from W;" | and finally W)'. In this way W)}
is made from many copies of H by welding along slits. Similarly let W"#
be made from many copies of H, by welding along slits. The W# is a
subdomain of W". The sequences of planar domains {W"} and {W"#} are
increasing. Finally we obtain a planar Riemann surface W = |J -, W/
The {W#} is a regular exhaustion of W. Every 7; can be extended to an
anti-conformal involution 7j of W which fixes h; pointwise. Now, by the
uniformization theorem due to Klein, Poicaré, and Koebe, we can regard
Wn#, Wéﬂrl)#, and W as domains in C , which are denoted by Sy, Spi1, S.
By the conditions of long bosses and loricae, there is a finite union F, of
disjoint un-nested annuli that divides 05,,.1 and 05,,, whose component is
mapped conformally onto a boss ring A%, or a lorica ring BJ. The minimum

modulus of the components is u,. Thus, by Proposition 2, we see S belongs



to Oap. We have anti-conformal involutions of S corresponding to 7; and
denote them by the same symbol. Since the complement of S in C belongs
to Np, every T} should be a Mobius transformation pre-composed by the
complex conjugate. The T} fixes every point on the Jordan curve C; in S
corresponding to dD;. Then C; should be a circle in C. The domain Qo(C )
corresponding to the half H of Wy is mapped conformally onto 2. Every C;
is a boundary component of 2y and, by C-Se Np, the other boundary
component is a point, which implies the first assertion. A conformal mapping
from €2; to {25 is extended to a domain belonging to O4p as above S, hence

the second assertion is clear from Proposition 1. (]

3 Infinitely generated Schottky group

Consider a set

of countably infinite number of pairs of simple closed curves in C such that not
only these curves but also the interiors of them are mutually disjoint. Here,
the interior of a simple closed curve C' is the bounded connected component
of C — C. The other component, together with oo, is called the exterior of
C. Let Dj (resp. D’) be the union of Cj (resp. %) and the interior of Cj
(resp. Cj), and denote Q(C) = C- CIU;Z,(D; U D).

We further assume that the exterior of C; is mapped onto the interior of

C’ by a Mébius transformation g; for every j.

Definition 4. Let G be the group generated by all g; defined as above. If
G is discontinuous outside a compact totally disconnected set in (E, then we
call G an infinitely generated Schottky group with respect to the family C.

Here, if all elements of C are circles, then we call G an infinitely generated
classical Schottky group.

Remark 1. We use, in [10], the tameness condition and the modified Maskit
condition as requirement for an infinitely generated Schottky group. When

the tameness condition and the modified Maskit condition are satisfied, 2(C)



becomes a madreporite domain with long bosses and loricae. Here the tame-
ness condition is the following: There is an increasing sequence {N;}°; of
positive integers such that, for every N = N,, there is a ring domain A;
of constant modulus d > 0 which separates {C},C} | j = 1,---, N} from
{C;,C5 | 5 = N + 1} and is nested inside 4; ;. Also, the modified Maskit
condition is the following: For every element C; of C, there is a ring domain
B; of constant modulus d > 0 such that B; separates C; from C — {C;}.
The tameness condition clearly implies that CI({;Z, D;) — U2, D; is a sin-
gle point. The A; is a boss ring and {Bj};.v;'l are lorica rings. In this case

;=0 =p =dand >0 pi; = o0.

Let 2 be a madreporite domain with long bosses and loricae that satisfies

the following condition:
1. 4(n) is even and denote it 2¢(n)*,

2. for j (1 < j < {(n)*) there is a Mébius transformation g; which maps

from outside of Dy;_; to inside of Dy;.

Then g;(0Dq;_1) = 0D,; and gj’1 maps from outside of Ds; to inside of
Dy;_1. Let G be the group generated by all {g; 521 and call it the group

associated to a madreporite domain ) with long bosses and loricae.

Theorem 2. Let G be the group associated to a madreporite domain €2 with
long bosses and loricae. Then G is an infinitely generated Schottky group
with respect to C = {0Daj_1,0Ds;}.

Proof. For a set A in @, put

L(n)*
Un(A) = | (g;(A) U gy (A) UA.
j=1
Set
o(n) £(n)
Sin =0 QU JOD;, Si, = vu(QunQ) U JoD;,
j=1 J=1
and

SQ,n - 1/}71(51,71,)7 sy Sn,n = 77Z)n(‘s’n—1,n)7 S = U Sn,nu
n=1
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;,n = w”( in)? e S:;,n = wn(‘g;ktfl,n)'

Then S is a planar domain and {S;,} is a regular exhaustion. By the
conditions of long bosses and loricae, there is a finite union E,, of disjoint un-

nested ring domains which divides 95}, ,,,, and 95}, ,, whose component is

mapped conformally onto a boss ring A’ or a lorica r7ing BJ. The minimum
modulus of the components is yu,,. Thus we see S belongs to O4p. Therefore
C—Sof Gis totally disconnected and G is an infinitely generated Schottky
group. ]

We call S the developing domain of 2 with respect to G.

4 Infinitely generated classical Schottky group

Following Maskit [6], we introduce a Riemann surface with a symmetry.

Definition 5. We say that a Riemann surface R is P-symmetric with re-
spect to a family of disjoint simple closed curves £ = {L;} if the following
conditions are satisfied;

(1) there is a family G = {v; | j € N} of simple closed curves such
that every ~; is freely homotopic to L; on R and R has an anti-conformal
self-homeomorphism f which fixes every «; pointwise.

(2) R—Uj2, v is a planar domain.

It is easy to see that all v; are geodesics with respect to the hyperbolic
metric on R. In particular, elements of G are mutually disjoint. The simple
closed curves {v;} play a role of mirrors of R. It always has another mirror
by which R —J7Z, 7; is a symmetric planar domain.

We call G P-mirrors and f a P-symmetric homeomorphism with respect
to L.

For a Riemann surface R by an infinitely generated Schottky group G,
the simple curve on R corresponding to C; is denoted by L; for every j. Set
L ={L;|j e N} and call it the Schottky marking of R corresponding to G.

Definition 6. We say that the Schottky marked Riemann surface R is P-
symmetric if R is P-symmetric with respect to the Schottky marking.



Proposition 3. Let C satisfy the tameness condition and the modified Maskit
condition. If the Schottky marked Riemann surface R is P-symmetric, then
R — U;;W’j 1s mapped conformally onto a madreporite domain with long

bosses and loricae.

Proof. By the modified Maskit condition for C, the hyperbolic lengths
of all P-mirrors {v;} are less than a uniform constant. This is the same for
the geodesic 7/ in R freely homotopic to the essential simple closed curve in
every ring domain A; of tameness condition. By using the collar lemmas,
there are disjoint ring domains {B;(D 7;)} and {A;(D 4/)} with a constant
modulus, and there is a regular exhaustion QZ- such that Qgi — Cl(flzi_l) is a
ring domain with a constant modulus. This shows that R—U;’il 7; is mapped
conformally onto a madreporite domain with long bosses and loricae. 0

Now, we can state a theorem, which is a natural generalization of a the-
orem of Maskit in [6].

Theorem 3. Let G be the group associated to a madreporite domain €2 with
long bosses and loricae. Further suppose that the corresponding Schottky

marked Riemann surface R is P-symmetric. Then G is classical.

Proof. Let G = {v; | j € N} be P-mirrors and let f be a P-symmetric
homeomorphism with respect to the Schottky marking £ = {L; | j € N} of

R. From the construction, there exists a set

I' = {2j-1,%; | 7 € N}

of countable infinite number of pairs of simple closed curves in C such that
Y2j—1 and 7; are projected to «y; on R and the exterior of 7,;_; is mapped by
the Mobius transformation g; onto the interior of 7y; for every j. Let f)j be
the closed Jordan domain whose boundary is 4; and Q = C - ClUZ, D;).
The developing domain S of 2 with respect to GG is the same as that of 2 with
respect to G. Hence S belongs to O4p. For every j, f can be lifted to an anti-
conformal homeomorphism 7; of S which has 7; as the fixed point set. Thus
7; is a Mobius transformation pre-composed by the complex conjugate. It
follows that 4,;_; and hence also J5; = g;(72j—1) should be a circle. Therefore

G is classical. O
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