A condition for a circle domain and an infinitely generated classical Schottky group

Fumio Maitani*and Masahiko Taniguchi^{†‡}

1 Introduction

Let Ω^* be a domain in $\widehat{\mathbb{C}}$ that contains ∞ and $\{\Omega_n\}$ be a regular exhaustion of Ω^* , i.e.,

(1) the boundary $\partial \Omega_n$ of Ω_n consists of a finite number of analytic Jordan curves,

(2) every component of $\Omega^* - \Omega_n$ is non compact,

(3) $(\Omega_n \cup \partial \Omega_n) \subset \Omega_{n+1},$

(4)
$$\bigcup_{n=1}^{\infty} \Omega_n = \Omega^*$$
.

We assume that $\Omega_{2n} - (\Omega_{2n-1} \cup \partial \Omega_{2n-1})$ consists of a finite number of disjoint doubly connected domains $\{A_n^i\}_{i=1}^{k(n)}$, which we call boss rings. Let the modulus of A_n^i be $\log R/r$ when we map A_n^i conformally onto a concentric circle domain $\{z; r < |z| < R\}$ and denote it by $m(A_n^i)$.

Take a countable number of disjoint closed Jordan domains $\{D_j\}_{j=1}^\infty$ in $\mathbb C$ such that

$$D_1, ..., D_{\ell(1)} \subset \Omega_1,$$

$$D_{\ell(n)+1}, ..., D_{\ell(n+1)} \subset \Omega_{2n+1} - (\Omega_{2n} \cup \partial \Omega_{2n}), \ (n = 1, 2, ...),$$

and every component of $\Omega^* - \Omega_n$ meets $\bigcup_{j=1}^{\infty} D_j$. For every D_j $(j \leq \ell(n))$, let a doubly connected domain B_n^j in $\Omega_{2n-1} - \bigcup_{i=1}^{\ell(n)} D_i$ divide D_j and $\bigcup_{j\neq i} D_i$, which we call a lorica ring. Set $\Omega = \widehat{\mathbb{C}} - \operatorname{Cl}(\bigcup_{j=1}^{\infty} D_j)$, which we call a madreporite domain.

^{*}Emeritus professor, Kyoto Institute of Technology

[†]Department of Mathematics, Faculty of Science, Nara Women's University

^{\ddagger}The second author is supported by Grant-in-Aid for Scientific Research (C) 23540202 and (B) 20340030

Definition 1. We call Ω a madreporte domain with long bosses and loricae if

$$\mu_n = \min\{\alpha_n, \beta_n\} \text{ and } \sum_{n=1}^{\infty} \mu_n = \infty,$$

where α_n is the minimum modulus among moduli $\{m(A_n^i)\}_{i=1}^{k(n)}$ and β_n is the minimum modulus among moduli $\{m(B_n^i)\}_{i=1}^{\ell(n)}$.

Definition 2. We say that a subdomain D in $\widehat{\mathbb{C}}$ is a *circle domain* if every boundary component of D is either a circle or a point.

We will show that a madreporite domain with long bosses and loricae is mapped conformally onto a circle domain. A madreporite domain with long bosses and loricae leads up to an infinitely generated Schottky group and relates to a condition for the group to be classical.

Definition 3. We say that a ring domain W in \mathbb{C} is *nested inside* another W' if W is contained in the bounded connected component of $\mathbb{C} - W'$.

The every boss ring A_{n+1}^{j} is nested inside a certain boss ring among $\{A_{n}^{i}\}_{i=1}^{k(n)}$.

We use the following famous classical result due to Ahlfors and Beurling.

Proposition 1. Let D be a domain in $\widehat{\mathbb{C}}$. Then every univalent holomorphic map of D into $\widehat{\mathbb{C}}$ is a Möbius transformation if and only if the complement of D in $\widehat{\mathbb{C}}$ belongs to the class N_D , which is, by definition, equivalent to the condition that D belongs to the class O_{AD} , i.e., that there are no non-constant holomorphic functions on D with finite Dirichlet energy.

In particular, if the complement E of D in $\widehat{\mathbb{C}}$ belongs to the class N_D , then E is totally disconnected and every biholomorphic self-homeomorphism of D is a Möbius transformation.

Various practical tests for a compact set to belong to N_D have been considered. See for instance [8] and [9]. We use the following formulation due to McMullen [7].

Proposition 2 (Modulus test). Let $\{E_n\}_{n=1}^{\infty}$ be a sequence of a finite union of disjoint un-nested ring domains (of finite moduli) such that

every component W of E_{n+1} is nested inside a component of E_n , and that every sequence of nested ring domains W_n , which is a component of E_n , satisfies

$$\sum_{n=1}^{\infty} m(W_n) = +\infty.$$

Let E'_n be the union of all bounded connected components of $\mathbb{C} - E_n$, and set

$$E = \bigcap_{n=1}^{\infty} E'_n.$$

Then E is a totally disconnected compact set belonging to N_D .

For a madreporite domain Ω with long bosses and loricae, by this modular test, the above Ω^* belongs to O_{AD} and $\widehat{\mathbb{C}} - \Omega^*$ is totally disconnected. For a point $p \in \widehat{\mathbb{C}} - \Omega^*$, every neighborhood of p meets $\bigcup_{j=1}^{\infty} D_j$. Hence $p \in \operatorname{Cl}(\bigcup_{j=1}^{\infty} D_j)$ and $p \notin \Omega$. This shows that $\Omega \subset \Omega^*$, $\Omega = \Omega - \operatorname{Cl}(\bigcup_{j=1}^{\infty} D_j) \subset \Omega^* - \operatorname{Cl}(\bigcup_{j=1}^{\infty} D_j)$. It is clear that $\Omega = \widehat{\mathbb{C}} - \operatorname{Cl}(\bigcup_{j=1}^{\infty} D_j) \supset \Omega^* - \operatorname{Cl}(\bigcup_{j=1}^{\infty} D_j)$. Thus $\Omega = \Omega^* - \operatorname{Cl}(\bigcup_{j=1}^{\infty} D_j)$. Suppose that a point $p \in \operatorname{Cl}(\bigcup_{j=1}^{\infty} D_j) - \bigcup_{j=1}^{\infty} D_j$ belongs to Ω^* . Then there is an Ω_{2n+1} which contains p. We see that $p \in \bigcup_{j=1}^{\ell(n+1)} D_j$. This is a contradiction. Therefore $p \notin \Omega^*$ and $\Omega = \Omega^* - \bigcup_{j=1}^{\infty} D_j$.

2 A circle domain

We are concerned with the so-called circle domain theorem of Koebe [4], which has been generalized by He and Schramm [2]. We show a circle domain theorem in the case of a domain with infinite number of boundary components. The proof is in line with the case of finite-ply connected planar domains, which is essentially the same as the original one given by Koebe [4]. See also [1] and [6]. This is a different way to that of He and Schramm in [2].

Theorem 1. Every madreporite domain Ω with long bosses and loricae can be mapped conformally onto a circle domain.

Furthermore, for two circle domains Ω_1 and Ω_2 that are mapped conformally onto a madreporite domain with long bosses and loricae, they are conformally equivalent if and only if there is a Möbius transformation T such that $T(\Omega_1) = \Omega_2$. Proof. There is a conformal mapping from Ω to a domain H with horizontal slits ([8], [9]). Let h_j be the horizontal slit corresponding to ∂D_j and let $H_n(\subset H)$ be the part that is mapped conformally onto $\Omega_{2n-1} \cap \Omega$.

The two H are welded along both upper edges of h_1 and along both lower edges of h_1 , and we obtain a doubled planar surface W_0 . There is an anticonformal homeomorphism τ_1 of W_0 that fixes upper edge and lower edge of h_1 pointwise. The half H of W_0 has slits $\{h_i\}_{i=2}^{\ell(n)}$ and $H^* = \tau_1(H)$ has slits $\{h_i^*\}_{i=2}^{\ell(n)}$ corresponding to $\{h_i\}_{i=2}^{\ell(n)}$. For every i $(2 \le i \le \ell(n))$, let $\hat{W}_{0,i}^n$ (resp. $\hat{W}_{0,i}^{n*}$) be the doubled planar surface which is constructed from the W_0 and the copy $W_{0,i}^n$ (resp. $W_{0,i}^{n*}$) of W_0 welded along h_i (resp. h_i^*) as the same fashion as above. Let τ_i (resp. τ_i^*) be the anti-conformal homeomorphism of $\hat{W}_{0,i}^n$ (resp. $\hat{W}_{0,i}^{n*}$) that fix the upper edge and the lower edge of h_i (resp. h_i^*) pointwise. The composite mapping $g_j = \tau_j \circ \tau_1$ (resp. $g_j^* = \tau_j^* \circ \tau_1$) is a conformal mapping from W_0 to $W_{0,i}^n$ (resp. $W_{0,i}^{n*}$). Let W_1^n be the planar Riemann surface

$$W_0 \cup \bigcup_{i=2}^{\ell(n)} ((W_{0,i}^n \cup h_i) \cup (W_{0,i}^{n*} \cup h_i^*)).$$

Similarly we can obtain a planar Riemann surface W_2^n from W_1^n by welding $2(2\ell(n)-3)(\ell(n)-1)$ -copies of W_1^n along all slits corresponding to $\{h_i, h_i^*\}_{i=2}^{\ell(n)}$ of W_1^n as the same fashion as above. Repeating this process, we can construct a planar Riemann surface W_k^n from W_{k-1}^n and finally W_n^n . In this way W_n^n is made from many copies of H by welding along slits. Similarly let $W_n^{n\#}$ be made from many copies of H_n by welding along slits. The $W_n^{n\#}$ is a subdomain of W_n^n . The sequences of planar domains $\{W_n^n\}$ and $\{W_n^{n\#}\}$ are increasing. Finally we obtain a planar Riemann surface $W = \bigcup_{n=1}^{\infty} W_n^n$. The $\{W_n^{n\#}\}$ is a regular exhaustion of W. Every τ_j can be extended to an anti-conformal involution T_j of W which fixes h_j pointwise. Now, by the uniformization theorem due to Klein, Poicaré, and Koebe, we can regard $W_n^{n\#}, W_{n+1}^{(n+1)\#}$, and W as domains in $\widehat{\mathbb{C}}$, which are denoted by S_n, S_{n+1}, S . By the conditions of long bosses and loricae, there is a finite union E_n of disjoint un-nested annuli that divides ∂S_{n+1} and ∂S_n , whose component is mapped conformally onto a boss ring A_n^i or a lorica ring B_n^j . The minimum modulus of the components is μ_n . Thus, by Proposition 2, we see S belongs to O_{AD} . We have anti-conformal involutions of S corresponding to T_j and denote them by the same symbol. Since the complement of S in $\widehat{\mathbb{C}}$ belongs to N_D , every T_j should be a Möbius transformation pre-composed by the complex conjugate. The T_j fixes every point on the Jordan curve C_j in Scorresponding to ∂D_j . Then C_j should be a circle in $\widehat{\mathbb{C}}$. The domain $\Omega_0(\subset S)$ corresponding to the half H of W_0 is mapped conformally onto Ω . Every C_j is a boundary component of Ω_0 and, by $\widehat{\mathbb{C}} - S \in N_D$, the other boundary component is a point, which implies the first assertion. A conformal mapping from Ω_1 to Ω_2 is extended to a domain belonging to O_{AD} as above S, hence the second assertion is clear from Proposition 1.

3 Infinitely generated Schottky group

Consider a set

$$\mathcal{C} = \{C_j, C'_j \mid j \in \mathbb{N}\}$$

of countably infinite number of pairs of simple closed curves in \mathbb{C} such that not only these curves but also the interiors of them are mutually disjoint. Here, the *interior* of a simple closed curve C is the bounded connected component of $\mathbb{C} - C$. The other component, together with ∞ , is called the *exterior* of C. Let D_j (resp. D'_j) be the union of C_j (resp. C'_j) and the interior of C_j (resp. C'_j), and denote $\Omega(\mathcal{C}) = \widehat{\mathbb{C}} - \operatorname{Cl}(\bigcup_{j=1}^{\infty} (D_j \cup D'_j))$.

We further assume that the exterior of C_j is mapped onto the interior of C'_j by a Möbius transformation g_j for every j.

Definition 4. Let G be the group generated by all g_j defined as above. If G is discontinuous outside a compact totally disconnected set in $\widehat{\mathbb{C}}$, then we call G an *infinitely generated Schottky group* with respect to the family \mathcal{C} .

Here, if all elements of C are circles, then we call G an infinitely generated classical Schottky group.

Remark 1. We use, in [10], the tameness condition and the modified Maskit condition as requirement for an infinitely generated Schottky group. When the tameness condition and the modified Maskit condition are satisfied, $\Omega(\mathcal{C})$

becomes a madreporite domain with long bosses and loricae. Here the tameness condition is the following: There is an increasing sequence $\{N_i\}_{i=1}^{\infty}$ of positive integers such that, for every $N = N_i$, there is a ring domain A_i of constant modulus d > 0 which separates $\{C_j, C'_j \mid j = 1, \dots, N\}$ from $\{C_j, C'_j \mid j \ge N+1\}$ and is nested inside A_{i-1} . Also, the modified Maskit condition is the following: For every element C_j of \mathcal{C} , there is a ring domain B_j of constant modulus d > 0 such that B_j separates C_j from $\mathcal{C} - \{C_j\}$. The tameness condition clearly implies that $\operatorname{Cl}(\bigcup_{j=1}^{\infty} D_j) - \bigcup_{j=1}^{\infty} D_j$ is a single point. The A_i is a boss ring and $\{B_j\}_{j=1}^{N_i}$ are lorica rings. In this case $\alpha_i = \beta_i = \mu_i = d$ and $\sum_{i=1}^{\infty} \mu_i = \infty$.

Let Ω be a madreporte domain with long bosses and loricae that satisfies the following condition:

- 1. $\ell(n)$ is even and denote it $2\ell(n)^*$,
- 2. for j $(1 \le j \le \ell(n)^*)$ there is a Möbius transformation g_j which maps from outside of D_{2j-1} to inside of D_{2j} .

Then $g_j(\partial D_{2j-1}) = \partial D_{2j}$ and g_j^{-1} maps from outside of D_{2j} to inside of D_{2j-1} . Let G be the group generated by all $\{g_j\}_{j=1}^{\infty}$ and call it the group associated to a madreporite domain Ω with long bosses and loricae.

Theorem 2. Let G be the group associated to a madreporite domain Ω with long bosses and loricae. Then G is an infinitely generated Schottky group with respect to $C = \{\partial D_{2j-1}, \partial D_{2j}\}.$

Proof. For a set A in $\widehat{\mathbb{C}}$, put

$$\psi_n(A) = \bigcup_{j=1}^{\ell(n)^*} (g_j(A) \cup g_j^{-1}(A)) \cup A.$$

Set

$$S_{1,n} = \psi_n(\Omega) \cup \bigcup_{j=1}^{\ell(n)} \partial D_j, \quad S_{1,n}^* = \psi_n(\Omega_{2n-1} \cap \Omega) \cup \bigcup_{j=1}^{\ell(n)} \partial D_j,$$

and

$$S_{2,n} = \psi_n(S_{1,n}), \dots, S_{n,n} = \psi_n(S_{n-1,n}), \ S = \bigcup_{n=1}^{\infty} S_{n,n},$$

$$S_{2,n}^* = \psi_n(S_{1,n}^*), \dots, S_{n,n}^* = \psi_n(S_{n-1,n}^*).$$

Then S is a planar domain and $\{S_{n,n}^*\}$ is a regular exhaustion. By the conditions of long bosses and loricae, there is a finite union E_n of disjoint unnested ring domains which divides $\partial S_{n+1,n+1}^*$ and $\partial S_{n,n}^*$, whose component is mapped conformally onto a boss ring A_n^i or a lorica ring B_n^j . The minimum modulus of the components is μ_n . Thus we see S belongs to O_{AD} . Therefore $\widehat{\mathbb{C}} - S$ of G is totally disconnected and G is an infinitely generated Schottky group.

We call S the *developing domain* of Ω with respect to G.

4 Infinitely generated classical Schottky group

Following Maskit [6], we introduce a Riemann surface with a symmetry.

Definition 5. We say that a Riemann surface R is *P*-symmetric with respect to a family of disjoint simple closed curves $\mathcal{L} = \{L_j\}$ if the following conditions are satisfied;

(1) there is a family $\mathcal{G} = \{\gamma_j \mid j \in \mathbb{N}\}$ of simple closed curves such that every γ_j is freely homotopic to L_j on R and R has an anti-conformal self-homeomorphism f which fixes every γ_j pointwise.

(2) $R - \bigcup_{j=1}^{\infty} \gamma_j$ is a planar domain.

It is easy to see that all γ_j are geodesics with respect to the hyperbolic metric on R. In particular, elements of \mathcal{G} are mutually disjoint. The simple closed curves $\{\gamma_j\}$ play a role of *mirrors* of R. It always has another mirror by which $R - \bigcup_{j=1}^{\infty} \gamma_j$ is a symmetric planar domain.

We call \mathcal{G} *P*-mirrors and f a *P*-symmetric homeomorphism with respect to \mathcal{L} .

For a Riemann surface R by an infinitely generated Schottky group G, the simple curve on R corresponding to C_j is denoted by L_j for every j. Set $\mathcal{L} = \{L_j \mid j \in \mathbb{N}\}$ and call it the *Schottky marking* of R corresponding to G.

Definition 6. We say that the Schottky marked Riemann surface R is *P*-symmetric if R is P-symmetric with respect to the Schottky marking.

Proposition 3. Let C satisfy the tameness condition and the modified Maskit condition. If the Schottky marked Riemann surface R is P-symmetric, then $R - \bigcup_{j=1}^{\infty} \gamma_j$ is mapped conformally onto a madreporte domain with long bosses and loricae.

Proof. By the modified Maskit condition for C, the hyperbolic lengths of all P-mirrors $\{\gamma_j\}$ are less than a uniform constant. This is the same for the geodesic γ'_i in R freely homotopic to the essential simple closed curve in every ring domain A_i of tameness condition. By using the collar lemmas, there are disjoint ring domains $\{\tilde{B}_j(\supset \gamma_j)\}$ and $\{\tilde{A}_i(\supset \gamma'_i)\}$ with a constant modulus, and there is a regular exhaustion $\tilde{\Omega}_i$ such that $\tilde{\Omega}_{2i} - \operatorname{Cl}(\tilde{\Omega}_{2i-1})$ is a ring domain with a constant modulus. This shows that $R - \bigcup_{j=1}^{\infty} \gamma_j$ is mapped conformally onto a madreporite domain with long bosses and loricae. \Box

Now, we can state a theorem, which is a natural generalization of a theorem of Maskit in [6].

Theorem 3. Let G be the group associated to a madreporite domain Ω with long bosses and loricae. Further suppose that the corresponding Schottky marked Riemann surface R is P-symmetric. Then G is classical.

Proof. Let $\mathcal{G} = \{\gamma_j \mid j \in \mathbb{N}\}$ be P-mirrors and let f be a P-symmetric homeomorphism with respect to the Schottky marking $\mathcal{L} = \{L_j \mid j \in \mathbb{N}\}$ of R. From the construction, there exists a set

$$\Gamma = \{ \tilde{\gamma}_{2j-1}, \tilde{\gamma}_{2j} \mid j \in \mathbb{N} \}$$

of countable infinite number of pairs of simple closed curves in $\widehat{\mathbb{C}}$ such that $\widetilde{\gamma}_{2j-1}$ and $\widetilde{\gamma}_{2j}$ are projected to γ_j on R and the exterior of $\widetilde{\gamma}_{2j-1}$ is mapped by the Möbius transformation g_j onto the interior of $\widetilde{\gamma}_{2j}$ for every j. Let \widetilde{D}_j be the closed Jordan domain whose boundary is $\widetilde{\gamma}_j$ and $\widetilde{\Omega} = \widehat{\mathbb{C}} - \operatorname{Cl}(\bigcup_{j=1}^{\infty} \widetilde{D}_j)$. The developing domain \widetilde{S} of $\widetilde{\Omega}$ with respect to G is the same as that of Ω with respect to G. Hence \widetilde{S} belongs to O_{AD} . For every j, f can be lifted to an anticonformal homeomorphism τ_j of \widetilde{S} which has $\widetilde{\gamma}_j$ as the fixed point set. Thus τ_j is a Möbius transformation pre-composed by the complex conjugate. It follows that $\widetilde{\gamma}_{2j-1}$ and hence also $\widetilde{\gamma}_{2j} = g_j(\widetilde{\gamma}_{2j-1})$ should be a circle. Therefore G is classical.

ACKNOWLEDGEMENTS. The authors express their sincere thanks to the referee for his-her careful reading and valuable comments.

References

- L. Ford, Automorphic Functions (2nd ed.), AMS Chelsea Publishing (2004).
- [2] Z. He and O. Schramm, Fixed points, Koebe uniformization and circle packing, Ann. of Math. 137 (1993), 369-406.
- [3] R. Hidalgo and B. Maskit, On neoclassical Schottky groups, Trans. Amer. Math. Soc. 358 (2006), 4765-4792.
- [4] P. Koebe, Abhandlungen zur Theorie der Konformen Abbildung; iV, Math. Z. 7 (1920), 235-301.
- [5] B. Maskit, Kleinian groups, Grund. math. Wiss., Springer 287 (1988).
- [6] B. Maskit, Remarks on *m*-symmetric Riemann surfaces, Lipa's legacy, Contemporary Math. **211** (1997), 433-446.
- [7] C. McMullen, Complex dynamics and renormalization, Ann. Math. Studies 135, Princeton univ. press (1994).
- [8] L. Sario and M. Nakai, Classification theory of Riemann surfaces, Grund. math. Wiss., Springer 164 (1970).
- [9] L. Sario and K. Oikawa, Capacity functions, Grund. math. Wiss., Springer 149 (1969).
- [10] M. Taniguchi and F. Maitani, A condition for an infinitely generated Schottky group to be classical, Annual Rep. Graduate School, Nara Women's University 27 (2012), 181-188.