Conformal embedding of a finite bordered Riemann surface

Fumio Maitani Kyoto Institute of Technology Matsugasaki, Sakyoku 606, Kyoto, Japan

1 Reduced Teichmüller space

Let R be a finite compact bordered Riemann surface of genus p with m boundary components and \hat{R} be the doubled Riemann surface of R, which is compact Riemann surface of genus 2p + m - 1. Let i be an anticonformal mapping (involution) on \hat{R} such that $i \circ i = identity$ and $R \cup i(R) = \hat{R}$. The reduced Teichmüller space of R_0 is

 $T(R_0) = \{(R, g); R \text{ is a finite compact bordered Riemann surface which}\}$

is mapped by a quasiconformal mapping g from R_0 to R/ \sim ,

where (R_1, g_1) is equivalent to (R_2, g_2) if there is a conformal mapping h from R_1 onto R_2 such that $g_2^{-1} \circ h \circ g_1$ is homotopic to the identity mapping. We know $T(R_0)$ is a 6p - 6 + 3m dimensional real analytic manifold. For $R_i = (R_i, g_i) \in T(R_0)$, set

 $T(R_0; R_i) = \{R_j = (R_j, g_j) \in T(R_0); \text{ there is a conformal mapping } f_j \text{ from }$

 R_i into a proper subdomain of R_j with boundary

such that $g_i^{-1} \circ f_j \circ g_i$ is homotopic to the identity mapping}.

We request that f_j is conformal on ∂R_i and $f_j(\partial R_i)$ consists of analytic curves on R_j . Hence $R_j - f_j(R_i)$ has a positive measure. All Riemann surfaces by quasiconformal deformations on $R_j - f_j(R_i)$ cover a neighborhood V of R_j in $T(R_0)$. It is clear $V \subset T(R_0; R_i)$, hence $T(R_0; R_i)$ is open.

2 Optimal conformal embedding

For $(R_j, g_j) \in T(R_0; R_i)$, set

 $CE(R_i, R_j) = \{f; f \text{ is a conformal mapping from } R_i^{\circ} \text{ into } R_j^{\circ} \text{ such that}$

 $g_i^{-1} \circ f \circ g_i$ is homotopic to the identity mapping},

where R_k° denotes the interior of R_k .

Let R'_j be a subdomain of R°_j such that the boundary is contained in R°_j and every component of $R^{\circ}_j - R'_j$ is doubly connected. For a R'_j , consider the following curve family;

 $Z(R_i^{\circ}, R_j') = \{\gamma; \gamma \text{ consists of a family of rectifiable closed Jordan curves}\}$

each of which divides the boundary components of a component of

 $R_j^{\circ} - R_j'$ from others and γ divides all the components}.

Denote the extremal length of $Z(R_j^{\circ}, R_j')$ by $\lambda(Z(R_j^{\circ}, R_j'))$, i.e.,

 $\lambda(Z(R_j^{\circ}, R_j')) = \sup_{\rho} \{\frac{1}{A(\rho)}; \rho \text{ is a Borel measurable conformal density} \}$

such that $inf_{\gamma \in Z(R_j^\circ, R_j')} \{ \int_{\gamma} \rho(z) |dz| \} \ge 1 \},$

where $A(\rho) = \int \int_{R_j} \rho^2(x+iy) dx dy$. If $(R_k, g_k) \sim (R'_k, g'_k)$, there is a conformal mapping h_k such that $g'_k^{-1} \circ h_k \circ g_k$ is homotopic to the identity mapping. Note that for $f \in CE(R_i, R_j)$,

$$\lambda(Z(R_j^{\circ}, f(R_i^{\circ}))) = \lambda(Z(R_j^{\circ}, h_j \circ f \circ h_i^{-1}(R_i^{\circ}))).$$

Put

$$B(R_i, R_j) = \inf\{\lambda(Z(R_i^\circ, f(R_i^\circ))); f \in CE(R_i, R_j)\},\$$

where $B(R_i, R_j) = \infty$ if $CE(R_i, R_j)$ is empty. We have

Theorem 1. Suppose $B(R_i, R_j) < \infty$. There is an $f_{ij} \in CE(R_i, R_j)$ which satisfies $\lambda(Z(R_j^\circ, f_{ij}(R_i^\circ))) = B(R_i, R_j)$. The boundary of $f_{ij}(R_i^\circ)$ consists of trajectories of a quadratic holomorphic differential on R_j ; hence the boundary is analytic.

We call $f_{ij}(R_i)$ an optimal conformal embedding from R_i to R_j .

Let H be a harmonic function on $R_j - f_{ij}(R_i)$ such that H takes value one on the boundary of $f(R_j)$ and vanishes on the boundary of $f_{ij}(R_i)$. $(\frac{\partial}{\partial z}H)^2 dz^2$ coincides with a quadratic holomorphic differential which is stated in the Theorem. The components of $R_j - f_{ij}(R_i)$ will be all annuli. For a $t \ (0 < t \leq 1)$ set $R_{jt} = f_{ij}(R_i) \cup \{z \in R_j - f_{ij}(R_i); H(z) \leq t\}$. Then $R_{jt} \in T(R_0; R_i)$ and R_{jt} , $R_{j1} = R_j$ are arcwise connected in $T(R_0; R_i)$. For the other $R_k \in T(R_0; R_i)$, similarly $R_{kt'}$ and R_k are arcwise connected in $T(R_0; R_i)$. For small t, we can choose t' so that $R_{kt'} \subset R_{jt}$. Since $R_{kt'}$ and R_{jt} become arcwise connected, R_k and R_j are arcwise connected in $T(R_0; R_i)$. It follows that

Proposition 2.

 $T(R_0; R_i)$ is a 6p-6+3m dimensional real analytic submanifold of $T(R_0)$. Suppose there exists $R_{\infty}(\neq R_i)$ which belongs to $\partial T(R_0; R_i) \subset T(R_0)$. We can take a sequence $R_n \in T(R_0; R_i)$ converging to R_{∞} . There are quasiconformal mappings h_n from R_n to R_{∞} such that $g_{\infty}^{-1} \circ h_n \circ g_n$ are homotopic to the identity mapping and

$$\lim_{n \to \infty} esssup \left| \frac{h_{n\bar{z}}}{h_{nz}} \right| = 0$$

For an optimal conformal embedding f_{in} , $h_n \circ f_{in}$ is a quasiconformal mapping from R_i to R_{∞} . A subsequence $\{h_k \circ f_{ik}\}$ may converge to a conformal mapping h_{∞} from R_i° into R_{∞} . If $R_{\infty} - h_{\infty}(R_i)$ has a positive measure, then it is shown $R_{\infty} \in T(R_0; R_i)$. This is a contradiction. Therefore $h_{\infty}(\partial R_i)$ consists of boundary of R_{∞} which may be added slits.

Ishida's example

Let

$$G = \mathbf{C} - [-1, 0] \cup [1, 2] \cup [3, \infty],$$
$$G_{\epsilon} = \hat{\mathbf{C}} - [-1, 0] \cup [1, 2 + \epsilon] \cup [3 - \epsilon .\infty] \ (0 < \epsilon < \frac{1}{2})$$

There is no subdomain G' of G such that G' is conformal to G_{ϵ} and G - G' has a positive measure.

Suppose that there exists a subdomain G' satisfying the condition. Let

 $Z = \{\gamma; \gamma \text{ is a closed Jordan curve in } G$ which devide [-1, 0] and $[1, 2] \cup [3, \infty]\},$ $Z_{\epsilon} = \{\gamma; \gamma \text{ is a closed Jordan curve in } G_{\epsilon}$ which devide [-1, 0] and $[1, 2 + \epsilon] \cup [3 - \epsilon, \infty]$,

 $Z' = \{\gamma; \gamma \text{ is a closed Jordan curve in } G'$

which devide [-1, 0] and $[1, 2] \cup [3, \infty]$.

Take a harmonic function u on $\mathbf{C} - [-1, \hat{0}] \cup [1, \infty]$ whose boundary value takes 1 on [-1, 0] and 0 on $[1, \infty]$. We have

$$\lambda(Z) = \|du\|^2 = \lambda(Z_{\epsilon}) = \lambda(Z').$$

For an admissible density $\rho(x + iy) = \sqrt{u_x^2 + u_y^2}$,

$$\begin{split} \inf_{\gamma \in Z'} \int_{\gamma} \rho(x+iy) |d(x+iy)| &\geq \inf_{\gamma \in Z} \int_{\gamma} \rho(x+iy) |d(x+iy)|, \\ &\int \int_{G'} \rho(x+iy)^2 dx dy < \int \int_{G} \rho(x+iy)^2 dx dy. \end{split}$$

Hence

$$\begin{split} \lambda(Z') &\geq \frac{(\inf_{\gamma \in Z'} \int_{\gamma} \rho(x+iy) |d(x+iy)|)^2}{\int \int_{G'} \rho(x+iy)^2 dx dy} \\ &> \frac{(\inf_{\gamma \in Z} \int_{\gamma} \rho(x+iy) |d(x+iy)|)^2}{\int \int_{G} \rho(x+iy)^2 dx dy} = \lambda(Z). \end{split}$$

This is a contradiction.

3 Embeddability

Let Λ be the real Hilbert space of square integrable complex differentials whose inner product is given by

$$<\omega,\sigma>= Real \ part \ of \int \int_R \omega \bigwedge *\bar{\sigma} = \Re(\omega,\sigma),$$

where $*\sigma$ denotes the harmonic conjugate differential of σ and $\bar{\sigma}$ denotes the complex conjugate of σ . The following subspaces of Λ will be used

 $\Lambda_h = \{\lambda \in \Lambda : \lambda \text{ is a complex harmonic differential}\},\$

 $\Lambda_{eo} = \{\lambda \in \Lambda : \lambda \text{ is a closed differential which is orthogonal to } \Lambda_h,$

 $\Gamma_h = \{ \lambda \in \Lambda_h : \lambda \text{ is a real differential} \},\$

For a cycle C in a Riemann surface, let

 $Z(C) = \{\gamma; \gamma \text{ is a sum of rectifiable oriented curves}\}$

which is homologous to C.

Denote the extremal length of Z(C) by $\lambda(Z(C))$. Let $\sigma(C) = \sigma_R(C)$ be the period reproducing harmonic differential on R i.e.

$$\int_C \omega = (\omega, \sigma(C)) \text{ for } \omega \in \Gamma_h(R).$$

Then we know

Accola's Theorem

$$\lambda(Z(C)) = (\sigma(C), \sigma(C)) = \|\sigma(C)\|^2.$$

The following is clear by Theorem 1.

Lemma 3. For every cycle C in R_0 and $R_k \in T(R_0; R_i)$

$$\lambda(Z(g_k(C))) < \lambda(Z(g_i(C))).$$

 Set

$$\tilde{T}(R_0; R_i) = \{ R_j \in T(R_0); \lambda(Z(g_j(C))) < \lambda(Z(g_i(C))) \text{ for every cycle } C \}$$

By Lemma $\tilde{T}(R_0; R_i)$ contains $T(R_0; R_i)$. Can we expect $\tilde{T}(R_0; R_i) = T(R_0; R_i)$? The case of annulus is trivially valid. For the case of once hold torus, depending on Shiba's results, M. Masumoto gives the following.

Masumoto's Theorem

$$T(R_0; R_i) = \{ (X_j, Y_j, Z_j); F(X_i - X_j, Y_i - Y_j, Z_i - Z_j) < 0, \\ F(X_i, Y_i, Z_i) < F(X_j, Y_j, Z_j) \},$$

where

$$F(X, Y, Z) = X^{2} + Y^{2} + Z^{2} - 2XY - 2YZ - 2ZX,$$

for a canonical homology basis $\{A, B\}$ of R_0

$$X_k = \lambda(Z(g_k(A))), \ Y_k = \lambda(Z(g_k(B))), \ Z_k = \lambda(Z(g_k(A) - g_k(B))),$$

Consider the case of triply connected region $R_0(p = 0, m = 3)$. Let $\{B_1, B_2\}$ be a canonical homology basis of R_0 . Set

$$X_k = \lambda(Z(g_k(B_1))), \ Y_k = \lambda(Z(g_k(B_2))), \ Z_k = \lambda(Z(g_k(B_1) + g_k(B_2))),$$

We use the same notation C in R_i and regard $C = q_1 B_1 + q_2 B_2$ a cycle in \hat{R}_i . For the period reproducing harmonic differential $\sigma(C) = \sigma_{\hat{R}_i}(C)$ on \hat{R}_i

$$\|\sigma(C)\|^2 = q_1^2 \|\sigma(B_1)\|^2 + 2q_1q_2(\sigma(B_1), \sigma(B_2))\|^2 + q_2^2 \|\sigma(B_2)\|^2.$$

By

$$2(\sigma(B_1), \sigma(B_2)) = \|\sigma(B_1) + \sigma(B_2)\|^2 - \|\sigma(B_1)\|^2 - \|\sigma(B_2)\|^2,$$

we get

$$0 \le \|\sigma(C)\|^2 - \|\sigma(g_j \circ g_i^{-1}(C))\|^2$$

$$= 2((X_i - X_j)q_1^2 + (Z_i - Z_j - (X_i - X_j) - (Y_i - Y_j))q_1q_2 + (Y_i - Y_j)q_2^2).$$

It follows that $X_i - X_j > 0$ and

$$F(X_i - X_j, Y_i - Y_j, Z_i - Z_j) < 0.$$

Take a canonical homology basis $\{A_k, B_k\}_{k=1,\dots,p}$ and $\{B_k\}_{k=2p+1,\dots,2p+m-1}$ of R, where $B_{2p+\ell}$ is homologus to some boundary component. Set $A_{p+k} = -i(A_k)$ and $B_{p+k} = i(B_k)$. Further we can take $\{A_k\}_{k=2p+1,\dots,2p+m-1}$ in \hat{R} such that $\{A_k, B_k\}_{k=1,\dots,2p+m-1}$ is a canonical homology basis of \hat{R} .

Denote

$$\begin{aligned} \alpha_{k,\ell}(R) &= (\sigma_R(A_k), \sigma_R(A_\ell))_R, \ \tilde{\alpha}_{k,\ell}(R) = (\sigma_R(A_k), \sigma_R(B_\ell))_R = \beta_{\ell,k}(R), \\ \beta_{k,\ell}(R) &= (\sigma_R(B_k), \sigma_R(A_\ell))_R, \ \tilde{\beta}_{k,\ell}(R) = (\sigma_R(B_k), \sigma_R(B_\ell))_R = \tilde{\beta}_{\ell,k}(R), \\ \tilde{\alpha}_{k,2p+\ell}(R) &= (\sigma_R(A_k), \sigma_R(B_{2p+\ell}))_R, \ \beta_{2p+k,\ell}(R) = (\sigma_R(B_{2p+k}), \sigma_R(A_\ell))_R = \tilde{\alpha}_{\ell,2p+k}(R), \\ \tilde{\beta}_{2p+k,\ell}(R) &= (\sigma_R(B_{2p+k}), \sigma_R(B_\ell))_R, \ \tilde{\beta}_{2p+k,2p+\ell}(R) = (\sigma_R(B_{2p+k}), \sigma_R(B_{2p+\ell}))_R, \\ \text{and matrices} \end{aligned}$$

$$\mathbf{A}(R) = (\alpha_{k,\ell}(R)), \ \tilde{\mathbf{A}}(R) = (\tilde{\alpha}_{k,\ell}(R)), \ \mathbf{B}(R) = (\beta_{k,\ell}(R)), \ \tilde{\mathbf{B}}(R) = (\tilde{\beta}_{k,\ell}(R)).$$

$$\mathbf{C}(R) = (\beta_{2p+k,\ell}(R)), \ \tilde{\mathbf{C}}(R) = (\tilde{\beta}_{2p+k,\ell}(R)), \ \tilde{\mathbf{D}}(R) = (\tilde{\beta}_{2p+k,2p+\ell}(R)).$$

 Set

$$\mathbf{S}(R) = \begin{pmatrix} \mathbf{A}(R) & {}^{t}\mathbf{B}(R) & {}^{t}\mathbf{C}(R) \\ \mathbf{B}(R) & \tilde{\mathbf{B}}(R) & {}^{t}\tilde{\mathbf{C}}(R) \\ \mathbf{C}(R) & \tilde{\mathbf{C}}(R) & \tilde{\mathbf{D}}(R) \end{pmatrix}$$

For a cycle

$$C = \sum_{k=1}^{p} (t_k A_k + s_k B_k) + \sum_{k=1}^{m-1} s_{2p+k} B_{2p+k},$$
$$\lambda(Z(C)) = \|\sigma_R(C)\|^2 = \int_C \sigma_R(C) = \mathbf{x} \mathbf{S}(R)^t \mathbf{x},$$

where

 $\mathbf{x} = (t_1, \dots, t_p, s_1, \dots, s_p, s_{2p+1}, \dots, s_{2p+m-1}),$

It follows that $\mathbf{S}(R)$ is positive definite.

We have

Proposition 5. If $R_j \in T(R_0; R_i)$, then $\mathbf{S}(R_i) - \mathbf{S}(R_j)$ is positive definite. Take a canonical homology basis $\{A_k, B_k\}_{k=1,\dots,p}$ and $\{B_k\}_{k=2p+1,\dots,2p+m-1}$ of R, where $B_{2p+\ell}$ is homologus to some boundary component. Set $A_{p+k} = -i(A_k)$ and $B_{p+k} = i(B_k)$. Further we can take $\{A_k\}_{k=2p+1,\dots,2p+m-1}$ in \hat{R} such that $\{A_k, B_k\}_{k=1,\dots,2p+m-1}$ is a canonical homology basis of \hat{R} . Let

$$\tilde{\psi}_k = \sigma_R(A_k) + i^* \sigma_R(A_k), \ \tilde{\psi}_{p+k} = \sigma_R(B_k) + i^* \sigma_R(B_k), \ \tilde{\psi}_{2p+k} = \sigma_R(B_{2p+k}) + i^* \sigma_R(B_{2p+k}).$$

,

We have

$$\begin{split} &\int_{A_{\ell}} \tilde{\psi}_{k} = \left\{ \begin{array}{ll} \alpha_{k,\ell}, & k = 1, \dots, p \\ \beta_{k-p,\ell} - i\delta_{k-p,\ell}, & k = p+1, \dots, 2p \\ \beta_{k,\ell}, & k = 2p+1, \dots, 2p+m-1 \end{array} \right. \\ &\int_{B_{\ell}} \tilde{\psi}_{k} = \left\{ \begin{array}{ll} \tilde{\alpha}_{k,\ell} + i\delta_{k,\ell}, & k = 1, \dots, p \\ \tilde{\beta}_{k-p,\ell}, & k = p+1, \dots, 2p \\ \tilde{\beta}_{k,\ell}, & k = 2p+1, \dots, 2p+m-1 \end{array} \right. \\ &\int_{B_{2p+\ell}} \tilde{\psi}_{k} = \left\{ \begin{array}{ll} \tilde{\beta}_{2p+k,\ell}, & k = 1, \dots, p \\ \tilde{\beta}_{p+k,\ell}, & k = p+1, \dots, 2p \\ \tilde{\beta}_{k,2p+\ell}, & k = 2p+1, \dots, 2p+m-1 \end{array} \right. \end{split}$$

Period reproducer belongs to ${}^*\Gamma_{ho}$ and can be symmetrically extended to the doubled Riemann surface. On the other hand, the element of Γ_{ho} can be anti-symmetrically extended to the doubled Riemann surface. Hence $\tilde{\psi}_k$ is extended to the doubled Riemann surface and denote it $\hat{\psi}_k$. Then

$$\begin{split} \int_{A_{2p+\ell}} \hat{\psi}_k &= \begin{cases} 0, & k = 1, \dots, p \\ 0, & k = p+1, \dots, 2p \\ 2\delta_{k,2p+\ell}, & k = 2p+1, \dots, 2p+m-1 \end{cases},\\ \int_{A_{p+\ell}} \hat{\psi}_k &= \begin{cases} -\alpha_{k,\ell}, & k = 1, \dots, p \\ -\beta_{k-p,\ell} - i\delta_{k-p,\ell}, & k = p+1, \dots, 2p \\ -\beta_{k,\ell}, & k = 2p+1, \dots, 2p+m-1 \end{cases},\\ \int_{B_{p+\ell}} \hat{\psi}_k &= \begin{cases} \tilde{\alpha}_{k,\ell} - i\delta_{k,\ell}, & k = 1, \dots, p \\ \tilde{\beta}_{k-p,\ell}, & k = p+1, \dots, 2p \\ \tilde{\beta}_{k,\ell}, & k = 2p+1, \dots, 2p+m-1 \end{cases},\end{split}$$

We know $\{\hat{\psi}_k\}$ is linearly independent over complex number field and they are a basis of holomorphic differentials on the doubled Riemann surface. It follows that by Torelli's theorem

Proposition 6. If $\mathbf{S}(R_i) = \mathbf{S}(R_j)$, R_i and R_j are conformally equivalent. Since Riemann's period matrix is represented by inner products of some period reproducing harmonic differentials, we have

Corollary 7. $R_i = R_k \text{ in } T(R_0) \text{ if}$ $\lambda(Z(q_k(C))) = \lambda(Z(q_i(C))) \text{ for every cycle } C \text{ in } R_0.$

For $(R, g) \in T(R_0)$, let

 $I(R) = \{\tilde{R} : \tilde{R} \text{ is a compact Riemann surface of ginus } p \text{ in which } R \text{ is embedded} \}$

and \tilde{i} be the embedding conformal mapping from R into \tilde{R} . For homology basis $\{\tilde{i} \circ g(A_k), \tilde{i} \circ g(B_k)\}$ in \tilde{R} , take the Riemann's Period Matrix $\mathbf{T}(\tilde{R})$. Let $\mathbf{P}(R) = \{\mathbf{T}(\tilde{R}) : \tilde{R} \in I(R)\}$. If $R_j \in T(R_0, R_i)$, then $\mathbf{P}(R_j) \subset \mathbf{P}(R_i)$. Does the converse valid?

4 Punctured extensions

A curve family $\{\gamma_k\}_{k=1}^N$ in R is admissible if every γ_k is disjoint and not freely homotopic to the other γ_ℓ . Assume that every boundary component C_j is contained in the admissible curve family and let $\gamma_j = C_j, j = 1, ..., m$. There is a quadratic differential φ on R_i with closed trajectory such that closed trajectories freely homotopic to $g_i(\gamma_k)$ constructs ring domain $\{A_k\}$ and their ring domains divide R_i disjointedly and almost. Let $a_k = a_k(\varphi) =$ $inf\{\int_{\gamma} |\varphi|^{1/2}; \gamma$ is freely homotopic to $g_i(\gamma_k)\}$. We can take charts $\{z_j\}_{j=1}^m$ of $\{A_j\}_{j=1}^m$ such that $\varphi_j = -(\frac{a_j dz_j}{2\pi z_j})^2$ and attach punctured disks $\{z_j; 0 < |z_j| <$ $c_j\}$ to R_i and get a punctured Riemann surface $\tilde{R}_i = R_i(\varphi)$, which we call it punctured extension by quadratic differential with closed trajectory. The φ is regarded a quadratic differential on \tilde{R}_i with closed trajectory and let $\{A'_j\}$ be the punctured disk in \tilde{R}_i which consists of the closed trajectories freely homotopic to $g_i(\gamma_k)$.

Let $m'_j(\tilde{R}_i; \varphi)$, $m''_j(\tilde{R}_i; \varphi)$ be the reduced moduli for punctured disks A'_j , $\{A'_j - A_j\}$ with respect to some fixed parameter at the puncture and $m_k = m_k(\tilde{R}_i; \varphi)$ be the module of ring domain A_k . We denote $PE(R_i)$ such all punctured extensions of R_i and admissible curve family contained all boundary component. by quadratic differential with closed trajectory. If $R_\ell \in T(R_0; R_i)$, by theorem 1, there exists a punctured extension in $PE(R_i) \cap PE(R_\ell) \neq \emptyset$ and a quadratic differential φ with closed trajectory such that every boundary component of R_i and R_ℓ is the closed trajectory and

$$m''_{j}(\tilde{R}_{i};\varphi) > m''_{j}(\tilde{R}_{\ell};\varphi), \ j = 1,...,m.$$

Proposition 8. Let $R_i(\varphi_i) = R_\ell(\varphi_\ell) \in PE(R_i) \cap PE(R_\ell)$ under the same admissible curve family. If

$$\sum a_j(\varphi_i)^2 m'_j(\tilde{R}_\ell;\varphi_\ell) + \sum a_k(\varphi_i)^2 m_k(\tilde{R}_\ell;\varphi_\ell)$$
$$= \sum a_j(\varphi_i)^2 m'_j(\tilde{R}_i;\varphi_i) + \sum a_k(\varphi_i)^2 m_k(\tilde{R}_i;\varphi_i)$$

and

$$m_j''(\tilde{R}_i;\varphi_i) > m_j''(\tilde{R}_\ell;\varphi_\ell), \ j = 1,...,m,$$

then $\varphi_i = \varphi_\ell$ and $R_\ell \in T(R_0; R_i)$.

5 Abelian Teichmüller disk

Let $\{A_k, B_k\}$ be a canonical homology basis of modulo dividing cycles, Γ_x be a subspace of Γ_h and $*\Gamma_x^{\perp}$ be the space of harmonic conjugate differentials which are orthogonal to every differential of Γ_x . Assume that $\Gamma_x = *\Gamma_x^{\perp}$ and every differential in Γ_x has vanishing A period and is semiexact. Set $\Lambda_x = \Gamma_x + i * \Gamma_x^{\perp}$ and call Λ_x a behavior space. A holomorphic differential ψ is said to have Λ_x -behavior if there exists $\omega \in \Lambda_x$ and $\omega_0 \in \Lambda_{eo}$ such that $\psi = \omega + \omega_0$ outside of a compact set. Let ϕ be a square integrable holomorphic differential and

$$AT(\phi) = \{t\frac{\bar{\phi}}{\phi}; |t| < 1\},\$$

which is regarded as a submanifold of Teichmüller space and called an Abelian Teichmüller disk. Let g_t be a quasiconformal mapping from R_0 to R_t whose Bertrami differential is $t\frac{\phi}{\phi}$.

Let $\Gamma_x(R_t)$ be the orthogonal projection to $\Gamma_h(R_t)$ of the pull back $\Gamma_x(R_0) \circ g_t^{-1}$. Then $\Lambda_x(R_t) \circ g_t \subseteq \Lambda_x(R_0) + \Lambda_{eo}(R_0)$ and there exists uniquely a holomorphic differential ψ_i^t with Λ_x -behavior such that

$$\int_{g_t(A_j)} \psi_i^t = \delta_{ij} \quad (\delta_{k,\ell} \text{ is Kroneker's delta}).$$

Set

$$\tau_{ij}(t;\phi) = \int_{g_t(B_j)} \psi_i^t.$$

Theorem 9. (cf. Kra [K])

Let ϕ and ϕ' be non zero holomorphic differential with Λ_x -behavior. Assume that for complex numbers t and s in the open unit disk,

$$au_{ij}(t;\phi) = au_{ij}(s;\phi')$$
 for every i and j.

Then

$$t\frac{\bar{\phi}}{\phi} = s\frac{\bar{\phi}'}{\phi'}$$

References

- [A] L. V. Ahlfors, Conformal Invariants, McGraw-Hill, 1973.
- [IT] Y. Imayoshi and M. Taniguchi, Introduction toTeichmüller space, Springer-Tokyo, 1992.
- [K] I. Kra, The Carathéodory metric on Abelian Teichmüller disks, J. Analyse Math., 40(1981), 129-143.
- [L] O. Lehto, Univalent functions and Teichmüller spaces, Springer-Verlag, 1986.
- [MF] F. Maitani, Abelian Teichmüller disks restricted by behavior. Memoirs of Kyoto Inst. Tech., 35(1986), 1-11.
- [MF2] F. Maitani, Variation of meromorphic differentials under quasiconformal deformations. J. Math. Kyoto Univ., 24(1984), 49-66.
- [MF3] F. Maitani, What is an optimal embedding, Proceedings of 5-th International Colloquium on Finite or Infinite Dimensional Complex Analysis, Beijing, (1997), 221–228.
- [MM] M. Masumoto, Conformal mapping of a once-hold torus. J. D'Analysis Mathématique, 66(1995), 117-136.
- [S] M. Shiba, The moduli of compact continuations of an open Riemann surface of genus one. Trans. Amer. Math. Soc., 301(1987), 237-246.
- [SK] K. Strebel, Quadratic differentials. Springer-Verlag, 1984.