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1 Quasiconformal-holomorphic movement

We are concerned with the change of function theoretic quantities on
Riemann surfaces induced by quasiconformal deformations depending on a
complex parameter. As a quasiconformal deformation we consider Riemann
surfaces with conformal structures decided by certain Beltrami differentials
depending holomorphically on a complex parameter. Let R be an open Rie-
mann surface and M(R) be the set of Beltrami differentials:

{µ = µ(z)
dz̄

dz
; µ is measurable and ‖µ‖∞ = esssupR|µ(z)| < 1}

From µ ∈ M(R) we get another Riemann surface Rµ with the Riemannian
metric ds = λ(z)|dz + µ(z)dz̄|. We consider Beltrami differentials µt =
µ(z, t)dz̄/dz ∈ M(R) with a complex parameter t varying in a domain about
zero. We assume that the following condition (H) is satisfied(4 :

(i) µ(z, t) is measurable and µ(z, 0) = 0,

(ii) For every t, there exist positive numbers εt, Mt such that

|ε| < εt =⇒ ‖µt+ε − µt‖∞ < |ε|Mt,

(iii) For almost all z, µ(z, t) is holomorphic with respect to t.
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We say Quasiconformal-holomorphic movement for such a family {Rt}
which satisfies the condition (H).

Let ft be the quasiconformal mapping from R to Rµ(= Rt) whose Bel-
trami coefficient is µ(z, t) = (ft)z̄/(ft)z.

2 Behavior spaces

Let Λ be the real Hilbert space of square integrable complex differentials
whose inner product is given by

< ω, σ >= Real part of

∫∫

R

ω
∧
∗σ̄ = &(ω, σ),

where ∗σ denotes the harmonic conjugate differential of σ and σ̄ denotes the
complex conjugate of σ. The following subspaces of Λ will be used:

Λh = {λ ∈ Λ : λ is a complex harmonic differential},

Λeo = {λ ∈ Λ : λ is a closed differential which is orthogonal to Λh},

Γh = {λ ∈ Λh : λ is a real differential}.

Let Γx be a subspace of Γh and ∗Γ⊥x be the space of harmonic conjugate
differentials which are orthogonal to every differential of Γx. Set Λx = Γx +
i ∗ Γ⊥x and call Λx a behavior space. Here we assume that Λx(Rt) ◦ ht ⊆
Λx(R0) + Λeo(R0).

For example, iΓh and Γh are behavior spaces and satisfy the condition.

3 Variation of meromorphic differentials with
behavior

We have some variational formulas of specific kind of meromorphic differentials(4.

2



Theorem 1. Let φt be meromorphic differentials such that φt ◦ht−φ0 ∈
Λx + Λeo. Assume that the support of Beltrami coefficient µt of ht does not
meet an open set V including poles of φ0. Then for t = u + iv there exist
differentials φt

u, φ
t
v ∈ Λx(Rt) + Λeo(Rt) such that

lim
ũ→0

‖φt+ũ ◦ ht+ũ ◦ h−1
t − φt

ũ
− φt

u‖ = 0,

lim
ṽ→0

‖φt+iṽ ◦ ht+iṽ ◦ h−1
t − φt

ṽ
− φt

v‖ = 0,

where ũ and ṽ are real. Further φt
u + iφt

v = i ∗ (φt
u + iφt

v) is a holomorphic
differential.

Set
∂φt

∂t
=

1

2
(φt

u − iφt
v),

∂φt

∂ t̄
=

1

2
(φt

u + iφt
v).

4 Canonical meromorphic differentials with
behavior

Suppose that every support of µt does not meet a parametric disk V =
{z : |z| < 1} about p. We can regard z as a local variable of Vt = ht(V ) in
Rt. There exist the following canonical meromorphic differentials ϕt

n, ψt
n on

Rt with behavior:

(i) ϕt
n − dz

zn+1 and ψt
n − dz

zn+1 are holomorphic on Vt ,

(ii) ϕt
n coincides with an element of iΓh +Λeo on Rt−Vt and ψt

n coincides
with an element of Γh + Λeo on Rt − Vt.

Let χ be a C∞-real function such that χ = 1 on {z : |z| < 1
2} and χ = 0

on Rt − Vt. Take the following orthogonal decomposition:

1

2
(− 1

n
d

χ

zn
+

i

n
∗ d

χ

zn
) = ω1 + ω2, ω1 ∈ iΓh + Λeo, ω2 ∈ Γh + ∗Λeo

and set σ = − 1
2nd χ

zn − ω1 = − i
2n ∗ d χ

zn + ω2. Then σ is harmonic except for
ht(p). Hence σ + i∗σ = 1

nd−χ
zn −ω1 + i∗ω2 is a meromorphic differential with

pole of order n + 1 at only ht(p) and coincides with iΓh + Λeo on Rt − Vt.
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Therefore σ + i ∗ σ satisfies the condition of ϕt
n. Similarly, by the orthogonal

decomposition:

1

2
(− 1

n
d

χ

zn
+

i

n
∗ d

χ

zn
) = ω′1 + ω′2, ω′1 ∈ Γh + Λeo, ω′2 ∈ iΓh + ∗Λeo,

ψt
n is obtained.

Hereafter, for simplicity, we write ϕt
1 = ϕt, ψt

1 = ψt.

5 Bergman kernel

Let Kt = K̂tdz be a Bergman kernel for a point ht(p) on Rt such that

(ω, Kt) = ω̂(0)

for any square integrable holomorphic differential ω = ω̂dz.

Theorem 2.(5

Kt =
1

4π
(ϕt − ψt).

For any holomorphic differential ω ∈ Λ, let

(ω, ϕt)V = lim
ε→0

∫∫

V−Vε

ω ∧ ∗ϕt = i

∫

∂V

wϕt,

where Vε = {z; |z| < ε}, ω = dw on V . The real part of ϕt coincides with an
element of Λeo on Rt − Vt and put it σ1. We have

(ω, σ1 + i ∗ σ1)V = (∗ω, ∗σ1)V − i(ω, ∗σ1)V

= 2i

∫∫

V

dw ∧ σ1 = 2i

∫

∂V

w&ϕt,

(ω, ϕt) = (ω, σ1 + i ∗ σ1)− (ω, σ1 + i ∗ σ1)V + (ω, ϕt)V

= −2i

∫

∂V

w&ϕt + i

∫

∂V

wϕt = −i

∫

∂V

wϕt = 2π
dw

dz
(0) = 2πω̂(0).

Similarly the imaginary part of ψt coincides with an element of Λeo on Rt−Vt,
and put it τ1. We have

(ω, ψt) = (ω,− ∗ τ1 + iτ1)− (ω,− ∗ τ1 + iτ1)V + (ω, ψt)V
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= 2(ω, ∗τ1)V + (ω, ψt)V = −2

∫

∂V

w*ψt + i

∫

∂V

wψt

= i

∫

∂V

wϕt = −2π
dw

dz
(0) = −2πω̂(0).

Therefore square integrable holomorphic differential (ϕt−ψt)/4π is the Bergman
kernel. Set Lt = ϕt + ψt. The following variational formulas hold(4.

Theorem 3.
∂K̂t(p)

∂t
= (Kt,

∂Kt

∂ t̄
),

∂2K̂t(p)

∂ t̄∂t
= (

∂Kt

∂ t̄
,
∂Kt

∂ t̄
) + (

∂Lt

∂ t̄
,
∂Lt

∂ t̄
),

∂2 log K̂t(p)

∂ t̄∂t
=

1

K̂t(p)
{(∂Kt

∂ t̄
,
∂Kt

∂ t̄
) + (

∂Lt

∂ t̄
,
∂Lt

∂ t̄
)}

− 1

K̂t(p)2
|(∂Kt

∂ t̄
, Kt)|2 ≥ 0.

If log K̂t(p) is harmonic,

∂Lt

∂ t̄
= 0 and

∂Kt

∂ t̄
= (a + ib)Kt,

where a and b are real. Hence

∂ψt

∂ t̄
= −∂ϕt

∂ t̄
and

∂Kt

∂ t̄
=

1

2π

∂ϕt

∂ t̄
.

For t = u + iv (u, v real),

∂ϕt

∂u
− aϕt + ibψt = aψt − ibϕt − i

∂ϕt

∂v
.

Suppose R0 has a boundary part which consist of an analytic curve. The left
side is pure imaginary along the boundary part and the right side is pure
real along the boundary part. Further suppose that there is a curve from the
boundary point to p, which does not meet the support of µt. Then the both
sides are holomorphic on the curve and vanish there. Hence a = b = 0. It
holds

∂ϕt

∂u
=

∂ϕt

∂v
= 0 outside of the support of µt.
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Further
∂ϕt

∂ t̄
=

∂ψt

∂ t̄
=

∂Kt

∂ t̄
= 0 on Rt.

Hence ϕt, ψt and Kt are holomorphic with respect to t. The meromorphic
function w = ϕt

ψt on Rt is pure imaginary along the boundary. Thus Rt is
represented by w as a covering surface with slits over the imaginary axis.
Since w = w(z, t) is holomorphic with respect to t for a fixed z, these slits
are static and only branch points may move as t varies. The w has a following
development at p:

w =
ϕt

ψt
= 1 +

∑

n=1

cnz
n.

Set

ϕ̂t =
1

z2
+

∑

n=0

anz
n, ψ̂t =

1

z2
+

∑

n=0

bnz
n,

then
1

z2
+

∑

n=0

anz
n = (

1

z2
+

∑

n=0

bnz
n)(1 +

∑

n=1

cnz
n)

=
1

z2
+

c1

z
+ (b0 + c2) + (b1 + c3)z + ... .

Hence c1 = 0, b0 + c2 = a0. It follows that

c2 = a0 − b0 = K̂t(p) = (Kt, Kt) > 0.

Therefore p in the covering surface is a branch point of order 1. When Rt

is a finite compact bordered Riemann surface, ϕt and ψt are extended to
its doubled Riemann surface. We can regard the doubled compact Riemann
surface as a covering surface by w. The point p lies on w = 1 and the image
point of p by the involution of doubled surface lies on w = −1.

Now, on this covering surface, we have

ϕt = Φ̃(t, w)dw = Φ̃(t, w)(wzdz + wz̄dz̄),

0 =
∂ϕt

∂ t̄

= (
∂Φ̃(t, w)

∂ t̄
+

∂Φ̃(t, w)

∂w

∂w

∂ t̄
)(wzdz + wz̄dz̄) + Φ̃(t, w)(

∂wz

∂ t̄
dz +

∂wz̄

∂ t̄
dz̄).

6



Since

0 =
∂w

∂ t̄
=

∂wz

∂ t̄
=

∂wz̄

∂ t̄
,

it follows

0 =
∂Φ̃(t, w)

∂ t̄
(wzdz + wz̄dz̄),

i.e.
∂Φ̃(t, w)

∂ t̄
= 0.

Thus, by Hartogs theorem, Φ̃(t, w) is holomorphic with respect to t and w.
Since ϕt is pure imaginary along the boundary, Φ̃(t, w) is constant on the
fixed boundary point on w with respect to t. Hence it is constant on every
surface point on w with respect to t. Now suppose that a branch point move
as t varies. Then Φ̃(t, w) has the same Taylor development on the both
sheets which contains the branch point. When the Taylor development is
analytically continuated to the point p from one of the sheet along a curve
on which no branch point lies, the analytic continuation from the other sheet
reaches to p or the other point. The ϕt has a Taylor development at p:

ϕt = (

√
c1

2(w − 1)
3
2

+ ...)dw

and ϕt is holomorphic except for p over w = 1. These analytic continuations
have different development at the reached points. This is a contradiction.
Above all there is no moving branch point and hence the covering surface Rt

is quite static.
Thus we have

Theorem 4. Let a family Rt of finite compact bordered Riemann surfaces
form a quasiconformal-holomorphic movement. If log K̂t(p) is harmonic with
respect to t, every Rt is conformal to R0.

6 Robin constant

Let Gt = Gt(, p) be a Green function on Rt with pole at ht(p) and set
ψt

p = dGt + i ∗ dGt. Robin constant at ht(p) is defined by

γt(p) =
1

2πi

∫

|z|=ε

Gt(z)
dz

z
+ log ε.
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Under a quasiconformal-holomorphic movement we have the following vari-
ational formulas(4.

Theorem 5.
∂γt(p)

∂t
=

1

4π
(
∂ψt

p

∂t
, ψt

p),

∂2γt(p)

∂ t̄∂t
= − 1

2π
(
∂ψt

p

∂ t̄
,
∂ψt

p

∂ t̄
).

Take a point q which is not zero point of ψt
p and assume that γt(p) and

γt(q) are harmonic. Then

∂ψt
p

∂ t̄
= 0,

∂ψt
q

∂ t̄
= 0.

In the same way of Bergman kernel we have the following. The meromorphic

function w =
ψt

p

ψt
q

is pure imaginary along the boundary of Rt. Hence Rt

is represented by w as a covering surface with slits over the imaginary axis.
Since w = w(z, t) is holomorphic with respect to t for a fixed z, these slits are
static and only branch points may move as t varies. The point q lies on w = 0
and is not branch point. For ψt

q = Ψq(w, t)dw, Ψq(w, t) is holomorphic with
respect to t and w. Since ψt

q is pure imaginary along the boundary, Ψq(w, t)
is constant on the fixed boundary point on w with respect to t. Hence it is
constant on every surface point on w with respect to t. If a branch point
moves as t varies, then Ψq(w, t) has the same Taylor development on the
both sheets which contains the branch point. When the Taylor development
is analytically continuated to the point q from one of the sheet along a curve
on which no branch point lies, The analytic continuation from the other
sheet reaches to a point except for q. The ψt

q is holomorphic except for q
and the image q′ of q by involution and has a singularity as −1

z at q′. Their
developments are different from the one at q. This contradicts to the result of
analytic continuation. Above all there is no moving branch point and hence
the covering surface Rt is quite static. Thus we have

Theorem 6. Let Rt be a finite compact bordered Riemann surface
with genus g which has m (> 0) boundary components. Let Rt forms a
quasiconformal-holomorphic movement. For 2g + m + 1 points {pi}, if all
γt(pi) are harmonic with respect to t, every Rt is conformal to R0.
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ψt
p1

is extended to its doubled Riemann surface and the total order of zero
is 2(2g + m− 1) and the total order of pole is 2. Since its total order of zero
on Rt is at most 2g + m − 1, One of the points {pi}i=2,...,2g+m+1 is not zero
point of ψt

p1
. It follows the conclusion.
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