What is an optimal embedding?

Fumio Maitani^{*} Kyoto Institute of Technology Matsugasaki, Sakyoku 606, Kyoto, Japan

Abstract

For two finite compact bordered Riemann surfaces of the same type, assuming the possibility of an embedding one into the other, we consider a preferable embedding. As the one way, we take a subregion which has the minimum capacity among subregions with the same type whose boundaries are homotopic to the boundary of the Riemann surface. It is given as a subregion whose boundary consists of trajectories of a quadratic holomorphic differential; hence the boundary is analytic.

1 Introduction

Let R_0 be a finite compact bordered Riemann surface of genus p with m boundary components. Suppose a marking of R_0 is specified. We assume that R_0 is not simply connected and $m \ge 1$. Take the reduced Teichmüller space of R_0 ;

 $T(R_0) = \{(R, g); R \text{ is a finite compact bordered Riemann surface which}\}$

is mapped by a quasiconformal mapping g from R_0 to R/ \sim ,

where (R_1, g_1) is equivalent to (R_2, g_2) if there is a conformal mapping h from R_1 onto R_2 such that $g_2^{-1} \circ h \circ g_1$ is homotopic to the identity mapping. For $R_1 = (R_1, g_1) \in T(R_0)$, set

 $T(R_0; R_1) = \{R_2 = (R_2, g_2) \in T(R_0); \text{there is a conformal mapping } f \text{ from }$

^{*}This research was partially supported by Grant-in-Aid for Scientific Research (No. 09640183), Ministry of Education, Science and Culture, Japan.

 R_1 into R_2 such that $g_2^{-1} \circ f \circ g_1$ is homotopic to the identity mapping}, and for $(R_2, g_2) \in T(R_0; R_1)$, set

 $CE(R_1, R_2) = \{f; f \text{ is a conformal mapping from } R_1^\circ \text{ into } R_2^\circ \text{ such that}$

 $g_2^{-1} \circ f \circ g_1$ is homotopic to the identity mapping},

where R_i° denotes the interior of R_i . Let R'_2 be a subregion of R_2° such that the boundary is contained in R_2° and every component of $R_2^{\circ} - R'_2$ is doubly connected. For R'_2 , consider the following curve family;

 $\Gamma(R_2^{\circ}, R_2') = \{\gamma; \gamma \text{ consists of a family of rectifiable closed Jordan curves}\}$

each of which divides the boundary components of a component of

 $R_2^{\circ} - R_2'$ from others and γ divides all the components}. Denote the extremal length of $\Gamma(R_2^{\circ}, R_2')$ by $\lambda(\Gamma(R_2^{\circ}, R_2'))$, i.e.,

$$\begin{split} \lambda(\Gamma(R_2^\circ,R_2')) &= sup_{\rho}\{\frac{1}{A(\rho)}; \rho \text{ is a Borel measurable conformal density} \\ &\text{ such that } inf_{\gamma\in\Gamma(R_2^\circ,R_2')}\{\int_{\gamma}\rho(z)|dz|\}\geq 1\}, \end{split}$$

where $A(\rho) = \int \int_{R_2} \rho^2(x+iy) dx dy$. If $(R_i, g_i) \sim (R'_i, g'_i)$, there is a conformal mapping h_i such that $g'^{-1} \circ h_i \circ g_i$ is homotopic to the identity mapping. Note that for $f \in CE(R_1, R_2)$,

$$\lambda(\Gamma(R_2^{\circ}, f(R_1^{\circ}))) = \lambda(\Gamma(R_2^{\prime \circ}, h_2 \circ f \circ h_1^{-1}(R_1^{\prime \circ}))).$$

Put

$$B(R_1, R_2) = \inf\{\lambda(\Gamma(R_2^{\circ}, f(R_1^{\circ}))); f \in CE(R_1, R_2)\},\$$

where $B(R_1, R_2) = \infty$ if $CE(R_1, R_2)$ is empty. We have

Theorem. Suppose $B(R_1, R_2) < \infty$. There is an $f_0 \in CE(R_1, R_2)$ which satisfies $\lambda(\Gamma(R_2^\circ, f_0(R_1^\circ))) = B(R_1, R_2)$. The boundary of $f_0(R_1^\circ)$ consists of trajectories of a quadratic holomorphic differential on R_2 ; hence the boundary is analytic.

There is a sequence $\{f_n\} \subset CE(R_1, R_2)$ such that $\lambda(\Gamma(R_2^\circ, f_n(R_1^\circ)))$ decreases to $B(R_1, R_2)$. For a bounded analytic function F on R_2 , $\{F \circ f_n\}$ is a normal family. Since $\lambda(\Gamma(R_2^\circ, f_n(R_1^\circ)))$ is bounded, $f_n(R_1^\circ)$ does not get close to the boundary ∂R_2 of R_2 . Since R_1 is not simply connected and $g_2^{-1} \circ f_n \circ g_1$ is homotopic to the identity mapping, $f_n(R_1^\circ)$ can not converge to a point. We may assume that $\{f_n\}$ converges to a conformal mapping f_0 from R_1° into R_2° . Since $\lambda(\Gamma(R_2^\circ, f_0(R_1^\circ))) \leq B(R_1, R_2)$, we get $\lambda(\Gamma(R_2^\circ, f_0(R_1^\circ))) = B(R_1, R_2)$. In the next section we consider the boundary of $f_0(R_1^\circ)$.

2 Variational method

At first we note that $\lambda(\Gamma(R_2^\circ, f_0(R_1^\circ)))$ gives the capacity of $f_0(R_1^\circ)$ in R_2° . Let f be a conformal embedding of R_1° into R_2° and H(f) be a harmonic function on $R_2^\circ - f(R_1^\circ)$ such that H(f) takes value one on the boundary of $f(R_1)$ and vanishes on the boundary of R_2 . Then

$$\lambda(\Gamma(R_2^\circ, f_0(R_1^\circ))) = \|dH(f_0)\|^2 = \int \int_{R_2^0 - \overline{f_0(R_1^0)}} dH(f_0) \bigwedge * dH(f_0)$$

Now take an infinitesimally trivial dilatation μ on R_2 whose support is contained in $R_2^{\circ} - \overline{f_0(R_1^{\circ})}$. That is

$$\int \int_{R_2} \varphi \mu \frac{d\bar{z}}{dz} = 0$$

for φ in the space $A_2^1(\hat{R}_2)$ of anti-symmetric analytic quadratic differentials with finite L^1 -norm on the double of \hat{R}_2 of R_2 and $supp \ \mu \subset R_2^\circ - \overline{f_0(R_1^\circ)}$. Let $R_2(t)$ be the Riemann surface with the conformal structure introduced by $t\mu$. Let

$$\|\mu\|_{\infty} = esssup \ |\mu| < 2.$$

Then for $0 \le t \le \frac{1}{4}$ there is a complex dilatation $\sigma(t) \in [t\mu]$ for which

$$\|\sigma(t)\|_{\infty} \leq 12t^2$$
. (cf.[L] p.227)

Since the part $f_0(R_1^\circ)$ of $R_2(t)$ has the same conformal structure as that of R_2 , the region $f_0(R_1^\circ)$ can be regarded as a conformal embedding in $R_2(t)$. Denote it by $f_t(R_1)$. We have the following variational formula (cf. [M]);

$$\frac{d}{dt} \|dH(f_t)\|^2 = \Re - i \int \int_{R_2} (\frac{\partial}{\partial \zeta} H(f_0))^2 \mu \zeta_z^2 dz d\bar{z},$$

where ζ is a local parameter on $R_2(t)$ which satisfies

$$\frac{\zeta_{\bar{z}}}{\zeta_z} = t\mu$$

Particularly for t = 0,

$$\frac{d}{dt} \|dH(f_t)\|^2|_{t=0} = \Re - i \int \int_{R_2} (\frac{\partial}{\partial z} H(f_0))^2 \mu dz d\bar{z}.$$

Suppose

$$\frac{d}{dt} \|dH(f_t)\|^2|_{t=0} = k \neq 0.$$

Then

$$|dH(f_t)||^2 = ||dH(f_0)||^2 + kt + O(t^2).$$

On the other hand, the Teichmüller distance between R_2 and $R_2(t)$ is at most $12t^2$. So we can hope that there exists another embedding f_* such that

$$\lambda(\Gamma(R_2^{\circ}, f_*(R_1^{\circ})) < \lambda(\Gamma(R_2^{\circ}, f_0(R_1^{\circ})).$$

Although we postpone the proof, this gives a contradiction. It follows that

$$\int \int_{R_2} (\frac{\partial}{\partial z} H(f_0))^2 \mu dz d\bar{z} = 0,$$

for μ such that support of $\mu \subset R_2^{\circ} - f_0(R_1^{\circ})$ and

$$\int \int_{R_2} \varphi \mu \frac{d\bar{z}}{dz} = 0 \ for \ \varphi \in A_2^1(\hat{R}_2).$$

Hence $(\frac{\partial}{\partial z}H(f_0))^2 dz^2$ coincides with a $\varphi_0 \in A_2^1(\hat{R}_2)$ on $R_2^\circ - f_0(R_1^\circ)$. The function $H(f_0)$ has an analytic extension across the boundary of $\partial f_0(R_1)$. Therefore $\partial f_0(R_1)$ consists of analytic curves in R_2 . We remark that the embedding is uniquely determined for φ_0 . For the check of above assertion, take a closed disk K which contained in $R_2^\circ - \overline{f_0(R_1^\circ)}$. Let $\varphi_1, ..., \varphi_n$ (n = 6p + 3m - 6) be a basis of $A_2^1(\hat{R}_2)$. There exist Beltrami differentials $\mu_1 \frac{d\bar{z}}{dz}, ..., \mu_n \frac{d\bar{z}}{dz}$ such that

i) the support of μ_i is contained in K,

ii)
$$\int \int \varphi_i \mu_j \frac{dz}{dz} = a_{ij}, \ det(a_{ij}) \neq 0.$$

Let R_s be the Riemann surface with the conformal structure introduced by

$$\sum_{j=1}^{n} s_j \mu_j \frac{d\bar{z}}{dz} \text{ on } K, s = (s_1, \dots, s_n)$$

and the same conformal structure as that of R_2 on $R_2 - K$. Then $s = (s_1, ..., s_n)$ becomes a local parameter about $R_0 = R_2$ (cf. [IT]). For a small t, there exists a $s(t) = (s_1, ..., s_n)$ such that $R_{s(t)}$ is conformally equivalent to $R_2(t)$. Let h_t be the quasiconformal mapping from R_2 to $R_2(t)$ such that

$$\frac{(h_t)_{\bar{z}} d\bar{z}}{(h_t)_z dz} = \begin{cases} t \mu \frac{d\bar{z}}{dz} & on \ R_2^\circ - f_0(R_1^\circ) \\ 0 & on \ f_0(R_1^\circ), \end{cases}$$

 $f_{s(t)}$ be the quasiconformal mapping from R_2 to $R_{s(t)}$ such that

$$\frac{(f_{s(t)})_{\bar{z}}d\bar{z}}{(f_{s(t)})_{z}dz} = \begin{cases} \sum s_{j}\mu_{j}\frac{d\bar{z}}{dz} & on \ K\\ 0 & on \ R_{2}^{\circ} - K \end{cases}$$

and $f_{t,s}$ be the conformal mapping from $R_2(t)$ to $R_{s(t)}$ such that the quasiconformal mapping $g_t = f_{s(t)}^{-1} \circ f_{t,s} \circ h_t$ is homotopic to the identity mapping. The Beltrami coefficient of g_t converges to 0 as t converges to 0. We can assume that $g_t \circ f_0(R_1) \cap K = \emptyset$. Hence g_t is conformal on $f_0(R_1^\circ)$, and $g_t \circ f_0(R_1)$ becomes an embedding from R_1 into R_2 . Since the order of s depends on the order t^2 , we have

$$||dH(g_t \circ f_0)||^2 = ||dH(f_0)||^2 + kt + O(t^2).$$

Therefore there exists τ such that

$$||dH(g_{\tau} \circ f_0)||^2 < ||dH(f_0)||^2.$$

This contradicts the minimal property of $||dH(f_0)||^2$.

Remark. We believe the uniqueness of this embedding but do not have a proof. We note a certain kind of uniqueness. Let φ_0 coincide with

$$c(\frac{dz_i}{az_i(\log b_i - \log a_i)})^2$$

on the boundary component $\{z_i; |z_i| = b_i\}$ of R_2 . Then minimum value is

$$B(R_1, R_2) = \sum_i \frac{2\pi}{\log b_i - \log a_i}.$$

Take real numbers c_i such that

$$\frac{\log c_i - \log a_i}{\log b_i - \log a_i} = 1 + t.$$

The local parameter z_i is regarded as a local parameter of a neighborhood of the boundary component. For a sufficiently small t, let R(t) be a Riemann surface whose boundary is given by $\{z_i; |z_i| = c_i\}$. Then $R(0) = R_2, R(t) \in$ $T(R_0; R_1)$ for t > -1. Then φ_0 coincides with

$$c(\frac{(1+t)dz_i}{az_i(\log c_i - \log a_i)})^2$$

on the boundary component $\{z_i; |z_i| = c_i\}$ of R(t). The function $f_0(R_1)$ is an embedding into R(t).

For -1 < t < 0, suppose that there is another embedding $f_1(R_1^\circ)$ into R(t) such that

$$\lambda(\Gamma(R(t)^{\circ}, f_1(R_1^{\circ}))) \le \lambda(\Gamma(R(t)^{\circ}, f_0(R_1^{\circ}))).$$

Then

$$\begin{split} \lambda(\Gamma(R_2^{\circ}, f_1(R_1^{\circ})))^{-1} &> \lambda(\Gamma(R_2^{\circ}, R(t)^{\circ})))^{-1} + \lambda(\Gamma(R(t)^{\circ}, f_1(R_1^{\circ})))^{-1} \\ &\geq \lambda(\Gamma(R_2^{\circ}, R(t)^{\circ})))^{-1} + \lambda(\Gamma(R(t)^{\circ}, f_0(R_1^{\circ})))^{-1} \\ &= \lambda(\Gamma(R_2^{\circ}, f_0(R_1^{\circ})))^{-1}. \end{split}$$

Hence

$$\lambda(\Gamma(R_2^{\circ}, f_1(R_1^{\circ}))) < \lambda(\Gamma(R_2^{\circ}, f_0(R_1^{\circ}))) = B(R_1, R_2)$$

This is a contradiction. Therefore $f_0(R_1)$ is the unique embedding into R(t) which attains the value $B(R_1, R_2(t))$.

Similarly, we know that R(t) is considered as the unique embedding into R_2 which attains the value $B(R(t), R_2)$.

3 Example

Let R_1 and R_2 be two annuli $\{z; a_1 < |z| < b_1\}$, $\{w; a_2 < |w| < b_2\}$, $(a_2 < a_1 < b_1 < b_2)$. For $f \in CE(R_1, R_2)$, let

 $\Gamma_1(f) = \{\gamma; \gamma \text{ is a Jordan curve which divides } \{f(z); |z| = a_1\} \text{ and }$

 $\{f(z); |z| = b_1\}$ in $f(R_1)\},\$

 $\Gamma_2 = \{\gamma; \gamma \text{ is a Jordan curve which divides } \{w; |w| = a_2\}$ and

$$\{w; |w| = b_2\}$$
 in $R_2\},\$

 $\Gamma_3(f) = \{\gamma; \gamma \text{ is a Jordan curve which divides } \{f(z); |z| = a_1\} \text{ and} \\ \{w; |w| = a_2\} \text{ in a component of } R_2 - f(R_1)\},$

 $\Gamma_4(f) = \{\gamma; \gamma \text{ is a Jordan curve which divides } \{f(z); |z| = b_1\} \text{ and} \\ \{w; |w| = b_2\} \text{ in a component of } R_2 - f(R_1)\},$

and

$$\Gamma(f) = \{\gamma_3 \bigcup \gamma_4; \gamma_3 \in \Gamma_3(f), \gamma_4 \in \Gamma_4(f)\}.$$

Since $\Gamma_2 \supset \Gamma_1(f) \cup \Gamma_3(f) \cup \Gamma_4(f)$, by a property of extremal length

$$\lambda(\Gamma_2)^{-1} \ge \lambda(\Gamma_1(f))^{-1} + \lambda(\Gamma_3(f))^{-1} + \lambda(\Gamma_4(f))^{-1}.$$

We have

$$\frac{1}{2\pi} \left(\log \frac{b_2}{a_2} - \log \frac{b_1}{a_1} \right) = \lambda(\Gamma_2)^{-1} - \lambda(\Gamma_1(f))^{-1}$$
$$\geq \lambda(\Gamma_3(f))^{-1} + \lambda(\Gamma_4(f))^{-1}.$$

We remark that

$$\frac{1}{2\pi} \left(\log \frac{b_2}{a_2} - \log \frac{b_1}{a_1}\right) = \lambda(\Gamma_3(f))^{-1} + \lambda(\Gamma_4(f))^{-1},$$

iff $f(R_1)$ becomes an annulus with the same center as that of R_2 . There is an $f_1 \in CE(R_1, R_2)$ such that

i) $f_1(R_1)$ becomes an annulus with the same center as that of R_2 , ii) $\lambda(\Gamma_3(f_1)) = \lambda(\Gamma_3(f))$.

Then

$$\lambda(\Gamma_3(f_1))^{-1} + \lambda(\Gamma_4(f_1))^{-1} \ge \lambda(\Gamma_3(f))^{-1} + \lambda(\Gamma_4(f))^{-1}$$

and $\lambda(\Gamma_4(f_1)) \leq \lambda(\Gamma_4(f))$. Hence we have

$$\lambda(\Gamma_3(f_1)) + \lambda(\Gamma_4(f_1)) \le \lambda(\Gamma_3(f)) + \lambda(\Gamma_4(f)).$$

So we may consider the case that the embeddings are annuli with the same center. Let $f(R_1) = \{w; a'_1 < |w| < b'_1\}$. Then

$$\lambda(\Gamma(f)) = \lambda(\Gamma_3(f)) + \lambda(\Gamma_4(f))$$

= $2\pi \{ \frac{1}{\log a'_1 - \log a_2} + \frac{1}{\log b_1 - \log b'_1} \}.$

Put $t = b'_1/a'_1$, $s = b_2/a_2$, $p = \log a_2$, $q = \log(b_2/t)$ and $x = \log a'_1$. We can write

$$\lambda(\Gamma(f)) = 2\pi \frac{q-p}{(x-p)(q-x)}$$
$$= \frac{2\pi(q-p)}{-(x-\frac{p+q}{2})^2 + (\frac{p-q}{2})^2} \ge \frac{8\pi}{q-p}.$$

Therefore when x = (p+q)/2, $\lambda(\Gamma(f))$ attains the minimum value $8\pi/(q-p)$. This condition means $a'_1/a_2 = b_2/b'_1$. Only this case attains the minimum value $B(R_1, R_2)$ of $\lambda(\Gamma)$.

Remark. In this case we refer to the quadratic differential in the statement. Let $A = \{z; a < |z| < b\}$ and $H(z) = (\log |z| - \log a)/(\log b - \log a)$. Then H is called a harmonic measure for $\{z; |z| = b\}$ on A. We have

$$\|dH\|^2 = \int \int_A dH \bigwedge * dH$$
$$= \frac{1}{(\log b - \log a)^2} \int_0^{2\pi} \int_a^b \frac{drd\theta}{r} = \frac{2\pi}{\log b - \log a}.$$

Take a complex dilatation μ and let A(t) be the Riemann surface with the conformal structure induced by $t\mu$. Let H_t be the harmonic measure for the outer boundary on A(t), that is, H_t is harmonic in A(t) and

$$H_t = \begin{cases} 0 & \text{on the inner boundary of } A(t) \\ 1 & \text{on the outer boundary of } A(t). \end{cases}$$

Since

$$\frac{\partial H}{\partial z} = \frac{1}{2(\log b - \log a)} \frac{\partial}{\partial z} \log \frac{z\bar{z}}{a^2}$$
$$= \frac{1}{2z(\log b - \log a)},$$

we have

$$\frac{d}{dt} \| dH_t \|_{t=0}^2 = \Re - i \int \int_A (\frac{\partial H}{\partial z})^2 \mu dz d\bar{z}$$
$$= \frac{1}{4(\log b - \log a)^2} \Re - i \int \int_A \frac{\mu}{z^2} dz d\bar{z}.$$

For the embedding f which attains the minimum value,

$$\left\{\frac{1}{\log a_1' - \log a_2}\frac{\partial}{\partial z}\log\frac{|z|}{a_2}dz\right\}^2 \text{ on } \left\{z; a_2 < |z| < a_1'\right\}$$

and

$$\{\frac{1}{\log b_2 - \log b_1'}\frac{\partial}{\partial z}\log\frac{|z|}{b_1'}dz\}^2 \text{ on } \{z; b_1' < |z| < b_2\}$$

coincide with a quadratic differential $c(dz/z)^2$ on the double of A, because of $a'_1/a_2 = b_2/b'_1 = \exp \sqrt{c}$. From previous theory, we know that only this case attains the minimum value.

4 Schiffer's interior variation via [IT]

Let R be a Riemann surface, (U, z) be a local coordinate about p in R; $z(p) = 0, z(U) = \{z; |z| < 2\}$ and D_{ρ} be the inverse image of the disk $\{z; |z| < \rho\}$. For a complex parameter ϵ , define a function from U to the complex w-plane:

$$w_{\epsilon}(z) = z + \frac{\epsilon}{z}.$$

Delete D_{ρ} , $(\frac{1}{2} < \rho < 1)$ from R and paste the image $V_{\frac{1}{\rho}}$ of $D_{\frac{1}{\rho}}$ by w_{ϵ} the part of $D_{\frac{1}{\rho}} - D_{\rho}$ such that z corresponds to $w_{\epsilon}(z)$. We get another Riemann surface:

$$R_{\epsilon} = (R - D_{\rho}) \bigcup V_{\frac{1}{\rho}}$$

whose conformal structure coincides with that of $R - D_{\rho}$ in the part $R - D_{\rho}$ and that of $V_{\frac{1}{\rho}}$ in the part $V_{\frac{1}{\rho}}$, particularly, in the pasted part they are consistent, because w_{ϵ} is conformal. Consider the following mapping from Rto R_{ϵ} ;

$$f_{\epsilon}(p) = \begin{cases} p & p \in R - D_1 \\ w(z(p)) = z(p) + \epsilon \overline{z}(p) & p \in \overline{D_1} \end{cases}.$$

Note that $w(z(p)) = w_{\epsilon}(z(p)), p \in \partial D_1$. The Beltrami coefficient μ_{ϵ} of f_{ϵ} is

$$\mu_{\epsilon}(p) = \begin{cases} 0 & p \in R - D_1 \\ \epsilon \frac{d\bar{z}}{dz} & p \in D_1, \end{cases}$$

hence f_{ϵ} becomes a quasiconformal mapping from R to R_{ϵ} . Now take n points $\{p_i\}_{i=1...n}$ and their disjoint local neighborhoods $\{U_i, z_i\}$. For n complex parameters $\epsilon = (\epsilon_1, ..., \epsilon_n)$, we can deform R to R_{ϵ} by the above mentioned change of conformal structure on the part of $\bigcup U_i$ and get the quasiconformal mapping f_{ϵ} from R to R_{ϵ} . Let n be the dimension of the reduced Teichmüller space of R and $\{\varphi_i\}_{i=1,...,n}$ be a basis of the space $A_2^1(\hat{R})$. Consider a mapping F from the unit ball about $0 \in \mathbb{C}^n$ to the space $B^1(R)$ of Beltrami differentials with finite supremum norm:

$$F(\epsilon) = \frac{(f_{\epsilon})_{\bar{z}}}{(f_{\epsilon})_{z}} \frac{d\bar{z}}{dz} = \begin{cases} \epsilon_{i} \frac{d\bar{z}}{dz} & D^{i} = z_{i}^{-1}(\{z_{i}; |z_{i}| < 1\}) \\ 0 & R - \bigcup D^{i} \end{cases}$$

Then

$$\frac{\partial F}{\partial \epsilon_i} = \begin{cases} \frac{d\bar{z}}{dz} & D^i \\ 0 & R - \bigcup D^i, \end{cases}$$

so F is holomorphic (cf. [L] p.206). For a $\psi \in A_2^1(\hat{R})$,

$$\int \int_{R} \psi \frac{\partial F}{\partial \epsilon_i} = -2\pi i \psi(p_i)$$

where $\psi = \underline{\psi}(z_i) dz_i^2, \psi(p_i) = \underline{\psi}(0)$. We can choose points $\{p_i\}$ such that

 $det(\varphi_k(p_i)) \neq 0.$

Then $(\frac{\partial F}{\partial \epsilon_1}, ..., \frac{\partial F}{\partial \epsilon_n})$ becomes a basis of the dual space A_2^{1*} of $A_2^1(\hat{R})$ which is regarded as the tangent space of the Teichmüller space. The function F is biholomorphic. Therefore $\epsilon = (\epsilon_1, ..., \epsilon_n)$ is regarded as a local parameter of the Teichmüller space.

5 Acknowledgment

I wish to express my deep gratitude to Beijing university for the kind hospitality during the conference and to Professor David Minda for his valuable advice.

References

- [A] L. V.Ahlfors, Conformal Invariants, McGraw-Hill, 1973.
- [IT] Y. Imayoshi and M. Taniguchi, Teichmüller space, Springer-Verlag.
- [L] O. Lehto, Univalent functions and Teichmüller spaces, Springer-Verlag, 1986.
- [M] F. Maitani, Variation of meromorphic differentials under quasiconformal deformations. J. Math. Kyoto Univ., 24(1984), 49-66.