What is an optimal embedding?

Fumio Maitani*
Kyoto Institute of Technology
Matsugasaki, Sakyoku 606, Kyoto, Japan

Abstract

For two finite compact bordered Riemann surfaces of the same type, assuming the possibility of an embedding one into the other, we consider a preferable embedding. As the one way, we take a subregion which has the minimum capacity among subregions with the same type whose boundaries are homotopic to the boundary of the Riemann surface. It is given as a subregion whose boundary consists of trajectories of a quadratic holomorphic differential; hence the boundary is analytic.

1 Introduction

Let R_{0} be a finite compact bordered Riemann surface of genus p with m boundary components. Suppose a marking of R_{0} is specified. We assume that R_{0} is not simply connected and $m \geq 1$. Take the reduced Teichmüller space of R_{0};
$T\left(R_{0}\right)=\{(R, g) ; R$ is a finite compact bordered Riemann surface which is mapped by a quasiconformal mapping g from R_{0} to $\left.R\right\} / \sim$, where (R_{1}, g_{1}) is equivalent to (R_{2}, g_{2}) if there is a conformal mapping h from R_{1} onto R_{2} such that $g_{2}^{-1} \circ h \circ g_{1}$ is homotopic to the identity mapping. For $R_{1}=\left(R_{1}, g_{1}\right) \in T\left(R_{0}\right)$, set
$T\left(R_{0} ; R_{1}\right)=\left\{R_{2}=\left(R_{2}, g_{2}\right) \in T\left(R_{0}\right)\right.$; there is a conformal mapping f from

[^0]R_{1} into R_{2} such that $g_{2}^{-1} \circ f \circ g_{1}$ is homotopic to the identity mapping\}, and for $\left(R_{2}, g_{2}\right) \in T\left(R_{0} ; R_{1}\right)$, set
$C E\left(R_{1}, R_{2}\right)=\left\{f ; f\right.$ is a conformal mapping from R_{1}° into R_{2}° such that $g_{2}^{-1} \circ f \circ g_{1}$ is homotopic to the identity mapping $\}$,
where R_{i}° denotes the interior of R_{i}. Let R_{2}^{\prime} be a subregion of R_{2}° such that the boundary is contained in R_{2}° and every component of $R_{2}^{\circ}-R_{2}^{\prime}$ is doubly connected. For R_{2}^{\prime}, consider the following curve family;
$\Gamma\left(R_{2}^{\circ}, R_{2}^{\prime}\right)=\{\gamma ; \gamma$ consists of a family of rectifiable closed Jordan curves
each of which divides the boundary components of a component of $R_{2}^{\circ}-R_{2}^{\prime}$ from others and γ divides all the components $\}$.
Denote the extremal length of $\Gamma\left(R_{2}^{\circ}, R_{2}^{\prime}\right)$ by $\lambda\left(\Gamma\left(R_{2}^{\circ}, R_{2}^{\prime}\right)\right)$, i.e.,
\[

$$
\begin{aligned}
\lambda\left(\Gamma\left(R_{2}^{\circ}, R_{2}^{\prime}\right)\right) & =\sup _{\rho}\left\{\frac{1}{A(\rho)} ; \rho\right. \text { is a Borel measurable conformal density } \\
& \text { such that } \left.\inf _{\gamma \in \Gamma\left(R_{2}^{\circ}, R_{2}^{\prime}\right)}\left\{\int_{\gamma} \rho(z)|d z|\right\} \geq 1\right\}
\end{aligned}
$$
\]

where $A(\rho)=\iint_{R_{2}} \rho^{2}(x+i y) d x d y$. If $\left(R_{i}, g_{i}\right) \sim\left(R_{i}^{\prime}, g_{i}^{\prime}\right)$, there is a conformal mapping h_{i} such that $g_{i}^{\prime-1} \circ h_{i} \circ g_{i}$ is homotopic to the identity mapping. Note that for $f \in C E\left(R_{1}, R_{2}\right)$,

$$
\lambda\left(\Gamma\left(R_{2}^{\circ}, f\left(R_{1}^{\circ}\right)\right)\right)=\lambda\left(\Gamma\left(R_{2}^{\prime \circ}, h_{2} \circ f \circ h_{1}^{-1}\left(R_{1}^{\prime \circ}\right)\right)\right)
$$

Put

$$
B\left(R_{1}, R_{2}\right)=\inf \left\{\lambda\left(\Gamma\left(R_{2}^{\circ}, f\left(R_{1}^{\circ}\right)\right)\right) ; f \in C E\left(R_{1}, R_{2}\right)\right\}
$$

where $B\left(R_{1}, R_{2}\right)=\infty$ if $C E\left(R_{1}, R_{2}\right)$ is empty. We have
Theorem. Suppose $B\left(R_{1}, R_{2}\right)<\infty$. There is an $f_{0} \in C E\left(R_{1}, R_{2}\right)$ which satisfies $\lambda\left(\Gamma\left(R_{2}^{\circ}, f_{0}\left(R_{1}^{\circ}\right)\right)\right)=B\left(R_{1}, R_{2}\right)$. The boundary of $f_{0}\left(R_{1}^{\circ}\right)$ consists of trajectories of a quadratic holomorphic differential on R_{2}; hence the boundary is analytic.

There is a sequence $\left\{f_{n}\right\} \subset C E\left(R_{1}, R_{2}\right)$ such that $\lambda\left(\Gamma\left(R_{2}^{\circ}, f_{n}\left(R_{1}^{\circ}\right)\right)\right)$ decreases to $B\left(R_{1}, R_{2}\right)$. For a bounded analytic function F on $R_{2},\left\{F \circ f_{n}\right\}$ is a normal family. Since $\lambda\left(\Gamma\left(R_{2}^{\circ}, f_{n}\left(R_{1}^{\circ}\right)\right)\right)$ is bounded, $f_{n}\left(R_{1}^{\circ}\right)$ does not get close to the boundary ∂R_{2} of R_{2}. Since R_{1} is not simply connected and $g_{2}^{-1} \circ f_{n} \circ g_{1}$ is homotopic to the identity mapping, $f_{n}\left(R_{1}^{\circ}\right)$ can not converge to a point. We may assume that $\left\{f_{n}\right\}$ converges to a conformal mapping f_{0} from R_{1}° into R_{2}°. Since $\lambda\left(\Gamma\left(R_{2}^{\circ}, f_{0}\left(R_{1}^{\circ}\right)\right)\right) \leq B\left(R_{1}, R_{2}\right)$, we get $\lambda\left(\Gamma\left(R_{2}^{\circ}, f_{0}\left(R_{1}^{\circ}\right)\right)\right)=B\left(R_{1}, R_{2}\right)$. In the next section we consider the boundary of $f_{0}\left(R_{1}^{\circ}\right)$.

2 Variational method

At first we note that $\lambda\left(\Gamma\left(R_{2}^{\circ}, f_{0}\left(R_{1}^{\circ}\right)\right)\right.$) gives the capacity of $f_{0}\left(R_{1}^{\circ}\right)$ in R_{2}°. Let f be a conformal embedding of R_{1}° into R_{2}° and $H(f)$ be a harmonic function on $R_{2}^{\circ}-f\left(R_{1}^{\circ}\right)$ such that $H(f)$ takes value one on the boundary of $f\left(R_{1}\right)$ and vanishes on the boundary of R_{2}. Then

$$
\lambda\left(\Gamma\left(R_{2}^{\circ}, f_{0}\left(R_{1}^{\circ}\right)\right)\right)=\left\|d H\left(f_{0}\right)\right\|^{2}=\iint_{R_{2}^{0}-\overline{f_{0}\left(R_{1}^{0}\right)}} d H\left(f_{0}\right) \bigwedge * d H\left(f_{0}\right) .
$$

Now take an infinitesimally trivial dilatation μ on R_{2} whose support is contained in $R_{2}^{\circ}-\overline{f_{0}\left(R_{1}^{\circ}\right)}$. That is

$$
\iint_{R_{2}} \varphi \mu \frac{d \bar{z}}{d z}=0
$$

for φ in the space $A_{2}^{1}\left(\hat{R}_{2}\right)$ of anti-symmetric analytic quadratic differentials with finite L^{1}-norm on the double of \hat{R}_{2} of R_{2} and supp $\mu \subset R_{2}^{\circ}-\overline{f_{0}\left(R_{1}^{\circ}\right)}$. Let $R_{2}(t)$ be the Riemann surface with the conformal structure introduced by $t \mu$. Let

$$
\|\mu\|_{\infty}=\text { esssup }|\mu|<2 .
$$

Then for $0 \leq t \leq \frac{1}{4}$ there is a complex dilatation $\sigma(t) \in[t \mu]$ for which

$$
\|\sigma(t)\|_{\infty} \leq 12 t^{2} .(c f .[L] p .227)
$$

Since the part $f_{0}\left(R_{1}^{\circ}\right)$ of $R_{2}(t)$ has the same conformal structure as that of R_{2}, the region $f_{0}\left(R_{1}^{\circ}\right)$ can be regarded as a conformal embedding in $R_{2}(t)$. Denote it by $f_{t}\left(R_{1}\right)$. We have the following variational formula (cf. [M]);

$$
\frac{d}{d t}\left\|d H\left(f_{t}\right)\right\|^{2}=\Re-i \iint_{R_{2}}\left(\frac{\partial}{\partial \zeta} H\left(f_{0}\right)\right)^{2} \mu \zeta_{z}^{2} d z d \bar{z}
$$

where ζ is a local parameter on $R_{2}(t)$ which satisfies

$$
\frac{\zeta_{\bar{z}}}{\zeta_{z}}=t \mu
$$

Particularly for $t=0$,

$$
\left.\frac{d}{d t}\left\|d H\left(f_{t}\right)\right\|^{2}\right|_{t=0}=\Re-i \iint_{R_{2}}\left(\frac{\partial}{\partial z} H\left(f_{0}\right)\right)^{2} \mu d z d \bar{z}
$$

Suppose

$$
\left.\frac{d}{d t}\left\|d H\left(f_{t}\right)\right\|^{2}\right|_{t=0}=k \neq 0
$$

Then

$$
\left\|d H\left(f_{t}\right)\right\|^{2}=\left\|d H\left(f_{0}\right)\right\|^{2}+k t+O\left(t^{2}\right) .
$$

On the other hand, the Teichmüller distance between R_{2} and $R_{2}(t)$ is at most $12 t^{2}$. So we can hope that there exists another embedding f_{*} such that

$$
\lambda\left(\Gamma\left(R_{2}^{\circ}, f_{*}\left(R_{1}^{\circ}\right)\right)<\lambda\left(\Gamma\left(R_{2}^{\circ}, f_{0}\left(R_{1}^{\circ}\right)\right)\right.\right.
$$

Although we postpone the proof, this gives a contradiction. It follows that

$$
\iint_{R_{2}}\left(\frac{\partial}{\partial z} H\left(f_{0}\right)\right)^{2} \mu d z d \bar{z}=0
$$

for μ such that support of $\mu \subset R_{2}^{\circ}-f_{0}\left(R_{1}^{\circ}\right)$ and

$$
\iint_{R_{2}} \varphi \mu \frac{d \bar{z}}{d z}=0 \text { for } \varphi \in A_{2}^{1}\left(\hat{R}_{2}\right)
$$

Hence $\left(\frac{\partial}{\partial z} H\left(f_{0}\right)\right)^{2} d z^{2}$ coincides with a $\varphi_{0} \in A_{2}^{1}\left(\hat{R}_{2}\right)$ on $R_{2}^{\circ}-f_{0}\left(R_{1}^{\circ}\right)$. The function $H\left(f_{0}\right)$ has an analytic extension across the boundary of $\partial f_{0}\left(R_{1}\right)$. Therefore $\partial f_{0}\left(R_{1}\right)$ consists of analytic curves in R_{2}. We remark that the embedding is uniquely determined for φ_{0}. For the check of above assertion, take a closed disk K which contained in $R_{2}^{\circ}-\overline{f_{0}\left(R_{1}^{\circ}\right)}$. Let $\varphi_{1}, \ldots, \varphi_{n}(n=6 p+$ $3 m-6)$ be a basis of $A_{2}^{1}\left(\hat{R_{2}}\right)$. There exist Beltrami differentials $\mu_{1} \frac{d \bar{z}}{d z}, \ldots, \mu_{n} \frac{d \bar{z}}{d z}$ such that
i) the support of μ_{i} is contained in K,
ii) $\iint \varphi_{i} \mu_{j} \frac{d \bar{z}}{d z}=a_{i j}, \operatorname{det}\left(a_{i j}\right) \neq 0$.

Let R_{s} be the Riemann surface with the conformal structure introduced by

$$
\sum_{j=1}^{n} s_{j} \mu_{j} \frac{d \bar{z}}{d z} \text { on } K, s=\left(s_{1}, \ldots, s_{n}\right)
$$

and the same conformal structure as that of R_{2} on $R_{2}-K$. Then $s=$ $\left(s_{1}, \ldots, s_{n}\right)$ becomes a local parameter about $R_{0}=R_{2}$ (cf. [IT]). For a small t, there exists a $s(t)=\left(s_{1}, \ldots, s_{n}\right)$ such that $R_{s(t)}$ is conformally equivalent to $R_{2}(t)$. Let h_{t} be the quasiconformal mapping from R_{2} to $R_{2}(t)$ such that

$$
\frac{\left(h_{t}\right)_{\bar{z}} d \bar{z}}{\left(h_{t}\right)_{z} d z}=\left\{\begin{array}{cc}
t \mu \frac{d \bar{z}}{d z} & \text { on } R_{2}^{\circ}-f_{0}\left(R_{1}^{\circ}\right) \\
0 & \text { on } f_{0}\left(R_{1}^{\circ}\right),
\end{array}\right.
$$

$f_{s(t)}$ be the quasiconformal mapping from R_{2} to $R_{s(t)}$ such that

$$
\frac{\left(f_{s(t)}\right)_{\bar{z}} d \bar{z}}{\left(f_{s(t)}\right)_{z} d z}=\left\{\begin{array}{cc}
\sum s_{j} \mu_{j} \frac{d \bar{z}}{d z} & \text { on } K \\
0 & \text { on } R_{2}^{\circ}-K
\end{array}\right.
$$

and $f_{t, s}$ be the conformal mapping from $R_{2}(t)$ to $R_{s(t)}$ such that the quasiconformal mapping $g_{t}=f_{s(t)}^{-1} \circ f_{t, s} \circ h_{t}$ is homotopic to the identity mapping. The Beltrami coefficient of g_{t} converges to 0 as t converges to 0 . We can assume that $g_{t} \circ f_{0}\left(R_{1}\right) \cap K=\emptyset$. Hence g_{t} is conformal on $f_{0}\left(R_{1}^{\circ}\right)$, and $g_{t} \circ f_{0}\left(R_{1}\right)$ becomes an embedding from R_{1} into R_{2}. Since the order of s depends on the order t^{2}, we have

$$
\left\|d H\left(g_{t} \circ f_{0}\right)\right\|^{2}=\left\|d H\left(f_{0}\right)\right\|^{2}+k t+O\left(t^{2}\right)
$$

Therefore there exists τ such that

$$
\left\|d H\left(g_{\tau} \circ f_{0}\right)\right\|^{2}<\left\|d H\left(f_{0}\right)\right\|^{2}
$$

This contradicts the minimal property of $\left\|d H\left(f_{0}\right)\right\|^{2}$.
Remark. We believe the uniqueness of this embedding but do not have a proof. We note a certain kind of uniqueness. Let φ_{0} coincide with

$$
c\left(\frac{d z_{i}}{a z_{i}\left(\log b_{i}-\log a_{i}\right)}\right)^{2}
$$

on the boundary component $\left\{z_{i} ;\left|z_{i}\right|=b_{i}\right\}$ of R_{2}. Then minimum value is

$$
B\left(R_{1}, R_{2}\right)=\sum_{i} \frac{2 \pi}{\log b_{i}-\log a_{i}}
$$

Take real numbers c_{i} such that

$$
\frac{\log c_{i}-\log a_{i}}{\log b_{i}-\log a_{i}}=1+t
$$

The local parameter z_{i} is regarded as a local parameter of a neighborhood of the boundary component. For a sufficiently small t, let $R(t)$ be a Riemann surface whose boundary is given by $\left\{z_{i} ;\left|z_{i}\right|=c_{i}\right\}$. Then $R(0)=R_{2}, R(t) \in$ $T\left(R_{0} ; R_{1}\right)$ for $t>-1$. Then φ_{0} coincides with

$$
c\left(\frac{(1+t) d z_{i}}{a z_{i}\left(\log c_{i}-\log a_{i}\right)}\right)^{2}
$$

on the boundary component $\left\{z_{i} ;\left|z_{i}\right|=c_{i}\right\}$ of $R(t)$. The function $f_{0}\left(R_{1}\right)$ is an embedding into $R(t)$.

For $-1<t<0$, suppose that there is another embedding $f_{1}\left(R_{1}^{\circ}\right)$ into $R(t)$ such that

$$
\lambda\left(\Gamma\left(R(t)^{\circ}, f_{1}\left(R_{1}^{\circ}\right)\right)\right) \leq \lambda\left(\Gamma\left(R(t)^{\circ}, f_{0}\left(R_{1}^{\circ}\right)\right)\right) .
$$

Then

$$
\begin{gathered}
\left.\lambda\left(\Gamma\left(R_{2}^{\circ}, f_{1}\left(R_{1}^{\circ}\right)\right)\right)^{-1}>\lambda\left(\Gamma\left(R_{2}^{\circ}, R(t)^{\circ}\right)\right)\right)^{-1}+\lambda\left(\Gamma\left(R(t)^{\circ}, f_{1}\left(R_{1}^{\circ}\right)\right)\right)^{-1} \\
\left.\geq \lambda\left(\Gamma\left(R_{2}^{\circ}, R(t)^{\circ}\right)\right)\right)^{-1}+\lambda\left(\Gamma\left(R(t)^{\circ}, f_{0}\left(R_{1}^{\circ}\right)\right)\right)^{-1} \\
=\lambda\left(\Gamma\left(R_{2}^{\circ}, f_{0}\left(R_{1}^{\circ}\right)\right)\right)^{-1}
\end{gathered}
$$

Hence

$$
\lambda\left(\Gamma\left(R_{2}^{\circ}, f_{1}\left(R_{1}^{\circ}\right)\right)\right)<\lambda\left(\Gamma\left(R_{2}^{\circ}, f_{0}\left(R_{1}^{\circ}\right)\right)\right)=B\left(R_{1}, R_{2}\right)
$$

This is a contradiction. Therefore $f_{0}\left(R_{1}\right)$ is the unique embedding into $R(t)$ which attains the value $B\left(R_{1}, R_{2}(t)\right)$.

Similarly, we know that $R(t)$ is considered as the unique embedding into R_{2} which attains the value $B\left(R(t), R_{2}\right)$.

3 Example

Let R_{1} and R_{2} be two annuli $\left\{z ; a_{1}<|z|<b_{1}\right\},\left\{w ; a_{2}<|w|<b_{2}\right\}$, $\left(a_{2}<a_{1}<b_{1}<b_{2}\right)$. For $f \in C E\left(R_{1}, R_{2}\right)$, let
$\Gamma_{1}(f)=\left\{\gamma ; \gamma\right.$ is a Jordan curve which divides $\left\{f(z) ;|z|=a_{1}\right\}$ and

$$
\left.\left\{f(z) ;|z|=b_{1}\right\} \text { in } f\left(R_{1}\right)\right\}
$$

$\Gamma_{2}=\left\{\gamma ; \gamma\right.$ is a Jordan curve which divides $\left\{w ;|w|=a_{2}\right\}$ and

$$
\left.\left\{w ;|w|=b_{2}\right\} \text { in } R_{2}\right\}
$$

$\Gamma_{3}(f)=\left\{\gamma ; \gamma\right.$ is a Jordan curve which divides $\left\{f(z) ;|z|=a_{1}\right\}$ and $\left\{w ;|w|=a_{2}\right\}$ in a component of $\left.R_{2}-f\left(R_{1}\right)\right\}$,
$\Gamma_{4}(f)=\left\{\gamma ; \gamma\right.$ is a Jordan curve which divides $\left\{f(z) ;|z|=b_{1}\right\}$ and $\left\{w ;|w|=b_{2}\right\}$ in a component of $\left.R_{2}-f\left(R_{1}\right)\right\}$,
and

$$
\Gamma(f)=\left\{\gamma_{3} \bigcup \gamma_{4} ; \gamma_{3} \in \Gamma_{3}(f), \gamma_{4} \in \Gamma_{4}(f)\right\}
$$

Since $\Gamma_{2} \supset \Gamma_{1}(f) \cup \Gamma_{3}(f) \cup \Gamma_{4}(f)$, by a property of extremal length

$$
\lambda\left(\Gamma_{2}\right)^{-1} \geq \lambda\left(\Gamma_{1}(f)\right)^{-1}+\lambda\left(\Gamma_{3}(f)\right)^{-1}+\lambda\left(\Gamma_{4}(f)\right)^{-1} .
$$

We have

$$
\begin{gathered}
\frac{1}{2 \pi}\left(\log \frac{b_{2}}{a_{2}}-\log \frac{b_{1}}{a_{1}}\right)=\lambda\left(\Gamma_{2}\right)^{-1}-\lambda\left(\Gamma_{1}(f)\right)^{-1} \\
\geq \lambda\left(\Gamma_{3}(f)\right)^{-1}+\lambda\left(\Gamma_{4}(f)\right)^{-1} .
\end{gathered}
$$

We remark that

$$
\frac{1}{2 \pi}\left(\log \frac{b_{2}}{a_{2}}-\log \frac{b_{1}}{a_{1}}\right)=\lambda\left(\Gamma_{3}(f)\right)^{-1}+\lambda\left(\Gamma_{4}(f)\right)^{-1}
$$

iff $f\left(R_{1}\right)$ becomes an annulus with the same center as that of R_{2}. There is an $f_{1} \in C E\left(R_{1}, R_{2}\right)$ such that
i) $f_{1}\left(R_{1}\right)$ becomes an annulus with the same center as that of R_{2},
ii) $\lambda\left(\Gamma_{3}\left(f_{1}\right)\right)=\lambda\left(\Gamma_{3}(f)\right)$.

Then

$$
\lambda\left(\Gamma_{3}\left(f_{1}\right)\right)^{-1}+\lambda\left(\Gamma_{4}\left(f_{1}\right)\right)^{-1} \geq \lambda\left(\Gamma_{3}(f)\right)^{-1}+\lambda\left(\Gamma_{4}(f)\right)^{-1}
$$

and $\lambda\left(\Gamma_{4}\left(f_{1}\right)\right) \leq \lambda\left(\Gamma_{4}(f)\right)$. Hence we have

$$
\lambda\left(\Gamma_{3}\left(f_{1}\right)\right)+\lambda\left(\Gamma_{4}\left(f_{1}\right)\right) \leq \lambda\left(\Gamma_{3}(f)\right)+\lambda\left(\Gamma_{4}(f)\right) .
$$

So we may consider the case that the embeddings are annuli with the same center. Let $f\left(R_{1}\right)=\left\{w ; a_{1}^{\prime}<|w|<b_{1}^{\prime}\right\}$. Then

$$
\begin{gathered}
\lambda(\Gamma(f))=\lambda\left(\Gamma_{3}(f)\right)+\lambda\left(\Gamma_{4}(f)\right) \\
=2 \pi\left\{\frac{1}{\log a_{1}^{\prime}-\log a_{2}}+\frac{1}{\log b_{1}-\log b_{1}^{b_{1}}}\right\} .
\end{gathered}
$$

Put $t=b_{1}^{\prime} / a_{1}^{\prime}, s=b_{2} / a_{2}, p=\log a_{2}, q=\log \left(b_{2} / t\right)$ and $x=\log a_{1}^{\prime}$. We can write

$$
\begin{gathered}
\lambda(\Gamma(f))=2 \pi \frac{q-p}{(x-p)(q-x)} \\
=\frac{2 \pi(q-p)}{-\left(x-\frac{p+q}{2}\right)^{2}+\left(\frac{p-q}{2}\right)^{2}} \geq \frac{8 \pi}{q-p} .
\end{gathered}
$$

Therefore when $x=(p+q) / 2, \lambda(\Gamma(f))$ attains the minimum value $8 \pi /(q-p)$. This condition means $a_{1}^{\prime} / a_{2}=b_{2} / b_{1}^{\prime}$. Only this case attains the minimum value $B\left(R_{1}, R_{2}\right)$ of $\lambda(\Gamma)$.

Remark. In this case we refer to the quadratic differential in the statement. Let $A=\{z ; a<|z|<b\}$ and $H(z)=(\log |z|-\log a) /(\log b-\log a)$. Then H is called a harmonic measure for $\{z ;|z|=b\}$ on A. We have

$$
\begin{gathered}
\|d H\|^{2}=\iint_{A} d H \bigwedge * d H \\
=\frac{1}{(\log b-\log a)^{2}} \int_{0}^{2 \pi} \int_{a}^{b} \frac{d r d \theta}{r}=\frac{2 \pi}{\log b-\log a} .
\end{gathered}
$$

Take a complex dilatation μ and let $A(t)$ be the Riemann surface with the conformal structure induced by $t \mu$. Let H_{t} be the harmonic measure for the outer boundary on $A(t)$, that is, H_{t} is harmonic in $A(t)$ and

$$
H_{t}= \begin{cases}0 & \text { on the inner boundary of } A(t) \\ 1 & \text { on the outer boundary of } A(t)\end{cases}
$$

Since

$$
\begin{aligned}
\frac{\partial H}{\partial z} & =\frac{1}{2(\log b-\log a)} \frac{\partial}{\partial z} \log \frac{z \bar{z}}{a^{2}} \\
& =\frac{1}{2 z(\log b-\log a)}
\end{aligned}
$$

we have

$$
\begin{aligned}
& \frac{d}{d t}\left\|d H_{t}\right\|_{t=0}^{2}=\Re-i \iint_{A}\left(\frac{\partial H}{\partial z}\right)^{2} \mu d z d \bar{z} \\
& =\frac{1}{4(\log b-\log a)^{2}} \Re-i \iint_{A} \frac{\mu}{z^{2}} d z d \bar{z}
\end{aligned}
$$

For the embedding f which attains the minimum value,

$$
\left\{\frac{1}{\log a_{1}^{\prime}-\log a_{2}} \frac{\partial}{\partial z} \log \frac{|z|}{a_{2}} d z\right\}^{2} \text { on }\left\{z ; a_{2}<|z|<a_{1}^{\prime}\right\}
$$

and

$$
\left\{\frac{1}{\log b_{2}-\log b_{1}^{\prime}} \frac{\partial}{\partial z} \log \frac{|z|}{b_{1}^{\prime}} d z\right\}^{2} \text { on }\left\{z ; b_{1}^{\prime}<|z|<b_{2}\right\}
$$

coincide with a quadratic differential $c(d z / z)^{2}$ on the double of A, because of $a_{1}^{\prime} / a_{2}=b_{2} / b_{1}^{\prime}=\exp \sqrt{c}$. From previous theory, we know that only this case attains the minimum value.

4 Schiffer's interior variation via [IT]

Let R be a Riemann surface, (U, z) be a local coordinate about p in R; $z(p)=0, z(U)=\{z ;|z|<2\}$ and D_{ρ} be the inverse image of the disk $\{z ;|z|<\rho\}$. For a complex parameter ϵ, define a function from U to the complex w-plane:

$$
w_{\epsilon}(z)=z+\frac{\epsilon}{z} .
$$

Delete $D_{\rho},\left(\frac{1}{2}<\rho<1\right)$ from R and paste the image $V_{\frac{1}{\rho}}$ of $D_{\frac{1}{\rho}}$ by w_{ϵ} the part of $D_{\frac{1}{\rho}}-D_{\rho}$ such that z corresponds to $w_{\epsilon}(z)$. We get another Riemann surface:

$$
R_{\epsilon}=\left(R-D_{\rho}\right) \bigcup V_{\frac{1}{\rho}}
$$

whose conformal structure coincides with that of $R-D_{\rho}$ in the part $R-D_{\rho}$ and that of $V_{\frac{1}{\rho}}$ in the part $V_{\frac{1}{\rho}}$, particularly, in the pasted part they are consistent, because w_{ϵ} is conformal. Consider the following mapping from R to R_{ϵ};

$$
f_{\epsilon}(p)=\left\{\begin{array}{cc}
p & p \in R-D_{1} \\
w(z(p))=z(p)+\epsilon \bar{z}(p) & p \in \overline{D_{1}} .
\end{array}\right.
$$

Note that $w(z(p))=w_{\epsilon}(z(p)), p \in \partial D_{1}$. The Beltrami coefficient μ_{ϵ} of f_{ϵ} is

$$
\mu_{\epsilon}(p)=\left\{\begin{array}{cc}
0 & p \in R-D_{1} \\
\epsilon \frac{d \bar{z}}{d z} & p \in D_{1},
\end{array}\right.
$$

hence f_{ϵ} becomes a quasiconformal mapping from R to R_{ϵ}. Now take n points $\left\{p_{i}\right\}_{i=1 \ldots n}$ and their disjoint local neighborhoods $\left\{U_{i}, z_{i}\right\}$. For n complex parameters $\epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$, we can deform R to R_{ϵ} by the above mentioned change of conformal structure on the part of $\cup U_{i}$ and get the quasiconformal mapping f_{ϵ} from R to R_{ϵ}. Let n be the dimension of the reduced Teichmüller space of R and $\left\{\varphi_{i}\right\}_{i=1, \ldots, n}$ be a basis of the space $A_{2}^{1}(\hat{R})$. Consider a mapping F from the unit ball about $0 \in \mathbf{C}^{n}$ to the space $B^{1}(R)$ of Beltrami differentials with finite supremum norm:

$$
F(\epsilon)=\frac{\left(f_{\epsilon}\right)_{\bar{z}}}{\left(f_{\epsilon}\right)_{z}} \frac{d \bar{z}}{d z}=\left\{\begin{array}{cc}
\epsilon_{i} \frac{d \bar{z}}{d z} & D^{i}=z_{i}^{-1}\left(\left\{z_{i} ;\left|z_{i}\right|<1\right\}\right) \\
0 & R-\cup D^{i}
\end{array}\right.
$$

Then

$$
\frac{\partial F}{\partial \epsilon_{i}}=\left\{\begin{array}{cc}
\frac{d \bar{z}}{d z} & D^{i} \\
0 & R-\cup D^{i}
\end{array}\right.
$$

so F is holomorphic (cf. [L] p.206). For a $\psi \in A_{2}^{1}(\hat{R})$,

$$
\iint_{R} \psi \frac{\partial F}{\partial \epsilon_{i}}=-2 \pi i \psi\left(p_{i}\right),
$$

where $\psi=\underline{\psi}\left(z_{i}\right) d z_{i}^{2}, \psi\left(p_{i}\right)=\underline{\psi}(0)$. We can choose points $\left\{p_{i}\right\}$ such that

$$
\operatorname{det}\left(\varphi_{k}\left(p_{i}\right)\right) \neq 0
$$

Then $\left(\frac{\partial F}{\partial \epsilon_{1}}, \ldots, \frac{\partial F}{\partial \epsilon_{n}}\right)$ becomes a basis of the dual space $A_{2}^{1 *}$ of $A_{2}^{1}(\hat{R})$ which is regarded as the tangent space of the Teichmüller space. The function F is biholomorphic. Therefore $\epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$ is regarded as a local parameter of the Teichmüller space.

5 Acknowledgment

I wish to express my deep gratitude to Beijing university for the kind hospitality during the conference and to Professor David Minda for his valuable advice.

References

[A] L. V.Ahlfors, Conformal Invariants, McGraw-Hill, 1973.
[IT] Y. Imayoshi and M. Taniguchi, Teichmüller space, Springer-Verlag.
[L] O. Lehto, Univalent functions and Teichmüller spaces, SpringerVerlag, 1986.
[M] F. Maitani, Variation of meromorphic differentials under quasiconformal deformations. J. Math. Kyoto Univ., 24(1984), 49-66.

[^0]: *This research was partially supported by Grant-in-Aid for Scientific Research (No. 09640183), Ministry of Education, Science and Culture, Japan.

