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Abstract
This paper presents a new method for simulating flows driven by a body traveling
with neither restriction on motion nor a limit of a region size. In the present method
named ’Moving Computational Domain Method’, the whole of the computational do-
main including bodies inside moves in the physical space without the limit of region
size. Since the whole of the grid of the computational domain moves according to the
movement of the body, a flow solver of the method has to be constructed on the mov-
ing grid system and it is important for the flow solver to satisfy physical and geometric
conservation laws simultaneously on moving grid. For this issue, the Moving-Grid
Finite-Volume Method is employed as the flow solver. The present Moving Computa-
tional Domain Method makes it possible to simulate flow driven by any kind of motion
of the body in any size of the region with satisfying physical and geometric conser-
vation laws simultaneously. In this paper, the method is applied to the flow around
a high-speed car passing through a hairpin curve. The distinctive flow field driven
by the car at the hairpin curve has been demonstrated in detail. The results show the
promising feature of the method.
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1. Introduction

In recent years, vehicle aerodynamics have gained increased attention for yielding per-
formance improvements(1). The present main interest on car aerodynamics is in general the
estimation and generation of downforce, and thus many simulations have been performed to
estimate the downforce. In order to evaluate aerodynamics of the car, simulations of flows
around the car in a uniform flow have been usually performed. This situation corresponds to
a case that the car runs on a straight-line road. These simulations might give various informa-
tion about forces acting on the car and are important for design of the high performance car.
However, from the view point of total performance of the race car, the aerodynamics at var-
ious scenarios should be considered because the car has to run not only on straight-line road
but also through hairpin curves. The estimation of aerodynamic forces acting on the car at the
hairpin curve or in a S-shape run will be important for not only a next generation race car but
also a sedan. As stated in Reference(1), the improved cornering due to the use of aerodynamic
downforce led to the dramatic increase in cornering speed.

One of the focuses of this paper is on methods of simulation, which can estimate aero-
dynamic performance of the car passing through the hairpin curves. Simulation by Com-
putational Fluid Dynamics is a powerful tool for estimation of car aerodynamics as widely
recognized. The simulation of the car running on the straight-line road is easy and widely
performed. However, the simulation of the car running at the hairpin curve is not found in
a literature as far as the authors know. In order to simulate the flow around the car passing
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through the hairpin curve, two approaches might be considered. The one is to use a non-
inertial coordinate system or moving coordinate system, in which the governing equations are
transformed and thus the governing equations include extra terms of apparent forces, such as
the Coriolis force, centrifugal force. In the case of the car in the S-shape run, the governing
equations become further complex. Therefore, this approach is not considered in this paper.
The other approach, which might be more popular and general, is to directly compute the car
moving in the computational domain. Since the car moves in the fluid in this approach, this
is so called ’moving boundary problem’, where the boundary moves and flow is driven due to
the movement of the boundary. One of the most popular methods for such a moving boundary
problem is an overset grid method(2), where sub-grid placed around a moving-body moves
on the main-grid placed in computational domain with interchanging the data between the
sub-grid and the main-grid by simple tri-linear interpolation procedure. The overset method,
unlike body-fitted single grid system, has the advantage of a high degree of freedom of the
body motion and ease of calculation. The overset method, however, includes inherent unphys-
ical procedure of interpolation of flow variables from main-grid to sub-grid and vice versa
without consideration of physical laws. Thus the overset method breaks conservation laws
at the interpolation points and might be a source of inaccuracy. The other drawback of the
overset method is, as is any other current methods, the limit of computational regions, in other
words, the sub-grid which includes the body can move only inside the main-grid prepared
beforehand.

The second focus of this paper is to perform simulations without a limit of the physi-
cal region size. There often exist the cases that the size of the computational region is not
known beforehand. For example, when the movement of the body is strongly influenced by
disturbances or some kind of interaction, the movement of the body can not be determined
a priori. Conventional simulation methods have to estimate the enough size of the computa-
tional region and prepare the grid covering the whole of the region. Moreover, if we simulate
a full course of racing track the huge computational region and related huge amount of grid
point will be necessary. Hence, if we perform the simulation of the flow around the car in
various types of motion, such as straight-line run or S-shape run, without the restriction of the
computational region size, we should look for another new approach.

The purpose of this paper is to propose the new method that does not have such restric-
tions mentioned above and can simulate any kind of motion without the limit of the region
size. The present method is not the one such that the body moves in the fixed computational
domain but the method such that the whole of the computational domain with the body inside
moves according to the movement of the body in the considering physical space. We call this
new method ’Moving Computational Domain Method’, in short, MCD method in this paper.
Thus the MCD method can consider the region without limit and thus it might be said that
at the extreme the computational region of the MCD method is infinite. The only necessary
assumption is that the conditions just in front of the computational domain should be known
a priori, such as, stationary fluid state or uniform flow and so on. In this paper, the MCD
method is presented and applied to the simulation of the flow around a high-speed car passing
through a hairpin curve.

2. Moving Computational Domain Method

2.1. Moving Computational Domain Method
The basic coordinate system of the MCD method is the general, fixed, stationary (x, y, z)

Cartesian coordinate system. The computational domain itself, including the body inside,
moves in the fixed (x, y, z)-space, as illustrated in Fig.1. The flow around the body is calculated
as the moving boundary problem. Unknown flow variables, such as density ρ, x-directional
momentum ρu and so on, are defined at each grid cell center in the computational domain.
The motion of the computational domain according to the motion of the body in the physical
space is arbitrary, and thus the any kind of the motion of the body, such as straight-line motion,
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Fig. 1 Image of the Moving Computational Domain method

turning motion and their combination, can be simulated by the MCD method. The flow field
driven by the body is calculated in the computational domain in which the body fitted grid
system is used. Since the computational domain itself moves in the physical (x, y, z) space
time-dependently and thus the grid system of the computational domain also moves in the
(x, y, z) space, the flow solver has to be constructed for the moving grid system. In the present
MCD method, the Moving-Grid Finite-Volume method, which has been proposed and devel-
oped by the authors(3)(4)(5), is adopted. Only necessary and essential assumption is that the
condition in front of the moving computational domain has to be known because it is neces-
sary as a boundary condition of the flow solver. This assumption is not severe in general. The
natural assumption may be the stationary fluid condition in front of the moving computational
domain.

2.2. Governing Equations
The three-dimensional Reynolds-averaged Navier-Stokes equations for compressible flow

are written in the conservation law form in the x-, y-, z-Cartesian coordinate system as follows:

∂Q
∂t
+
∂

∂x
(E − Ev) +

∂

∂y
(F − Fv) +

∂

∂z
(G −Gv) = 0, (1)

where Q = [ρ, ρu, ρv, ρw, e]T is a vector of conserved variables, E, F and G are convective flux
vectors, Ev, Fv, and Gv are the viscous flux vectors. Density is denoted by ρ and u, v and w are
velocity components in the x, y and z directions, respectively, e is the total energy. Pressure p
is obtained by the equation of state for a perfect gas:

p = (γ − 1)

[
e − 1

2
(u2 + v2 + w2)

]
, (2)

where γ is the specific heat ratio. For viscous flows with high Reynolds number, Spalart-
Almaras one-equation model(9), which is standard for high speed-flows and has been success-
fully applied to various type of flows, is employed.

Equation (1) can be represented in a divergence form using extended divergent operator
∇̃ = (∂/∂x, ∂/∂y, ∂/∂z, ∂/∂t) and flux tensor F̃ = (E − Ev, F − Fv,G −Gv,Q) as follows :

∇̃F̃ = 0 (3)

Equation (3) means that the governing equations are divergence-free in (x, y, z, t) space-time
unified four-dimensional space.

The flow solver of the present MCD method is the Moving-Grid Finite-Volume Method,
and is based on this divergence-free form, Eq.(3), in the (x, y, z, t) unified four dimensional
space, which is briefly described in next sub-section.

2.3. Moving-Grid Finite-Volume Method
For the present MCD method, since the computational grid itself moves with the com-

putational domain in the physical space, the numerical flow solver on the moving grid system
is necessary. For simulations of compressible flows on the moving grid system, it is crucial
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for the numerical scheme to satisfy both the physical conservation law and the geometric
conservation law simultaneously. The Moving-Grid Finite-Volume method is incorporated in
the present MCD method. The Moving-Grid Finite-Volume method is constructed based on
the divergence form of the governing equation, Eq.(3), and the control volume in (x, y, z, t)
space-time unified four-dimensional space for three-dimensional flow problems. The flow
variables, Qn

i, j,k at time tn, are defined at the center of the grid-cell in three-dimensional space
as usual. Since the grid is moving in the (x, y, z) physical space, the grid-cell defining flow
variables is also moving according to the grid motion. The control volume of the Moving-Grid
Finite-Volume method, Ω, stands in unified four-dimensional space-time (x, y, z, t) -domain
and is uniquely defined as the octahedron lain between t = tn and t = tn+1 planes in the
four-dimensional space.

Now letΩ be the octahedral control volume in the (x, y, z, t) space and ∂Ω be its boundary
surface. Figure 2(left) schematically illustrates the octahedral control volume in space-time
unified domain and Fig.2(right) illustrates the one of the surfaces of the octahedron. By inte-
grating Eq.(3) over the control volume Ω and applying Gauss’ divergence theorem, we obtain
the following integral equation,∫

Ω
∇̃F̃dV =

∫
∂Ω

F̃ · k̃dS = 0, (4)

where k̃ is a unit vector outwardly normal to the octahedral control volume surface. In discrete
form, Eq.(4) becomes, with k̃dS = ñ,

8∑
l=1

F̃l · ñl = 0, (5)

where, ñl = (nx, ny, nz, nt)l (l = 1, 2, · · · 8) is the normal vector of the control volume surface
in the space-time unified domain, and the length of the vector equals to the area of the four-
dimensional boundary surface. Since the surfaces l = 7 and 8 are perpendicular to the t-axis,
ñ7 and ñ8 have only nt component and correspond to the cell volumes, Vn

i, j,k and Vn+1
i, j,k , in the

(x, y, z) space at n and (n + 1)-time steps respectively. Thus, Eq.(5) becomes as follows:

Qn+1(nt)8 + Qn(nt)7 +
6∑

l=1

(
F̃n+1/2

l · ñ
)

l
= 0, (6)

or

Qn+1
i, j,kVn+1

i, j,k + Qn
i, j,kVn

i, j,k +
6∑

l=1

[
(E − Ev)nx + (F − Fv)ny + (G −Gv)nz + Qnt

]n+1/2

l
= 0.

(7)

Here, the flux Fn+1/2
l , for example, can be evaluated as

(
Fn

l + Fn+1
l

)
/2 of second order accu-

racy. In this paper, however, the backward-Euler type estimation, Fn+1/2
l = Fn+1

l , is used for
the higher-stability for high-Reynolds number turbulent flows. The convective flux vectors, E,
F and G are evaluated using the Roe flux difference splitting scheme(7) with the second order
ENO scheme of Harten and Osher(8), and the viscous flux vectors Ev, Fv and Gv are centrally
differenced. For the turbulence modeling, we employ the Spalart-Allmaras one-equation tur-
bulence model(9). In order to solve the nonlinear system, Eq.(7), the present scheme employs

Fig. 2 Schematic view of control volume Ω for Moving-Grid FVM
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sub-iteration procedure based on a pseudo-time approach(10) with LU-SGS implicit factoriza-
tion(11) to assure the time accuracy at every time step.

2.4. Boundary Conditions
The boundary conditions for the present MCD method are not different from conven-

tional methods. The boundary conditions at the time tn+1/2 have to be given to the boundary
grid cells. Since the computational domain moves in the physical space, inflow, outflow or
in/out mixed boundary appears even if the fluid is stationary. In general, the inflow boundary
condition is applied to the front side of the moving-computational domain. On the other hand,
the outflow boundary condition is applied to the back side of the domain. In/out boundaries
appear generally at the left, right and upper sides of the computational domain. The type of
the boundary condition depends on how to move the computational domain. In general, since
the inflow or outflow is not always known a priori, the characteristic boundary method such as
the use of the Riemann invariant(12) is the standard boundary condition because the inflow or
outflow boundary condition is determined by the characteristics. If the inflow or outflow side
is known beforehand the usual subsonic boundary condition is also applicable and efficient.

It should be noted that the necessary assumption of the MCD method is that the state
of circumstances just in front of the computational domain should be known a priori. The
stationary fluid or uniform flow is usually assumed and given as the boundary conditions of
the method. For the lower side of the domain, which corresponds to the ground in this paper,
non-slip and adiabatic boundary conditions are given for the Navier-Stokes simulations. Non-
slip and adiabatic wall conditions are imposed on the body surface for the Navier-Stokes
computations. For the Euler flow simulations, the tangential velocity conditions are given for
the solid wall and the ground surface.

3. Validation

3.1. Geometric Conservation Law
It is essential requirement for a moving grid method to satisfy the geometric conservation

laws(6). The geometric conservation laws mean that even if the grid moves the flow is not
affected by the movement of the grid. The present MCD method is just the method such
that the whole grid moves in physical space, and it is crucial for the method to satisfy the
geometric conservation laws. A simple validation test has been performed as a numerical
check. As illustrated in Fig.3, a cubic computational domain of 21 × 21 × 21 uniform grid
rotates in a stationary fluid. When the numerical method satisfies the geometric conservation
laws, the stationary fluid state is never disturbed by the grid movement. The error is defined
as:

Error =

√ ∑
i, j,k(ρi, j,k − ρ∞)2

(imax − 1)( jmax − 1)(kmax − 1)
(8)

Here, imax, jmax and kmax are the number of grid point in i-, j- and k-direction respectively.
Figure 4 shows the time history of the error. The error keeps the order of 10−15, or machine
zero, and therefore it is shown that the MCD method satisfies the geometric conservation

Fig. 3 Rotation of the cubic computational domain in a stationary fluid
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Fig. 4 History of error of density

laws perfectly. Thus it is confirmed that the flow is not affected by the movement of the
computational domain with the MCD method.

(a) Condition 1 - Moivng airfoil in a stationary fluid (b) Condition 2 - Airfoil in a uniform flow

Fig. 5 Two types of condition of flow around a NACA0012 airfoil

(a) Present Method (Condition 1) (b) Reference solution (Condition 2)

Fig. 6 Pressure distribution around a NACA0012 airfoil

3.2. NACA0012 Airfoil
The second test for the validation of the MCD method is a simulation of an inviscid

transonic flow around NACA0012 airfoil. Two dynamically equivalent flows were simulated
and compared each other. The one is the flow driven by the NACA0012 airfoil moving in the
stationary fluid with the constant speed of Mach 0.8 and the angle of attack 1.25, illustrated in
Fig.5 (a)(left, condition 1). The other one is the flow around NACA0012 airfoil in the uniform
flow of Mach 0.8 with the angle of attack 1.25, illustrated in Fig. 5(b) (right, condition 2).
These two conditions have to result the dynamically equivalent solutions by the Galilean trans-
formation. The completely same size of the computational domain and grid was used for both
computations. The condition 1 was simulated by the present MCD method. The condition 2
was simulated by the conventional manner with the same flux estimation as the MCD method.
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The boundary conditions are also given in an equivalent way. The Riemann boundary method
is applied with the stationary fluid state for the condition 1 and the uniform flow state for the
condition 2. Although the present test case is two-dimensional flow, the three-dimensional
code was applied with three grid points along the third direction. The number of grid points
are 301 (180 on airfoil) × 81 × 3 of C-type grid and the size of computational region is 15� (�:
chord length) in forward, backward, upper and lower directions respectively. Figure 6 shows
the comparison of the results. The averaged difference of pressure contours between two con-
ditions was less than 0.1%, showing excellent agreement. Thus the MCD method works well
and shows the applicability to the flow around the body.

(a) Computational Domain (b) Movement of a car

Fig. 7 Computational model: a car passing through a hairpin curve.

Computational stock car model and surface grid

Multiblock grid around the car

Fig. 8 Stock car and computational grid of multi-block structure

4. Application

4.1. Flow Around a Car Passing Through a Hairpin Curve
The present MCD method has been applied to unsteady flow driven by a car passing

through a hairpin curve. A model is a stock car of length L, width 0.377L and height 0.310L
of sedan type. The size of the computational domain is 5L for forward and 10L for backward
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directions and 3.5L for left, right and upper sides. Figure 7(a) illustrates the computational
domain with the car inside. Multi-block/block decomposition approach(13) was utilized con-
sidering efficiency and flexibility for complex geometry. The computational grid of the sin-
gle global block/multiple sub-block structure(13) was generated by the elliptic grid generation
method(14). The computational domain was decomposed into 65 sub-blocks in the present
computation. Figure 8 shows the computational model and the grid system of 235 × 163 × 86
points. This computational domain moves rigidly according to the motion of the car, as illus-
trated in Fig.7(b). The motion of the car is the first 20L straight-line run and then shifts to
the turning run with constant radius of 6.43L, which is patterned on the hairpin curve of Fuji-
Speed Way. The constant speed U of the car was set to 128km/h (Mach number M = 0.105)
and the related Reynolds number was 1.66 × 106. Although the flow Mach number is low, no
preconditioning technique was used in the computations. To assure time accuracy, five to ten
sub-iterations were performed at each time step. The simulation was performed from t = 0 to
t = 35 with fixed time step of Δt = 0.01. The inflow boundary condition was given to the front
side of the domain, while the outflow condition was applied to the back side of the domain.
Mixed inflow/outflow conditions were used for the left, right and upper side boundaries. The
bottom of the computational domain is the ground and non-slip condition was given. The
non-slip condition was used for the surface of the car. Each tire, although the half of it was
covered, was assumed to be rotating and non-slip condition was also applied. A change in the
steering angle of the front tire was ignored for simplicity in the computation.

t = 20 (Straight run) t = 30 (Turn run)

Fig. 9 Pressure distribution on the surface of the car at t = 20(left: straight run) and
t = 30(right: turn run)

4.2. Numerical Results
The car was impulsively started at time t = 0 at the speed U. The time is normalized

by L/U and thus the car arrived at the end of the straight-line path at the normalized time
t = 20 and then entered the hairpin curve. Figure 9 shows a comparison of the pressure
contours on the body surface between at t = 20, the last moment of straight-line run, and at
t = 30, the turning run. Figure 10 shows a comparison of iso-surface plots of the vorticity at
t = 20 and t = 30. Figure 11 shows: (a) iso-surface of velocity magnitude of 1.0(dark red)
and 0.1(light blue), observing from forward-left position and (b) plane view of the surface
pressure distribution at t = 30. When the car is running along the straight-line path, the
pressure distribution on the surface is almost symmetric. However, at the time t = 20, the
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t = 20(Straight motion) t = 30(Turn motion)

Fig. 10 Vorticity contour at t = 20 and t = 30

straight-line run, the flow shows essentially unsteady behavior and some swirling flow can be
seen. As expected, when the car is running on the curve, there exists clear difference of the
pressure distribution between the left and right sides of the car, as can be seen in Fig. 11(b).
The surface pressure on the right side of the car is higher than that on the left side. This
pressure difference causes the flow around the car such that the shape of the wake follows just
like the car trajectory, as seen in Fig.10(right). As shown in Fig. 10, swirling flow is detected
behind the car. At the curve run, the higher velocity magnitude exists at the right side of the
car. This is because of the difference of the speed between the right and left sides of the car.
It is reflected in the contours of iso-surface of the vorticity as seen in Fig. 10.

5. Concluding Remarks

In this paper, the Moving-Computational-Domain Method has been proposed and ap-
plied to the flow around the high speed car passing through the hairpin curve. The method
is based on the Moving-Grid Finite-Volume method and has been shown to satisfy both the
physical and geometric conservation laws simultaneously. Application to the flow around the
car passing thorough the hairpin curve has shown the promising feature of the method. We
have applied the method only to rigid turn motion with constant radius. As previously de-
scribed, it is possible to simulate the flow along the full course of track. The MCD method is
also allowed to deform the grid system inside the computational domain simultaneously. By
use of the MCD method it is theoretically possible for cars to run with relative motion each
other in the moving computational domain. Thus the MCD method will be able to simulate
the case that a car overtakes other cars in the full track, just like a track race.
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(a) Iso-suraface of velocity magnitude (b) Surface Cp distribution

Fig. 11 (a)Pespective view of iso-surface of velocity magnitsude, 1.0(dark red) and
0.1(light blue), and (b) Plane view of surafce pressure distribution, (at t=30, in
the curve)
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