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Directional Stability Radius: A Stability Analysis Tool for
Uncertain Polynomial Systems

Keishi Kawabata, Takehiro Mori, and Yasuaki Kuroe

Abstract—Coefficients of characteristic polynomials for stable paramet-
rically uncertain systems are allowed to perturb to some extent for stability,
Stability radius is a useful tool to assess the allowance of the stability for the
systems. To enhance its usefulness, we modify stability radius so that it takes
into account of given restricted perturbations, which we call directional sta-
bility radius. For an application, we show shifted-Hurwitz stability condi-
tions and a stability analysis method for interval polynomial systems using
the directional stability radii.

Index Terms—Delta-operator systems, directional stability radius,
interval polynomial, shifted-Hurwitz stability, stability analysis teol.

I. INTRODUCTION

Parameters of systems may have uncertainties owing to errors
in modeling. Stability analysis for the systems considering the real
parametric uncertainties has been carried out, and various results and
techniques have been thus far developed [4], [5]). The most notable
among them is extreme point results, which enable to dramatically
save computational cost and time in testing stability of polynomials
with polytopic uncertainties. Still, save for strong extreme point
results such as celebrated Kharitonov’s theorem (2], the computation
becomes far-from-cheap when the degree of polynomials or the
number of vertex polynomials increases. The aim of this note is a
proposal of a new analysis tool that can overcome this difficulty.
The key idea is to consider a specific stability radius, which is
the conventional stability radius being under restrictions defined by
the uncertainty range. Since this directional stability radius ensures
stability in bulk in the coefficient space, it can reduce the cost
in treating systems where the strong extreme point results do not
hold. As an application of this concept, we focus on systems and
their stability for which a weak extreme point result is true: shifted-
Hurwitz property of interval systems. Stability analysis method for
the systems is checking stability for all vertex polynomials [1].
Other approaches applicable to this case do exist [4]. One is using
the ordinary stability radius with the weighted /o norm, where the
weights are determined according to width of the intervals. The other
is checking stability at one vertex followed by a check of maximal
phase difference across the vertices over the stability boundary. In
this note, we provide a useful alternative. By applying the proposed
stability radius to the setting, the stability of the systems can be
effectively checked. The organization of this note is as follows. In
Section II, directional stability radius is defined as a stability analysis
tool for uncertain systems. As an application, stability conditions are
shown for interval systems in terms of directional stability radius
and an analysis method for the systems is proposed in Section III.
In Section 1V, numerical examples are demonstrated to show the
efficiency of our method. Finally, concluding remarks are given in
Section V.
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1I. DIRECTIONAL STABILITY RADIUS

This note deals with stability analysis for systems of which charac-
teristic polynomials

f(s.ﬂ):ao+(1|s+...+”"$" (])

have uncertainties in their coefficients a = [ag, @1, .... an]”. From
the viewpoint of stability for uncertain systems, it is important to know
how large the coefficient perturbations of a stable polynomial could be
so that they do not destroy stability. Stability radius for a polynomial
can be an estimator of stability margin against the coefficient perturba-
tions. Consider an (n + 1)-dimensional space in which a point a corre-
sponds to a set of the coefficients of the polynomial (1). This space is
called coefficient space. In the space, the stability region is represented
as a set

S = {a: f(s. a) is stable} 2

and the boundary of S is designated as B. The stability radius is the
minimum size of the perturbations from a which destroy its stability.
Namely, the stability radius {4] p(a) is defined by

pla) := inf b — al| (3)
where || - || means Euclidean norm. The hyperball centered at a with
radius p(a)

R(a) = {a': ||’ — a|| < p(a)} ()

is in the stability region. However p(a) is conservative when perturba-
tion directions in the space are restricted, because I?(a) guaraniees the
stability for any directions from a. When perturbation directions are
represented as the region surrounded by m planes

{a': D(a' — a) < 0}, D e Rjn (5)
taking account of this restriction, we modify the stability radius as the
following form:

p'(a):= inf ||b - af (6)
subject to D(b— a) < 0. )

p’(a) is called directional stability radius, and then the restricted hy-
perball

R*(a) = {a’: ||la’ — a|| < p"(a), D(a’' — a) < 0} ®

is in the stability region. Therefore, by choosing D properly, p*(a)
can measure stability margin for any specified directions. Note that
p*(a) > p(a). Using this measure for stability check of uncertain poly-
nomials is the central conceptual idea of this paper and it proves to be
powerful in many situations. To be more specific, we will apply it to
the shifted-Hurwitz stability test for interval polynomials.

I1I. SHIFTED-HURWITZ STABILITY ANALYSIS FOR ]NTEkVAL SYSTEMS
A. Directional Stability Radius for Interval Polynomials

For parametrically uncertain systems, the coefficients of character-
istic polynomials are designed to be allowed to perturb in a region in
the coefficients space. Interval polynomials are ones that the perturba-
tion region of the coefficients of polynomials (1) is defined by

a; < a; < /3, i=0,....n. “®
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We consider damping performance of the systems besides their sta-
bility. For such case, the stability region on the complex plane is de-
scribed as

{r+jy:r.yeR xr< —h} (10)

where h > 0 expresses damping performance. It is called shifted-Hur-
witz stability. The stability of interval polynomials (1), (9) means that
all zeros of the polynomial are in the stability region (10) on the com-
plex plane for any values of coefficients satisfying (9). In the coefficient
space, a set of the coefficients of an interval polynomial is represented
as

Q= {a:a; <a; < 3, i=0,...,n} an
giving a hyperbox. The stability of the interval polynomial means that
Q is included in S in the space. It is known that a stability property,
called weak extreme point result is satisfied for shifted-Hurwitz sta-
bility of interval polynomials [1]. Here, by “weak,” we mean that sta-
bility conditions depend on », while by “strong” they do not.

Lemma 1: The interval polynomial (1), (9) is shifted-Hurwitz stable
ifand only if all the vertex polynomials, that is, the polynomial whose

coefficients take boundary values of the interval (9) such as

a; =a; or 3 i=0,....n (12)
are sifted-Hurwitz stable.

In the coefficient space, each vertex polynomial corresponds to a
vertex of Q and the number of the vertex polynomials is 2"+, We
label the coefficients of vertex polynomialsasav;, j = 1, .... PARAN
Checking the stability of each vertex polynomial f(s, av;) for large
7 is a tough work as the number of the vertex polynomials suggests.
Here comes the directional stability radius p* (av;). Stability margin at
a vertex av; can be used to check the stability of the other vertices, and
thus reduce the work for stability analysis. The perturbation directions
D in (7) for the vertex av; is represented, in this case, by

Dv; = diag(po, p1. ..., pn) € RO (n41)
_ [ +1, fora;=g; o
p,_{—L fora; = a; 1=0.....n (13)

which means that (n + 1) planes containing the surfaces of Q com-
pose the region of restricted perturbations. To obtain p” (av; ), we have
to compute p(av;; ) and this can be carried out in the same way as “shift-
less” Hurwitz case [3]. First, the boundary B in (6) for shifted-Hurwitz
stability will be described. The boundary of the region (10) is separated
into three parts: By, BY, and B3.

1) The polynomial (1) has a zero on the real axis * = —/

D, ={<I>1t,.:\7’t,. € Rn}

h 0
P, = € R, (14)
. h
0 1
2) The polynomial (1) has two conjugate zeros —h + y
BY = {®¥t,_\:Vta_, € 7"}
24 y? 0
2h
=1 1 W2 4y? | € ROTIOTN s
. 2h
0 1
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3) The polynomial (1) has a zero at infinity, that is a degree dropping

By = {®st,: V1, € B")

1 0

(1)3 — € R(u«l—’l)Xn. (16)
o1
0 0

Then, substituting By, B}, and B3 given, respectively, by (14)-(16)
into the constrained optimization problem (6), (7) leads to quadratic
programming problems

pilar,)? = inf || @12, - ay, |? (17)
su”bject to Dv;($1t, —ar;) <0 (18)
/ﬁ”ng2='Tf”¢§%—l—aB“2 (19)
subject to Dy, (P5t, —ay;) <O (20)
pilav;)” = inf [Pyt — avyf|® @y
subject to Dy, (®at, —ay;) <O (22)

respectively. Note that, since p3”(ay; )? defined by (19) and (20) is
parametrized by y, the following one-dimensional search problem:
(23)

. L ey
2(@yv. ) = min 5 av-.
pa(ay;) oin_pp (av;)

is solved. Finally, the directional stability radius at a\; is computed by

p"(av;) = min{pi(ay;), p3lav;), p3(as;)}. (24)

B. Stability Conditions and Analysis Method

Using the directional stability radius p” (a1, ), we can derive a sta-
bility condition effective for the analysis of the systems. A set of labels
for the vertices at which directional stability radii are computed is de-
fined by Toub, which is some subset of {1, ..., 2”1},
Theorem 1: If all vertices ay; are included by a union of
some directional stability balls ¢, . 1"(av,), namely, for all
J € {1, .... 27"} there exists k € L., such that the inequalities
layv; — a1y Il < p’(av,) (25)

hold, then the interval polynomial (1), (9) is shifted-Hurwitz stable.
Proof: It is derived from Lemma 1 and the fact that the inside of
R*(av,) are the stability regions. [ ]

The stability condition given in the above theorem could give us
possibilities of reducing computational burden for the stability test,
which normally entails 2" point-wise checks. Making use of this sta-
bility condition, we propose an algorithm based on branch-and-bound
method to check the stability efficiently. For each vertex av;, define
Ty, = [:1'(‘,", .r;"., el I:j]T by

Vi
J 0, fora,” =a,
x? = - :
1. fora;,” =3

Then, (25) is replaced by the inequalities

i=0,..., 0 (26)

Z (3: — 04;)2(;r::’ [=) m)"") < p'(axfk)?

i=0

(27)
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where < refers to “exclusive or.” Now, the problem of finding zv;
satisfying (27) is defined by

Py find zv,.j€{l.....2"%""}
subject to Z (3 — C},‘)2(.I?:‘.‘, = 1:‘*) < p(ar)?  (28)
=0

k € Isub

which is a combinatorial problem with respect to zv; (problem F).
As trivial cases,
(Condition 1) if for some & € I, the inequality

Yo (Bi—0i)’ < plan,)’ 29
1 =0

holds, some directional stability ball includes all vertices, that is, the
solution to Py is all x1;;. Also,
(Condition 2) if for all & € I, the inequalities
0> 0 (ay)* (30)
hold, any directional stability ball includes no vertices, thus, the solu-
tion is none. These conditions can be applied to partial problems of Po
in which some variables .r1-; are fixed to 0 or 1. Now, with the above
two formulated terminating conditions, the algorithm to solve P is as
follows.
Algorithm 1 (Algorithm for Solving the Problem Po):
0) A set of generated partial problems is denoted by P, and a set of
solutions of the original problem P is denoted by X'
1) Initially set P — {Fo} and X — 0.
2) If P = 0, go to step 7), else, go to step 3).
3) Pick a partial problem P; from P. P — P — P.. For P, whose
d variables are fixed :r}" = i-}j (Oor1),i=0,....d—1,if
condition |

Ik € L Z (B — a))? < p(an)’

i=d

d-1

=3B - eGP @alh) o)
0

holds, go to step 4), if condition 2

d—1
020 (ar) = Y (B — @)’ (37 & rlt)

i=0

Vk € Ly (32)

hold, go to step 5), and if both conditions do not hold, go to

step 6).
4) Add all solutigns of P whose number is 2"+~ to X', &' —
AU {.'I:VJ-:.”L‘;’ =&7,i=0.....,d-1.27° =0,1,i =

d, ..., n}.go tostep 2).

5) Solutions of P are none. go to step 2).

6) Make two partial problems of P;, Py and P.2 whose (d + 1)th
variable 2,” are fixedto O or 1, and add themto P, P — P U
{P,1, P:2}. go to step 2).

7) Computation is finished. The obtained .Y’ is a set of solutions of
the original problem Fo.

As a result of applying algorithm 1, if all the vertices zv; are included
in X, it can be concluded immediately that the interval polynomial is
stable. The vertices not included in A’ remain open about whether it is
stable or not. For these vertex polynomials, we must test their stability
individually with a conventional method.
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In addition to the aforementioned condition and algorithm, the direc-
tional stability radius p”(av;) can lead a instability condition for the

systems.
Theorem 2: If some directional stability ball 7" (av;) is included
in Q, that is, there exists j € {1. .... 2"*'} such that

p'lay,) < _lonin [3i — ai (33)

holds, the interval polynomial (1), (9) is unstable in the sense of shifted-
Hurwitz stability.

Proof: We can assume that (33) holds on a1 without loss of
generality, considering symmetry of the shape of Q. The value of
the right-hand side of (33) is the length of the shortest edge of the
hyperbox Q. Hence, the assumption that p™ (a; ) satisfies (33) indicates
R*(ay) C Q. On the other hand, from the definition of directional
stability radius, the surface of R*(a1) must touch the boundary of
stability region B, namely R*(a1) N B # 0. The two results give
a conclusion that Q N B # (. Therefore, the interval polynomial is
unstable. |

From Theorem 2, if some vertex av, . & € I, satisfies (33), we can
conclude instability of the system without carrying out Algorithm 1.

IV. NUMERICAL EXAMPLES

For the purpose of illustrating our stability analysis method previ-
ously mentioned, we analyze shifted-Hurwitz stability for the third-de-
gree interval polynomial

f(s,a) =ag + a1+ azs’ + azs®
87T <ay <88 216 < <217

180 <a; <181 49 < a3 <30 (34)
for some values of the shift: 1 = 0.90, 0.95, and 1.0. The vertices
where directional stability radii are first computed are chosen from the
following ones, whose stability gives an exact stability property for
interval polynomials at h = 0 [2]. Namely, when # = 0, the weak
extreme point result (Lemma 1) reduces to the strong extreme point
result (Lemma 2).

Lemma 2: A necessary and sufficient condition for Hurwitz sta-
bility for interval polynomials (1), (9) is that the four Kharitonov poly-
nomials given by

i32. ;33, . .]T

ijq, a3, .. .]T

ax, =[ao, 1.
an, =[aoe. 1.

ARz = [,»'30- 3. o, as, .. _]T

ax, =[30. a1, 02, B3, .. T (35)
are Hurwitz stable.

Due to this lemma, the stability of the four Kharitonov polynomials
at h(>0) could be regarded as necessary conditions which are near to
a necessary and sufficient one for small 4. Therefore, we choose the
four vertices in (35) in the initial stage. We note ax, and ax, form
a diagonal of Q, and also ax, and ajy-, do. Each of computed values
of directional stability radius is shown in Table I for some values of 2
together with those of ordinary stability radius (values in parentheses).
We show how our algorithm works for these values of hs.

1 = 0.90

Fig. 1 shows the result of algorithm 1 using the value of Table 1
at h = 0.90, with each node showing the partial problem. All 16
vertices are included by the union of R(ar ;) from this figure,
thus the interval polynomial (34) is stable at # = 0.90.
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TABLE 1
COMPUTATION RESULTS OF DIRECTIONAL STABILITY RADII [ORDINARY
STABILITY RADII p(ay, }] FOR SOME h

h " P‘(GKI) p‘(akz) p.(aK:!) p*(aKl)

0.90 2.279 2.376 2.245 2.193
(1.594)  (1.495) (1.605) (1.704)

0.95 1.360 1.378 1.237 1.303
(0.871)  (0.625) (0.966)  (1.200)

1.0 0.172 0.164 0.245 0.489
(0.124)  (0145) (0.170)  (0.426)

PO
XX
) ©
X

¥

© Condition | is net
)& % Condition 2 is net

Fig. 1. Analysis result for b = 0.9,

P © Condition 1 is net
X Condition 2 is net

Fig. 2.

Analysis result for b = 0.95.

2) h = 0.95
Fig. 2 shows the result of Algorithm | at & = 0.95. This
figure indicates that the test continues to the final stage and that
stability of four vertices are still unknown. We must check sta-
bility of these vertices one by one. As the results of Routh tests
after coefficient transformations f(s — I, a), one of them, a =
(88 216 181 49]7 is found to be unstable, that is, the interval
polynomial (34) is unstable at 1 = 0.95.
3 h=10
From Theorem 2, the fact p*(ax,) = 0.164 < 1.0 =
min; |3; — a;| indicates that the interval polynomial is unstable
ath = 1.0,

Comparing Figs. 1 and 2, we find that, in case 1), the stability is an-
alyzed more easily than in case 2) because of the following two points.
The first is that we need less amount of computation for Algorithm 1,
and the second is that no vertex polynomials have to be tested about
their stability individually. These advantages comes from larger values
of directional stability radii, indicating that the system has larger sta-
bility margin. In contrast, case 3) is the easiest among the three cases
because applying algorithm 1 is unnecessary. The last case corresponds
to a meager stability margin. In this way, a salient feature of the pro-
posed method is in that the computational cost depends on the stability
margin. In proportion to the margin, the cost could be notably reduced.
On the other hand, too little margin could also conclude instability im-
mediately. At worst, we are forced to depend on the point-wise tests.

To show the efficiency of our method, we measured computing time
of stability analysis for a higher degree interval polynomial. For the
case n = 20, the number of vertex polynomials is 2°' = 2097152,
therefore, it needs much time to check the stability of all the polyno-
mials. With a Pentium compatible 600-MHz machine, computing time
for the stability analysis of a 20th degree polynomial by Routh test
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after the coefficient transformation is 1650 (s). The analysis concludes
the stability of the polynomial. The result of algorithm 1 also gives the
same conclusion with computing time 223 (s), which shows that our
method can remarkably reduce the computational burden in the sta-
bility analysis, in particular for higher degree polynomials.

V. CONCLUSION

As demonstrated, the directional stability radius is a useful stability
analysis tool for parametrically uncertain systems represented by in-
terval polynomials. Especially, our analysis method works efficiently
for systems which have large stability margins. The directional stability
radius can also find application in the stability analysis of delta-op-
erator-induced interval systems. With a relation between stability of
dclta-operator-induéed systems and shifted-Hurwitz stability in [7], the
present method applies with no major modifications. For details, see
[9]- Because of the nature of the directional stability radius, its use is not
restricted to systems in which extreme point results hold. It could treat
uncertain systems where only edge results are correct, or even worse
those where no such convenience is available. In this sense, the authors
believe the proposed methodology for stability analysis can cover much
wider range of uncertain systems other than interval systems. Substan-
tiating this line of studies is in progress.
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