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Single-Parameter Characterizations of Schur Stability

Property

Takehiro MORI'®, Regular Member and Hideki KOKAME'!, Nonmember

SUMMARY New equivalent characterizations are derived
for Schur stability property of real polynomials. They involve
a single scalar parameter, which can be regarded as a freedom
incorporated in the given polynomials so long as the stability is
concerned. Possible applications of the expressions are suggested
to the latest results for stability robustness analysis in parame-
ter space. Further, an extension of the characterizations is made
to the matrix case, yielding one-parameter expressions of Schur
matrices.
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1. Introduction

Stability of linear systems is, in general, robust in the
sense that the property is maintained in the presence of
small perturbations of system parameters. Schur sta-
bility, an important notion in digital signal processing
and analysis and design of discrete-time systems, is not
an exception. For instance, given a Schur polynomial, it
can safely be said that a set of polynomials which are
enough contiguous to the nominal one are also Schur
stable. In association with stability robustness anal-
ysis in parameter space, one is often concerned with
the shape and size of such a “vicinity” where the sta-
bility is ensured. To comprehend further the stability
property in parameter space, such concepts as stabil-
ity direction or stability radius have been proposed, and
discussed for Schur stability and Hurwitz stability alike
[8],]9]. Still, a complete picture of stability regions even
in polynomial coefficient space or matrix entry space is
a way off except for lower order cases.

This paper contributes to understanding the Schur
stability property in these spaces by deriving some new
equivalent characterizations of the property that fit in
the latest stability robustness analysis results. The
purpose of this paper is not to obtain another Schur
stability test but to show one-parameter characteriza-
tions, which enables to broaden the scope of parameter
space robust stability. The paper is organized as fol-

Manuscript received March 10, 2000.
Manuscript revised January 31, 2001.

fThe author is with the Department of Electronics and
Information Science, Kyoto Institute of Technology, Kyoto-
shi, 606-8585 Japan.

YThe author is with the Department of Electrical and
Electronic Systems, Osaka Prefecture University, Sakai-shi,
599-8531 Japan.

a) E-mail: mori@dj.kit.ac.jp

lows. Next section provides the main result on equiva-
lent characterizations of Schur polynomials along with
its proof. Section 3 is devoted to their possible appli-
cations including implications in stability direction and
stability radius issues. An extension to the matrix case
is also made in this section. Finally, conclusions are
drawn in Sect. 4.

2. Main Result and Its Proof

Consider a real nth-degree polynomial
f(z2) =apz" +a12" '+ +ay, ag > 0. (1)

Schur stability of (1) implies and is implied by the exis-
tence of its n zeros inside the unit disk on the complex
plane. We start with stating the main result of this
section.

Theorem 1: The following statements are equiva-
lent.

i) f(z) is Schur stable.

ii) For any real v (|y| < 1), f(z) +v2"f(%) is Schur
stable.

iii) For some real 7 (|| < 1), f(z) + 2" f(2) is Schur
stable.

iv) For any real & (|0] > 1), 6f(z) + 2" f(%) is Schur
stable.

v) For some real 6 (|| > 1), 0f(2) 4+ 2" f(1) is Schur
stable.

This theorem can be proven by combining the two
preliminary lemmas shown below.

Lemma 1 [6],[7]: A necessary and sufficient condition
for f(z) to be Schur stable is that the zeros of f,, (%) and
those of f,(z) are all simple and are located alternately
on the unit circle and that |a,/ag| < 1 holds. Here,
fm(2) and f,(z) are mirror component and antimirror
component of f(z) defined by f,n(z) = 1(f(z)+2"f(1))
and fo(2) = 3(f(z) — 2" f(1)), respectively.

This lemma is known as the discrete-time version
of Hermite Biehler theorem. Note that f(z) = f,,(2) +

fa(2).

Lemma 2: For the scalar function with two real argu-
ments,
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I k—A1—Fk)
’I"()\,k) = m, (2)

we have;

i) for A>0, |r(\ k)| <le |kl <1
ii) for |k <1, r(\E)| <1< A>0.

Statement i) assumes that A and k are a parameter
and a variable, respectively, while ii) does that k and A
are so, respectively.

The proof of the above lemma is elementary and
thus omitted. Now we are in position to prove Theorem
1.

Proof of Theorem 1:

i) — ii) Assume f(z) is Schur stable. Lemma 1 says that
the zeros of f,,(z) and f,(z) are all simple and interlac-
ing on the unit circle and furthermore that |a, /ag| < 1
is satisfied. Consider a polynomial f,,(2) + af.(2)
with o being an arbitrary positive number. We will
prove Schur stability of f,(2) + af.(z). We have
fin(2)+afa(2) = H{(1+a) f(2) +(1-a)2"F(1)}, whose
mirror polynomial and antimirror polynomial are given
by fm(z) and af,(2), respectively. By the assumption,
therefore, the requirements for simple zeros and for in-
terlacing properties are fulfilled for f,,,(z) + af.(2). It
remains to be proven that the modulus of the ratio of
the lowest-degree coefficient to the highest one is less
than unity. The ratio is given by

ag + an — alag — an)
ag + an + alag — an)

= r(a k), k= Z_Z (3)

Since |k| < 1 by Lemma 1, Lemma 2 ii) immediately
gives |r(a, k)| < 1, which concludes Schur stability of
fm(2) +afs(z) due again to Lemma 1. To arrive at ii),
we notice that fr, +afa(2) = 3(1+a)(f(2) +72"f(1))
with v = (1 — «)/(1 4+ «), which is a bijective mapping
from a > 0 to |y| < 1. This demonstrates the claim.
ii) — 1iii) Obvious.

iii) — i) We assume that f(z) + vz"f(1) is stable for
some 7 (|y| < 1). The above arguments confirm that
corresponding to vy there exists an a > 0 such that
simple zero and interlacing properties are satisfied for
fm(2) + afa(z). These properties remain in force, even
« is set to be unity. We have now only to show that
for (e, k) in (3) with some a > 0 |r(«, k)| < 1 implies
|k] < 1. This comes easily from i) in Lemma 2. Now,
Lemma 1 ensures Schur stability of f,,(z) + fo(2) =
1(2).

The equivalences of iv), v) and i) are proven
through i) — iv) — v) — i) in the same way as
above, by considering the polynomial 8 f,,(z) + fo(z) =
HBHDf()+(B-1D2" ()} = FF(6f(2) +2"£(2))
with § = (8 +1)/(8 — 1) and 8 > 0, along with the

ratio,
(a0 + an) —
(a0 + an) +

(a0 — an)

(ao — an)

— r(4,k). (4)

=@l
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This completes the proof of Theorem 1. m|

Statements iv) and v) are nothing but the conse-
quences of ii) and iii) when ~ is set to 1/4 formally. But,
we listed them in order, for one thing, to make clear the
behavior of the zeros as § — +oo and, for another, to
facilitate the discussions given later on instability.

The authors were informed by one of the review-
ers that Theorem 1 would be verifiable by means of
Rouche’s theorem as well along the line of [18]. An
alternative way is thus possible to the obtained charac-
terizations.

3. Possible Applications and an Extension

3.1 Possible Applications of the Obtained Character-
izations

In this subsection, several possible applications of the
expressions obtained in the previous section are sug-
gested. Some of them illuminate the implications which
the characterizations bring into the notions in the lat-
est parametric stability analysis. We will not go into
detail of each of the applications, because it is beyond
the scope of the paper.

The first possible aspect where Theorem 1 can find
its effectiveness is the improvement of sufficient stabil-
ity conditions. So far as Schur stability of polynomi-
als are concerned, a variety of sufficient conditions are
available (see, for example, [3]). The equivalence i) <
iii) in Theorem 1 could contribute to improving these
conditions by introduction of the free parameter. This
can be done as follows. Take any of the sufficient con-
ditions, apply it not to f(z) but to f(z) + vz"f(2)
and choose v so that the condition is fulfilled. Since
~ = 0 corresponds to the original condition, the condi-
tion with v may enlarge the possibility that it is met
by given coefficients. We illustrate an example. The
condition,

1 k-1

o + lrgg%(n{\ak\w } <1, Jw>1 (5)
ensures Schur stability of (1) with ag = 1 [3]. Applying
(5) to the polynomial, f(z)+72"f(1) = (ao+~yan)z" +
(a1 +yan_1)2" "t + -+ (an + yap), we have

max {Jax +7a,4w*} < (@ = D(1+7a.)  (6)

with w > 1 and |y| < 1. If we can find a parameter
pair (w,~) such that (6) is satisfied, then Schur stabil-
ity of (1) follows. In [10], some other examples where
the improvement is achieved by the same scenario are
indicated. Apropos, this scheme is , of course, no more
in force for any of exact Schur stability criteria.

The second potential application, however, is con-
cerning a very stability condition which is exact, Jury
test [1]. We can, in fact, derive the Jury test using
Theorem 1. In this case, we use the equivalences i)
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< ii) « iil). Selecting v as v = —¢=, we see that

the constant term in f(z)+~z" f(1) drops, that means
one of its zeros is moved to the origin. By the equiv-
alent relations, Schur stability of f(z) is identical to
that of the polynomial where this zero is removed, that
is, {f(z) — ‘;—Zz”f(%)}/z We repeat the procedure for
the resultant (n — 1)th degree polynomial. In this way,
one can reduce the degree of polynomials one by one,
keeping the stability property intact, to reach the zero
degree one. The Jury stability test is no other than the
conditions that the modulus of - selected in each step
of the above process is less than unity. Another proof of
the Jury test has also been given in [5] recently, where
the root locus technique is employed. The authors of
[5] assert that students and engineers are forced to ac-
cept the test method on faith without being exposed
to its proof. This may be true worldwide and hints the
need to provide at least a clue or a tip on how it can
be derived from some acceptable standard results.

Thirdly, Theorem 1 can give some insight into
such stability robustness concepts in coefficient space
a:= (ag,ay, -, ap)", (t):transpose, as the stability di-
rection and the stability radius [8],[9]. We begin with
the stability (convex) direction, which is the direction
in coefficient space corresponding to the difference poly-
nomial fa(z) — f1(2) where f1(z) and fa(z) are any sta-
ble polynomials of the same degree and their convex
combinations are also stable. An exact condition on
the stability direction is obtained for both Hurwitz and
Schur cases [8],[11]. As it turns out, however, the no-
tion is quite restrictive because of the arbitrariness of
fi(z) and f2(z), and an attempt is made to weaken
the requirement by fixing the pivot polynomial fi(z).
This weak concept is called local stability direction and
considered for the Hurwitz case [12]. Unfortunately, its
Schur counterpart is not yet available. Now, with these
definitions and results in mind, one could easily see
that Theorem 1 i)-ii) give local Schur stability direc-
tions, £(f(z) — 2" f(1)) or +f,(z) with the pivot f(z).
It is interesting that the directions are obtainable in
an analytical form for every Schur polynomial. In the
same vein, the equivalences iv)—v) show the instability
counterpart. Namely, & f,,(z) is local Schur instability
directions with the pivot 2" f(1), which is anti-Schur
stable (i.e. all the zeros are outside the unit circle). In
this way, Theorem 1 can give a certain amount of infor-
mation on the stability directions. We next pass to the
stability radius Ry for the polynomial (1) under coeffi-
cient perturbations Aa := (Aag, Aaz, - -, Aay,)t. With
some appropriate vector norm || - ||, Ry for a nominal
Schur polynomial (1) can be defined as

Ry := min{[|Aa| |o(f(z) + Af(2)) Ne/ £ 0,
w € [—-m, 7]} (7)

where o(-) denotes the set of the zeros of polynomials
and f(z) + Af(2) = (a0 + Aag)z" + (a1 + Aay)z" " +
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-+ + (an, + Aay,). To obtain R; , we have to pay a
considerable price, because an optimization procedure
is needed [9]. Now, we readily observe that i)-iii) in
Theorem 1 give an upper bound for R as

Ry <], - ag)" (8)

by regarding 2" f(1) as Af(z). The bound (8) works
for any Schur polynomial and can be used as an initial
guess in the optimization process. Theorem 1 iv)-v)
can likewise give a bound for the instability radius R7

@ = (an,an-1,"

around @, where any polynomial 2" (1) + Af(z) with
[|Aal| < Ry is Schur unstable.

3.2 An Extension to the Matrix Case

In this subsection, the foregoing results are extended to
the matrix case so that some characterizations of Schur
matrices are correct. The obtained one-parameter char-
acterizations can also give insight into the stability di-
rection and stability radius in matrix entry space. The
discussions of this subsection are based on Theorem 1
and the companion form defined by

0 1 o --- 0
: 0 1 :
Ly= : S (9)
0 0 o --- 1
—Q0p  —Anpn-1 - —aq

which corresponds to the characteristic polynomial (1)
with ag = 1 associated with A. The special n xn matrix
given below also plays a role.

J=1|" 9 . (10)
0 1 :

Now, let T" be a real nonsingular matrix which brings
a given matrix A to the companion form L4, that is,
TAT~! = L. The main result of this section is stated
as follows.

Theorem 2: Let A be nonsingular. Then, we have
equivalent statements:

i) A is Schur stable.
ii) For any real v (|| < 1), A+g(y)Ca4 is Schur stable.
iii) For some real v(|y| < 1), A 4 g(v)C4 is Schur

stable.
Here, Cy4 is given by
Ca=TA'T, T=T"'JT. (11)
and g(7) by
vd
= = —A . 12
o) = 1 d=det(-4) (12)
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Remark : Note that d = a, and therefore |d| < 1.
The function g(vy), which maps |y| < 1 to the interval
(g,9) with g = —|d|/(1 — |d|) and g = |d|/(1 + |d]), is
monotonic and satisfies |g(y)| <7, V|y| < 1.

Since the proof of Theorem 2 is just a combina-
tion of Theorem 1 and the above companion form as
mentioned, we leave it to the interested readership.

Theorem 2 enables us to develop parallel discus-
sions to those given in the previous subsection on the
stability direction and stability radius of polynomials
[14]-[17], shedding some light on stability robustness
issues in matrix entry space.

4. Concluding Remarks

New equivalent characterizations of Schur stability
property are derived for real polynomials. They include
a single parameter, which makes them possible to find
applications to stability and robust stability problems
of dynamical systems. Several among them are out-
lined and suggested. An extension to the matrix case
is also made to yield equivalent parameterized expres-
sions of Schur matrices. They could give some insight
into stability robustness problems for state space mod-
els as well.
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