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Low Grazing Scattering from Sinusoidal Neumann Surface with
Finite Extent: Undersampling Approximation

Junichi NAKAYAMA†a) and Yasuhiko TAMURA†, Members

SUMMARY A transverse magnetic (TM) plane wave is diffracted by a
periodic surface into discrete directions. However, only the reflection and
no diffraction take place when the angle of incidence becomes a low graz-
ing limit. On the other hand, the scattering occurs even at such a limit, if
the periodic surface is finite in extent. To solve such contradiction, this pa-
per deals with the scattering from a perfectly conductive sinusoidal surface
with finite extent. By the undersampling approximation introduced pre-
viously, the total scattering cross section is numerically calculated against
the angle of incidence for several corrugation widths up to more than 104

times of wavelength. It is then found that the total scattering cross sec-
tion is linearly proportional to the corrugation width in general. But an
exception takes place at a low grazing limit of incidence, where the total
scattering cross section increases almost proportional to the square root of
the corrugation width. This suggests that, when the corrugation width goes
to infinity, the total scattering cross section diverges and the total scattering
cross section per unit surface vanishes at a low grazing limit of incidence.
Then, it is concluded that, at a low grazing limit of incidence, no diffrac-
tion takes place by a periodic surface with infinite extent and the scattering
occurs from a periodic surface with finite extent.
key words: TM wave scattering, finite periodic surface, total scattering
cross section, total scattering cross section per unit surface, diffraction
cross section, low grazing angle of incidence

1. Introduction

This paper deals with the scattering of a TM plane wave
from a perfectly conductive sinusoidal surface with a finite
corrugation width W (See Fig. 1). We study the scattering at
a low grazing limit of incidence (LGLI) with θi → 0.

A ground based high frequency (HF) radar detects the
backscattering from a rough sea surface, tens of kilometers
beyond the horizon [1]. In this remote sensing problem, a
rough sea surface is physically regarded as a large diffrac-
tion grating with roughness much smaller than the wave-
length. Then, the scattering and diffraction by such a grating
at LGLI are subjects of great interest.

The diffraction by a rough periodic surface becomes
singular at LGLI. No diffraction takes place and only the
reflection occurs at LGLI. For a perfectly conductive sinu-
soidal grating, Ikuno and Yasuura [2] obtained rigorous nu-
merical results such that the 0th order diffraction efficiency
becomes unity and any other order diffraction efficiencies
vanish at LGLI. Such behavior of diffraction efficiencies was
found numerically for a plane grating with reflector [3] and
for a periodic array of dielectric cylinders [4]. By use of
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Fig. 1 Scattering of a plane wave from a sinusoidal surface with finite
extent. L is the period, σ is the surface roughness, and W is the corru-
gation width. θi and θs are the angle of incidence and a scattering angle,
respectively.

the grazing perturbation method, however, Charnotskii [5]
found analytically that non-zero order diffraction amplitudes
vanish and the complex reflection coefficient becomes −1 at
LGLI in the case of a slightly rough periodic Neumann sur-
face. Such behavior of the diffraction amplitudes was veri-
fied for any periodic Neumann surface with small roughness
and gentle slope by use of the modified diffraction amplitude
[6].

On the other hand, it is analytically predicted that the
scattering may take place even at LGLI, if the rough surface
is finite in extent [7]. This prediction is verified numerically
for a finite sinusoidal surface [8], [9] and for a finite periodic
array of rectangular grooves [10].

Obviously, we have a wide gap between the diffrac-
tion theory and the scattering theory. The former says only
the reflection takes place but the latter insists the scattering
occurs at LGLI. However, it seems that this contradiction
has not been discussed extensively. When the corrugation
width W goes to infinity, a periodic surface with finite ex-
tent approaches to a perfectly periodic surface. This fact
suggests that the asymptotic behavior of the scattering for a
sufficiently large W may give a solution to the contradiction.
Taking this idea, we numerically calculated the total scatter-
ing cross section pc of a finite periodic array of rectangular
grooves for several different numbers of grooves [10].

This paper discusses another example, which is the
scattering of a TM plane wave from a sinusoidal surface
with finite extent (See Fig. 1). By the undersampling ap-
proximation [9], we numerically calculate the total scatter-
ing cross section pc for several corrugation widths up to
more than 104λ, λ being wavelength. For a sinusoidal sur-
face with infinite extent (sinusoidal grating), we also calcu-
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late the diffraction cross section p(g)
c . Then, we find several

properties as follows. (A) For any angle of incidence, pc

increases when W becomes large. (B) When the angle of
incidence θi is apparently different from any one of the crit-
ical angles of incidence, pc increases linearly proportional
to W and the total scattering cross section per unit surface
pc/W is almost equal to p(g)

c the diffraction cross section.
(C) When θi is critical but is not grazing, pc/W depends on
W and becomes close to p(g)

c when W becomes large. These
properties are much similar to those in the case of a finite
periodic array of grooves [10]. Furthermore, we find a new
property such that (D) at LGLI pc increases almost propor-
tional to

√
W/λ and pc/W decreases when W becomes large.

In this paper, a time variation e−iωt is assumed and sup-
pressed.

2. Formulation

Let us consider the scattering of a TM plane wave from a
perfectly conductive sinusoidal surface with finite extent.
We write the surface corrugation as

z = f (x) = σu(x|W) sin(kLx), kL =
2π
L
, (1)

u(x|W) = u2(x|W) =

{
1, |x| ≤ W/2
0, |x| > W/2

, (2)

where L is the period, kL is the spatial angular frequency of
the period L, σ is the surface roughness, u(x|W) is a rect-
angular pulse and W is a corrugation width. We implicitly
assume W is an integer multiple of the period L to make f (x)
continuous at x = ±W/2. In what follows, we only consider
a case with σ � λ, λ being wavelength. We denote the y
component of the magnetic field by ψ(x, z), which satisfies
the Helmholtz equation[

∂2

∂x2
+
∂2

∂z2
+ k2

]
ψ(x, z) = 0, (3)

in the region z > f (x) and the Neumann condition on the
surface (1)[

∂

∂z
− d f

dx
∂

∂x

]
ψ(x, z)

∣∣∣∣∣∣
z= f (x)

= 0. (4)

Here, k = 2π/λ is wavenumber.
Since the surface is flat for |x| > W/2, we write the

wave field ψ(x, z) as

ψ(x, z) = e−ipxe−iβ(p)z + e−ipxeiβ(p)z + ψs(x, z), (5)

where the first term on the right-hand side is the incident
plane wave, the second term is the specularly reflected wave
and ψs(x, z) is the scattered wave due to the surface corru-
gation. Here, p is given by the angle of incidence θi as (See
Fig. 1)

p = k cos θi, (6)

and β(p) is a complex function of p,

β(p) =
√

k2 − p2,

Re
[
β(p)

] ≥ 0, Im
[
β(p)

] ≥ 0, (7)

where Re and Im denote real and imaginary parts, respec-
tively.

In the far region, ψs(x, z) becomes a cylindrical wave
satisfying the Sommerfeld radiation condition. We write an
approximate expression of ψs(x, z) as

ψs(x, z) =
∫ kB

−kB

Aβ(s)

β(p + s)
e−i(p+s)x+iβ(p+s)zds, (8)

which is made up of up-going plane waves and evanescent
waves. Here, kB is a truncated band width, and Aβ(s) is the
angular spectrum representing the amplitude of the partial
wave scattered into θs = Θ(p + s) direction. Here, Θ(p + s)
is defined by a geometric relation,

Θ(p + s) = arccos[−(p + s)/k]. (9)

If we put s = mkL, (m = 0,±1,±2, · · ·), this becomes a
grating formula [11] for a perfectly periodic surface,

Θm = Θ(p + mkL) = arccos[−(p + mkL)/k], (10)

where Θm is the mth order diffraction angle.
In the scattering theory, the energy conservation ap-

pears as the optical theorem (the forward scattering the-
orem), stating that the total scattering cross section of a
non-absorbing target with finite extent is proportional to the
imaginary part of the forward scattering amplitude [12]. In a
finite periodic case, the optical theorem means that the total
scattering cross section is proportional to the real part of the
specularly scattering amplitude and is written as [8],

pc = pinc, (11)

pc = −4π
k

Re[Aβ(0)], (12)

pinc =
W
2π

∫ π

0
σs(θs|θi)dθs, (13)

σs(θs|θi) =
4π2

kW
|Aβ(−k cos θs − k cos θi)|2. (14)

Here, σs(θs|θi) is the differential scattering cross section per
unit surface and has no dimension. The optical theorem (11)
states that the total scattering cross section pinc is equal to pc

the loss of the amplitude of the partial wave scattered into
the specular reflection direction†. Because of (11), however,
we will call pc the total scattering cross section.

The optical theorem may be useful to estimate the ac-
curacy of an approximate solution (8). We define the error
Err with respect to the optical theorem as,

Err =

∣∣∣∣∣ pc − pinc

pc

∣∣∣∣∣ , (15)

†‘Re[Aβ(0)] is obtained from the amplitude and phase of the
scattered wave, which can be easily measured in radio frequencies.
We also note that pinc was called the total power of scattering in [8]
but is called the total scattering cross section in this paper.
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which will be calculated below.
In what follows, we will determine Aβ(s) by the un-

dersampling approximation to calculate the total scatter-
ing cross section pc, the total scattering cross section per
unit surface pc/W, the differential scattering cross section
σs(θs|θi) and Err the error with respect to the optical theo-
rem.

2.1 Undersampling Approximation

Rigorous numerical methods, such as the integral equation
method [13], Yasuura’s method [14], [15] and the spectral
formalism [8], commonly reduce the scattering problem
to solving a linear equation system. The system is about
[8 W/λ] × [8 W/λ] in size and hence it becomes impracti-
cal to solve a case with W/λ > 103. On the other hand,
the undersampling approximation starts with a physical pic-
ture such that, when W is sufficiently large, the finite peri-
odic surface works as a diffraction grating. This means that
the scattered wave in the far region is well approximated
by a sum of beams diffracted into directions given by the
grating formula (10). The undersampling approximation re-
duces the matrix size to [FL/λ + 1] × [FL/λ + 1], where F
is an empirical factor between 4 and 8, and hence enables
us to obtain an approximate solution for a wide case with
W/λ > 104.

In the undersampling approximation [9], Aβ(s) is ap-
proximated by

Aβ(s) =
1

2π

NQ∑
m=−NQ

QmU(s − mkL|W), (16)

U(s|W) =
∫ ∞

−∞
u(x|W)eisxdx =

sin(sW/2)
(s/2)

, (17)

where [Qm] is the vector to be determined and NQ is a
truncation number. Physically, U(s − mkL|W) represents
the beam pattern of the mth order diffraction beam, the
mainlobe of which is scattered into the θs = Θm direc-
tion given by (10). Let us obtain the 3 dB beam width
of the mth order diffraction beam for a sufficiently large
W. Since U2(s|W)/W2 = [sin(sW/2)/(sW/2)]2 ≈ 1/2 at
s = ±2.78/W, the (complex) beam width ∆Θs is roughly
estimated by a geometric relation as

∆Θs = Θ

(
p + mkL +

2.78
W

)
−Θ

(
p + mkL − 2.78

W

)

≈
{

0.885λ/(W sinΘm), sinΘm � 0
0.940(1 − i)

√
λ/W, sinΘm = 0

. (18)

When sinΘm is positive real, the mth order diffraction beam
is propagating and has a real beam width ∆Θs proportional
to λ/W. If sinΘm is pure imaginary, such the beam be-
comes evanescent. When sinΘm = 0, the mth order diffrac-
tion beam is scattered into a grazing direction. Its mainlobe
is made up with evanescent waves and propagating waves,
and hence the beam width ∆Θs becomes complex. Note that
the diffraction beam scattered into a grazing direction has a

much wide beam width proportional to
√
λ/W . This phe-

nomenon was first found out by a numerical analysis [8].
Using the boundary condition (4) and (8), we may ob-

tain a linear equation system for [Qn] as

NQ∑
n=−NQ

Dln(p)Qn = El(p),

(l = 0,±1,±2, · · · ,±NQ), (19)

where

Dln(p)=
∞∑

m=−∞

∫ kB

−kB

U(s − nkL|W)
2πWβ(p + s)

×Cm(p + s, β(p + s))U(s + (m − l)kL|W)ds, (20)

El(p) = − [
Cl(p,−β(p)) +Cl(p, β(p))

]
, (21)

Cm(α, β) = βJ−m(σβ)

+
σαkL

2
[
J1−m(σβ) + J−1−m(σβ)

]
, (22)

and Jm(·) is the Bessel function. We will numerically cal-
culate Dln(p) in (20) and then we solve (19) to obtain
[Qn]. However, we note that numerical integrations to ob-
tain [Dln(p)] take much computation time when W becomes
large.

3. Relation with Periodic Grating

In the limit W → ∞, our surface (1) becomes perfectly peri-
odic and hence the scattered wave ψs(x, z) is physically ex-
pected to converge to the diffracted wave by the perfectly pe-
riodic surface. Mathematically, however, such convergence
is doubtful†. However, we expect that pc/W the scattering
cross section per unit surface converges to p(g)

c the diffrac-
tion cross section of the periodic surface.

Let us consider the diffraction by the perfectly periodic
surface. As is well known, the diffracted wave has the Flo-
quet form in a perfectly periodic case. According to refer-
ence [16], we write

ψ(x, z) = e−ipxe−iβ(p)z + e−ipxeiβ(p)z

+

NFM∑
m=−NFM

Ame−i(p+mkL)xeiβ(p+mkL)z, (23)

†The convergence from (5) to (23) is still an open question.
However, we point out two facts. First, (26) and (31) imply that
limW→∞ limθi→0[pc/W−p(g)

c ] = 0 and limW→∞ limθi→0[pc−W p(g)
c ] =

∞. Second, Fig. 9 suggests that σs(θs|θi) at LGLI converges to
a non-continuous function of θs when W → ∞. The sidelobes
of σs(θs|θi) decrease proportional to W and vanish at the limit
W → ∞. The beam width ∆Θs for any diffraction beam goes to
zero at such the limit. Furthermore. Figure 9(A) suggests that
σs(θs|θi) takes a positive value at θs = Θm even when W → ∞.
Therefore, σs(θs|θi) converges to a non-continuous function of θs,
that is, σs(θs|θi) = 0 for any θs � Θm and σs(θs|θi) > 0 if
θs = Θm. Thus, further discussions are needed to solve the con-
vergence problem.



12
IEICE TRANS. ELECTRON., VOL.E91–C, NO.1 JANUARY 2008

where NFM is a truncation number of Floquet modes, the
second term in the right hand side is the reflected wave by a
flat surface, and (Am+δm0) is the diffraction amplitude of the
mth order Floquet mode. Note that (A0 + 1) is the complex
reflection coefficient.

Let us discuss the singular behavior of the diffraction
at LGLI. In terms of the optical theorem, we define the total
scattering cross section per unit surface p(g)

c as

p(g)
c =−2

β(p)
k

Re[A0]=
∞∑

m=−∞

Re[β(p + mkL)]
k

|Am|2. (24)

However, we simply call p(g)
c the diffraction cross section to

distinguish from pc/W for the finite periodic case.
It is known [16] that an inequality −2 ≤ Re[A0] ≤ 0

holds when β(p) > 0. By this and (24), we then obtain
another inequality on the diffraction cross section,

0 ≤ p(g)
c ≤ 4 sin θi, (25)

which will be seen below. If p(g)
c = 0 at LGLI, an amplitude

Am (m � 0) of a propagating Floquet mode with Re[β(p +
mkL)] > 0 must vanish by (24). Thus, if p(g)

c = 0 at LGLI,
no diffraction takes place but only the reflection could occur,
which means the diffraction becomes singular at LGLI.

However, it holds that, in the case of a perfectly peri-
odic Neumann surface with small roughness, A0 becomes
−2 (the complex reflection coefficient A0 + 1 becomes −1)
and any other diffraction amplitudes Am, (m � 0), vanish at
LGLI [5], [6]. Therefore, we obtain from (24),

p(g)
c = 4 sin θi → 0, (θi → 0), (26)

which is illustrated below.
Physically, both pc/W and p(g)

c are the scattering cross
section per unit surface. Therefore, we expect that pc/W
converges to p(g)

c when W → ∞,

pc

W
= p(g)

c , (W → ∞). (27)

We will see that (27) holds with good accuracy even when
W is finite and sufficiently large. We note that (27) gives a
solution to our contradiction such that no diffraction takes
place but scattering may occur at LGLI.

4. Numerical Example

For numerical calculations, we put

L = 1.75λ, σ = 0.2λ, (28)

NQ = NFM = 6, kB = (NQ + 1/2)kL. (29)

Since L/λ = 1.75, the critical angles of incidence are
θi = 0◦, 44.41530◦, 64.62306◦ and 81.78678◦, at which one
of the diffraction beams is scattered into a grazing direction
and then re-scattered again and again by the surface corru-
gation. Such multiple scattering could give serious effects to
the scattering properties. In the perfectly periodic case, such

Fig. 2 Diffraction cross section p(g)
c against θi the angle of incidence.

L = 1.75λ, σ/λ = 0.15, 0.20 and 0.25.

Fig. 3 The error Err with respect to the optical theorem. L = 1.75λ,
σ = 0.2λ.

effect is widely known as Wood’s anomaly. However, mul-
tiple scattering effects are not clear in the case of a periodic
surface with finite extent.

We first consider the perfectly periodic case. By the
Rayleigh method [11], we determine Am in (23). We then
calculate p(g)

c against θi the angle of incidence in Fig. 2,
where we display p(g)

c for low angles of incidence by a loga-
rithmic graph. We see that the inequality (25) holds for any
θi. We also see that, when θi < 0.1◦, p(g)

c becomes almost in-
dependent of σ and is almost equal to 4 sin θi, as is expected
by (26).

Next, let us discuss the scattering from a finite sinu-
soidal surface. We solved numerically (19) to obtain [Qn]
for θi from 0.00001◦ to 90◦ and for W/λ = 520, 1120,
2240, 4480, 8960 and 17920, where the error Err with re-
spect to the optical theorem (15) is less than 1.66 × 10−4

as is illustrated in Fig. 3. However, the error becomes less
than 1.13 × 10−4 when σ = 0.15λ and 4.28 × 10−4 when
σ = 0.25λ. These results suggest that our undersampling
approximation works well for a small rough case.

Figure 4 illustrates the total scattering cross section
pc/λ against θi the angle of incidence. Due to the Wood
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Fig. 4 Total scattering cross section pc/λ against θi the angle of inci-
dence. L = 1.75λ, σ/λ = 0.2, W/λ = 560, 1120, 2240, 4480, 8960 and
17920. When θi > 5◦, pc increases linearly proportional to W . When
θi ≈ 0, pc slowly increases as W increases.

Fig. 5 Total scattering cross section per unit surface pc/W and p(g)
c

against θi the angle of incidence. L = 1.75λ, σ/λ = 0.2, W/λ = 560,
1120, 2240, 4480, 8960 and 17920. When θi > 5◦, pc/W is almost equal
to p(g)

c .

anomaly, a peak or a dip appeares when θi is close to one of
the critical angles of incidence. When θi > 5◦, pc increases
linearly proportional to W. When θi ≈ 0, however, pc in-
creases slowly as W increases. These properties of pc are
quite similar to the case of a finite periodic array of rectan-
gular grooves [10].

Figure 5 shows pc/W and p(g)
c against θi. When θi > 5◦,

pc/W is almost independent of W and is almost equal to
p(g)

c . Let us see some numerical examples. When θi is non-
critical and θi = 30◦, pc/W is 0.6436086 at W/λ = 1120
and 0.6435719 at W/λ = 17920, which are almost equal to
p(g)

c = 0.6435693. When θi = 70◦, pc/W is 2.159498 at
W/λ = 1120 and 2.159427 at W/λ = 17920, which almost
equal p(g)

c = 2.159422.
When θi is critical and is not grazing, pc/W slightly de-

pends on W as is shown in Fig. 6. When θi = 64.62306◦,
we have pc/W = 2.946957 at W/λ = 560 and pc/W =

2.945640 at W/λ = 17920, which is 0.37% larger than p(g)
c =

Fig. 6 pc/W against W/λ. (A) θi = 64.62306◦ and (B)θi = 81.78678◦ .
L = 1.75λ, σ/λ = 0.2.

Fig. 7 pc/W and p(g)
c against small values of θi. L = 1.75λ, σ/λ = 0.2,

W/λ = 560, 1120, 2240, 4480, 8960 and 17920. For a sufficiently small θi,
pc/W decreases as W increases.

2.934721. When θi = 81.78678◦, we find pc/W = 1.595484
at W/λ = 560 and pc/W = 1.603007 at W/λ = 17920,
which is 0.62% smaller than p(g)

c = 1.613069. These results
mean that (27) holds accurately even when θi is critical, if
W is sufficiently large. However, Fig. 6 suggests that pc/W
converges to p(g)

c quite slowly in the case of critical angles.
We illustrate pc/W and p(g)

c for small θi in Fig. 7. We
see that pc/W is almost equal to p(g)

c for θi > 5◦. As θi be-
comes small, a curve pc/W branches away from the curve
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Fig. 8 Scattering cross section σs(θs |θi) against θs. θi = 0.00001◦ L =
1.75λ, σ/λ = 0.2.

Fig. 9 (A) Peak level and (B) 3 dB beam width ∆Θs of σs(θs |θi) against
W/λ. L = 1.75λ, σ/λ = 0.2. The 0th order diffraction beam scattered into
the grazing direction θs = 180◦ has much wide beam width proportional to√
λ/W .

p(g)
c at a branch angle and becomes a flat line. As W gets

wider, such a branch angle becomes smaller. Thus, the dif-
ference |pc/W − p(g)

c | becomes much small for a sufficiently
large W. We may expect (27) holds for any θi when W → ∞.
We also see in Fig. 7 that pc/W decreases with increasing
W for a sufficiently small θi. This property is quite similar
to the case of a finite periodic array of rectangular grooves
[10].

Fig. 10 pc/λ at θi = 0.00001◦ against W . L = 1.75λ, σ/λ = 0.15, 0.2
and 0.25. pc/λ is almost proportional to

√
W/λ.

Figure 8 shows the differential cross section σs(θs|θi)
against θs for θi = 0.00001◦ and W/λ = 1120. We see
the scattering appears as four peaks at θs = Θ0 = 180◦,
Θ−1 = 115.3769◦, Θ−2 = 81.78678◦ and Θ−3 = 44.41530◦,
which represent mainlobes of the 0th, −1st, −2nd and −3rd
diffraction beams, respectively, whereas the sidelobes ap-
pear as hills with a valley at θs ≈ 134◦. These peak levels
are plotted against W/λ in Fig. 9(A). The peak levels slightly
increase as W gets large but almost saturate when W/λ ≥
8960. From numerical data of the scattering cross sec-
tion, we determined the (real) beam width ∆Θs in Fig. 9(B),
which agrees with the estimated value by (18) within 2% er-
rors. Figure 9(B) shows that the 0th order diffraction beam
scattered into a grazing direction θs = 180◦ has a much wide
beam width proportional to

√
λ/W , whereas other diffrac-

tion beams have beam widths proportional to λ/W.
When W/λ = 17920, for example, the 0th order diffrac-

tion beam is ∆Θs = 0.409427◦ in beam width, which is
about 130 times wider than ∆Θs = 0.00310624◦ for the −1st
order one at θs = Θ−1 = 115.3769◦. On the other hand, the
peak level of the 0th one is about 4.6 dB lower than that of
the −1st one. By these facts and (13), pinc is mainly de-
termined by the 0th order diffraction beam and is roughly
proportional to pc/λ = pinc/λ ∼ W/λ × σs(π|0)

√
λ/W ∼

σs(π|0)
√

W/λ for a sufficiently large W. This is an impor-
tant result of this paper.

We plot pc/λ against W/λ at θi = 0.00001◦ in Fig. 10,
where pc is almost proportional to

√
W/λ, as is expected

above. Furthermore, this figure shows a remarkable fact
such that the dependence of pc on σ is quite small when
W/λ = 17920†. Numerically, we have pc/λ = 295.2657,
290.2994 and 287.8817 at σ/λ = 0.15, 0.20 and 0.25, re-
spectively, when θi = 0.00001◦ and W/λ = 17920.

Let us estimate the asymptotic behavior of pc for a

†Only when W is sufficiently large, pc/λ at LGLI becomes pro-
portional to

√
W/λ and almost independent of σ. When W is not

large, however, pc/λ depends on σ [8] and pc/W is almost inde-
pendent of W at LGLI [9]. Thus, the little dependence on σ should
be understood as an asymptotic behavior of pc when W → ∞.
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large W by putting pc/λ = a + b
√

W/λ†. Determining a
and b by numerical data, we obtain

pc

λ
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
5.863150 + 2.168190

√
W/λ, σ = 0.15λ

4.380363 + 2.138166
√

W/λ, σ = 0.2λ
3.002485 + 2.129169

√
W/λ, σ = 0.25λ

,

(30)

where a factor in front of
√

W/λ slightly depends on the
roughness σ.

The relation (30) means that pc diverges at LGLI in the
weak sense. Here, the divergence in the weak sense means
that pc diverges and pc/W vanishes, namely,

lim
W→∞

pc

λ
= ∞, (31)

lim
W→∞

pc

W
= 0. (32)

Such the weak divergence of pc should be understood as a
multiple scattering effect. When W → ∞ and the surface (1)
approaches to the perfectly sinusoidal surface, pc diverges
and hence has no physical significance. In other words, the
scattering can not be well defined for a target with infinite
extent. In such a limit, however, pc/W is well defined and
pc/W vanishes at LGLI. Since pc/W is expected to equal
p(g)

c at LGLI when W → ∞, we may conclude that the
diffraction by a sinusoidal surface does not occur at LGLI
but the scattering may take place at LGLI if W is finite.

5. Conclusions

At LGLI, no diffraction takes place by a periodic Neumann
surface and the scattering may occur if the periodic surface
is finite in extent. To solve such contradiction, this paper
studied the scattering of a TM plane wave from a perfectly
conductive sinusoidal surface with finite extent. By use of
the undersampling approximation, we numerically calcu-
lated the total scattering cross section pc for several corruga-
tion widths. We newly found that the total scattering cross
section pc increases almost proportional to the square root
of the corrugation width W at LGLI. Then, we may estimate
that the total scattering cross section pc must diverge in the
weak sense. Thus, we may conclude that our contradiction
at LGLI is caused by such the weak divergence of the total
scattering cross section.

The undersampling approximation is not an exact
method of analysis. It starts with a physical assumption such
that the scattered wave in the far regions is approximated by
a finite sum of the diffraction beams, where effects of the

†In Ref. [10], we studied the case of a finite periodic array of
rectangular grooves, where the maximum number of grooves was
restricted to 891 due to the limitation of computer resources. When
(2Ng+1) ≤ 891, pc/λ was not proportional to

√
2Ng + 1 in general

and hence we put pc/λ = a(2Ng + 1)α to estimate the asymptotic
behavior. However, Fig. 3 in Ref. [10] suggests that pc/λ becomes
proportional to the square root of the corrugation width

√
W/λ =√

(2Ng + 1)L/λ asymptotically, if the number of grooves (2Ng + 1)
becomes much larger than 891.

edges at x = ±W/2 are neglected implicitly. However, our
numerical results have several desirable properties as fol-
lows. The scattering cross section per unit surface pc/W is
almost equal to the diffraction cross section p(g)

c for any non-
critical angle of incidence. For a critical or grazing angle of
incidence pc/W takes a value close to p(g)

c and approaches to
p(g)

c when W becomes large. Furthermore, numerical experi-
ments show that the error with respect to the optical theorem
is reasonably small for any angle of incidence, if W/λ > 102

and if the slope parameter 2πσ/L is less than about 2×0.448,
where 0.448 is the Rayleigh limit [9], [11]. Therefore, we
consider that the undersampling approximation gives reli-
able results for the far-field properties in the case of a finite
sinusoidal surface. To check the validly of the approxima-
tion, however, we need the comparison with results by other
method. Since there is no other source analyzing a wide case
with W/λ > 104, this problem is left for future study.

On the other hand, we have studied an analytical
method to obtain the asymptotic behavior of pc as W → ∞
[17]. However, multiple scattering processes yielding the
weak divergence of the total scattering cross section at LGLI
are still not clear. This problem, therefore, is left for future
study.

The authors would like to thank reviewers for their
valuable comments.
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