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Periodic Fourier Transform and Its Application to Wave Scattering
from a Finite Periodic Surface: Two-Dimensional Case

Junichi NAKAYAMA†a), Member

SUMMARY In this paper, the previously introduced periodic Fourier
transform concept is extended to a two-dimensional case. The relations
between the periodic Fourier transform, harmonic series representation and
Fourier integral representation are also discussed. As a simple application
of the periodic Fourier transform, the scattering of a scalar wave from a
finite periodic surface with weight is studied. It is shown that the scattered
wave may have an extended Floquet form, which is physically considered
as the sum of diffraction beams. By the small perturbation method, the
first order solution is given explicitly and the scattering cross section is
calculated.
key words: bigrating, diffraction beam, periodic Fourier transform, har-
monic series representation, s-periodic spectrum, harmonic spectrum

1. Introduction

The wave scattering from a periodic surface with finite ex-
tent has received much interest, because any real periodic
structure is finite in extent and finite periodic structures have
important applications. Several methods for analysis were
previously introduced [1]–[6]. In a previous study [7], how-
ever, we proposed the periodic Fourier transform as a new
tool for analysis. The periodic Fourier transform converts
any function into a periodic spectrum function with a pa-
rameter s. The inverse transform is given by a Fourier in-
tegral with s over a finite interval. Considering the periodic
Fourier transform of the scattered wave and expanding the
periodic spectrum function into a Fourier series, it is shown
that the scattered wave has an extended Floquet form, which
is considered as the sum of diffraction beams. Using the pe-
riodic Fourier transform, we presented a new formulation
for the wave scattering from a finite corrugated plane [8],
[9] and an apodised periodic surface [10].

However, our discussions were limited to a one-
dimensional case. In this paper, a two-dimensional case is
discussed to deal with the wave scattering from a bigrat-
ing with finite extent or a bigrating with weight (see Fig. 1).
We give the basic definition of the two-dimensional periodic
Fourier transform and its relation to the harmonic series rep-
resentation and Fourier integral expression. As a simple ap-
plication, we discuss the scattering of a scalar wave from a
finite periodic surface with the Gaussian weight. Then, we
give the first order perturbed solution, in terms of which the
scattering cross section is calculated.
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Fig. 1 Two-dimensional periodic structure with Gaussian weight. See
Sect. 5.2 for details.

2. Translation Operator and Basic Vectors

Let r = xex + yey be a two-dimensional vector in the two-
dimensional plane R2 = (−∞,∞)2, where ex and ey are unit
vectors in the x and y directions, respectively. For a function
f (r), we define the translation operator D(n1,n2) by

D(n1,n2) f (r) = f (r + L1n1 + L2n2), (1)

where L1 and L2 are basic vectors, and n1 and n2 are any
integers. From (1), D(n1,n2) becomes a group:

D(0,0) = 1, [D(n1,n2)]−1 = D(−n1,−n2),

D(n1,n2)D(m1,m2) = D(n1+m1,n2+m2), (2)

where m1 and m2 are any integers also. In general, the basic
vectors are not orthogonal to each other and form a parallel-
ogram. Such a parallelogram is called the r unit cell and is
denoted by CL when its center is located at r = (x, y) = 0 as
shown in Fig. 2. We denote the area of the r unit cell by AL,
which is given by |L1 × L2| and is assumed to be positive.
We write

L1 = L1xex + L1yey, L2 = L2xex + L2yey, (3)

AL =

∣∣∣∣∣∣
∣∣∣∣∣∣ L1x, L2x

L1y, L2y

∣∣∣∣∣∣
∣∣∣∣∣∣ = L1xL2y − L2xL1y > 0, (4)

where || · || denotes the determinant.
Let us denote the Bragg basic vectors by q1 and q2,

which satisfy the orthogonality relation†
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Fig. 2 L1 and L2 are basic vectors. q1 and q2 are Bragg basic vectors
with Li · q j = 2πδi, j. CL and Cq are the r unit cell and the s unit cell,
respectively.

Li · q j = 2πδi, j, (i, j = 1, 2), (5)

where δi, j stands for Kronecker’s delta. The Bragg basic
vectors may be given by

q1 =
2π
AL

(L2yex − L2xey),

q2 =
2π
AL

(L1xey − L1yex). (6)

The Bragg basic vectors also form a parallelogram. We call
such a parallelogram the s unit cell and denote it by Cq when
its center is located at sx = sy = 0 as shown in Fig. 2. We
denote the area of the s unit cell by Aq,

Aq = |q1 × q2| = (2π)2

AL
. (7)

To simplify notations, we introduce a lattice vector
L(n1, n2) and a Bragg lattice vector q(m1,m2) by

L(n1, n2) = n1L1 + n2L2, (8)

q(m1,m2) = m1q1 + m2q2, (9)

where ni and mj, (i, j = 1, 2), are any integers. In terms of
the basic vectors and the Bragg basic vectors, we write

r = xex + yey = α1L1 + α2L2, (10)

s = sxex + syey = µ1q1 + µ2q2, (11)

µ1 =
1

2π
s · L1, µ2 =

1
2π

s · L2. (12)

From (12), the area elements dr and ds are given by

dr = dxdy = ALdα1dα2, ds = Aqdµ1dµ2. (13)

By the orthogonality relation (5), one easily obtains

s · r = xsx + ysy = 2π(α1µ1 + α2µ2), (14)

q(m1,m2) · r = 2π(α1m1 + α2m2), (15)

s · L(n1, n2) = 2π(µ1n1 + µ2n2). (16)

3. Fourier Series

The Fourier series expression of a multi-dimensional peri-
odic function is well known and is widely applied to solid-
state physics [11] and the theory of grating [12]. However,

we briefly discuss the Fourier series expression of a two-
dimensional periodic function here.

Let fp(r) be a periodic function with the periods L1 and
L2, satisfying

D(n1,n2) fp(r) = fp(r + L(n1, n2)) = fp(r),

(n1, n2 = 0,±1,±2, · · ·). (17)

If we write

fα(α1, α2) = fp(α1L1 + α2L2) = fp(r), (18)

fα(α1, α2) becomes a periodic function with the period 1 in
the α1 and α2 directions,

fα(α1, α2) = fα(α1 + n1, α2 + n2), (19)

where n1 and n2 are any integers. Then, fα(α1, α2) is easily
expanded into a Fourier series as

fα(α1, α2) =
∞∑

m1,m2=−∞
Fm1,m2

×e2πi(m1α1+m2α2), (20)

where we assume the uniform convergence of the right-hand
side. To calculate the Fourier coefficient Fm1,m2 , we consider
the orthogonality relation over CL,

δm1,m′1δm2,m′2 =

∫ 1/2

−1/2

∫ 1/2

−1/2

e−2πi[(m1−m′1)α1+(m2−m′2)α2]dα1dα2 (21)

=
1

AL

∫
CL

e−i[q(m1,m2)−q(m′1,m
′
2)]·rdr, (22)

where we have changed the variables of integration from
(α1, α2) to r and used (13) to obtain (22) from (21). Then,
the Fourier coefficient Fm1,m2 is calculated as

Fm1,m2 =

∫ 1/2

−1/2

∫ 1/2

−1/2
fα(α1, α2)

×e−2πi(m1α1+m2α2)dα1dα2 (23)

=
1

AL

∫
CL

fp(r)e−iq(m1,m2)·rdr. (24)

By (15), (20) may be rewritten as

fp(r) =
∞∑

m1,m2=−∞
Fm1,m2 eiq(m1,m2)·r, (25)

which is a well-known Fourier series expression. We note
that for a real function fp(r), the Fourier coefficients satisfy

F∗m1,m2
= F−m1,−m2 , (26)

where the asterisk denotes the complex conjugate.

†In Ref. [11], q1 and q2 are defined by Li · q j = δi, j and are
called the reciprocal basic vectors. However, we define the Bragg
basic vectors by (5) for convenience.
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4. Periodic Fourier Transform

The periodic Fourier transform [7] for a one-dimensional
function is extended to a two-dimensional one in this sec-
tion. However, we note that the periodic Fourier transform
is considered as a simplified version of the Da-Fourier trans-
form for an imhomogenous random function [13]. In this
section, the harmonic series representation and its relation to
the Fourier spectrum (see Fig. 3) are briefly discussed. Sev-
eral properties of the periodic Fourier transform are listed in
Appendix B.

Using the translation operator D(n1,n2), we define the pe-
riodic Fourier transform of a function f (r) by

F(r, s) =
∞∑

n1,n2=−∞
D(n1,n2)

[
f (r)e−is·r]

=

∞∑
n1,n2=−∞

f (r + L(n1, n2)) e−is·(r+L(n1,n2)), (27)

where we also assume the uniform convergence of the right-
hand side. From (27), F(r, s) becomes invariant under
D(n1,n2) and is a periodic function of r:

F(r, s) = F(r + L(n1, n2), s),

(n1, n2 = 0,±1,±2, · · ·). (28)

Thus, we call F(r, s) the s-periodic spectrum. The s-
periodic spectrum is not periodic on s. However, for any
integers m1 and m2, it satisfies

F(r, s + q(m1,m2)) = e−iq(m1,m2)·rF(r, s). (29)

To obtain an inversion formula, we modify the periodic
Fourier transform (27) using (14) and (16) as

F(α1L1 + α2L2, µ1q1 + µ2q2)e2πi(α1µ1+α2µ2)

=

∞∑
n1,n2=−∞

f (r + L(n1, n2))e−2πi(µ1n1+µ2n2). (30)

The right-hand side of this equation is a periodic function
of µ1 and µ2 and should be understood as a Fourier series,
where f (r + L(n1, n2)) is a Fourier coefficient. Since

f (r)

F̂(s)

F(r, s)

Fmn(s)

PFT

FT

HS R

FS

Fig. 3 Periodic Fourier transform (PFT), harmonic series representation
(HSR) and Fourier transform (FT). F̂(s) is the Fourier spectrum, F(r, s) is
the s-periodic spectrum, and Fmn(s) is the harmonic spectrum.

∫ 1/2

−1/2

∫ 1/2

−1/2
e−2πi(n1µ1+n2µ2)dµ1dµ2 = δn1,0δn2,0,

one may easily obtain the inversion formula as

f (r) =
∫ 1/2

−1/2

∫ 1/2

−1/2
e2πi(α1µ1+α2µ2)

×F(α1L1 + α2L2, µ1q1 + µ2q2)dµ1dµ2 (31)

=
1
Aq

∫
Cq

F(r, s)eis·rds. (32)

4.1 Harmonic Series Representation

Since the spectrum F(r, s) is a periodic function of r, we
may obtain another expression for f (r). Using (25), we rep-
resent the s-periodic spectrum F(r, s) by a Fourier series,

F(r, s) =
∑

m1,m2

Fm1,m2 (s)eiq(m1,m2)·r, (33)

where Fm1,m2 (s) is calculated by (24). Substituting (33) into
(31), we obtain another series representation of f (r),

f (r) = f (α1L1 + α2L2)

=
∑

m1,m2

e2πi(m1α1+m2α2)
∫ 1/2

−1/2

∫ 1/2

−1/2

Fm1,m2 (µ1q1 + µ2q2)e2πi(α1µ1+α2µ2)dµ1dµ2 (34)

=
1
Aq

∑
m1,m2

eiq(m1,m2)·r
∫

Cq

Fm1,m2 (s)eis·rds. (35)

We call (35) the harmonic series representation and
Fm1,m2 (s) the harmonic spectrum.

4.2 Fourier Spectrum

Let F̂(s) be the Fourier spectrum of f (r). Using the rectan-
gular function u(s|Cq) defined by (A· 1) and (A· 3), we obtain

f (r) =

(
1

2π

)2 ∫
R2

eis·rF̂(s)ds

=

∞∑
m1,m2=−∞

∫
R2

eis·ru(s − q(m1,m2)|Cq)
F̂(s)
4π2

ds

=

(
1

2π

)2 ∞∑
m1,m2=−∞

eiq(m1,m2)·r

×
∫

Cq

eis·rF̂(s + q(m1,m2))ds. (36)

Comparing (36) with (32), we formally obtain the rela-
tion between the s-periodic spectrum F(r, s) and the Fourier
spectrum F̂(s) as

F(r, s) =
1

AL

∞∑
m1,m2=−∞

eiq(m1,m2)·r

×F̂(s + q(m1,m2)). (37)
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If we compare (37) with (33), we obtain the relation
between the Fourier spectrum and the harmonic spectrum
Fm1,m2 (s) as

Fm1,m2 (s) =
1

AL
F̂(s + q(m1,m2)). (38)

It is important to note that (37) and (38) hold only for s in
Cq. For any s in R2, we obtain

Fm1,m2 (s)u(s|Cq) =
1

AL
F̂(s + q(m1,m2))u(s|Cq).

Replacing s by s − q(m1,m2) and using (A· 3), we may de-
termine the relation between the Fourier spectrum and the
harmonic spectrum as

F̂(s)
AL
=

∞∑
m1,m2=−∞

Fm1,m2 (s − q(m1,m2))

×u(s − q(m1,m2)|Cq). (39)

5. Application to Wave Scattering from Periodic Sur-
face with Finite Extent

As a simple application of the periodic Fourier transform
and the harmonic series representation, let us consider the
scattering of a scalar wave from a periodically deformed
planer surface. We write the periodic deformation with fi-
nite extent as

z = σhg(r) fp(r). (40)

Here, σh is the surface height parameter, fp(r) is a periodic
function with (17) and g(r) is the envelope of the surface
deformation with a maximum value at r = 0,

max{|g(r)|} = g(0) = 1,

g(r) = 0, |r| > rmax, (41)

g(r) =
1

4π2

∫
R2

eis·rĜ(s)ds,

Ĝ(s) = Ĝ∗(−s), (42)

Ae =
1
g(0)

∫
R2
g(r)dr =

Ĝ(0)
g(0)

, (43)

where rmax is a finite number, Ae is the effective area and the
asterisk denotes the complex conjugate. By (41) the surface
becomes flat when |r| > rmax.

We denote the scalar wave field by ψ(r, z), which satis-
fies the Helmholtz wave equation

[∇2 + k2]ψ(r, z) = 0, (44)

in free space above the surface and the Dirichlet boundary
condition on the surface (40)

ψ(r, z) = 0, (z = σhg(r) fp(r)). (45)

Here, k = 2π/λ is wave number, λ is wavelength, and ∇ =
ex∂/∂x + ey∂/∂y + ez∂/∂z.

Let us represent the incident plane wave ψi(r, z) and the
reflected wave ψr(r, z) by

ψi(r, z) = eip·r−iβ00(p)z, (46)

ψr(r, z) = −eip·r+iβ00(p)z, (47)

where p and −β00(p) are the projections of the incident wave
vector Ki on the x − y plane and the z axis, respectively (see
Fig. 4).

Ki = p − β00(p)ez,

p = −k(sin θi cosφiex + sin θi sin φiey). (48)

We define βmn(p) as a function of p,

βmn(p) = β00(p + mq1 + nq2)

=

√
k2 − (p + mq1 + nq2)2,

Re[βmn(p)] ≥ 0, Im[βmn(p)] ≥ 0,

(m, n = 0,±1,±2, · · ·), (49)

β00(p) = k cos θi. (50)

Here, Re and Im stand for the real and imaginary parts, re-
spectively, and (θi, φi) is the angle of incidence (see Fig. 4).

We write the total field as the sum of three components:
the incident plane wave ψi(r, z), the reflected wave ψr(r, z)
and the scattered wave ψs(r, z) due to the surface deforma-
tion

ψ(r, z) = ψi(r, z) + ψr(r, z) + ψs(r, z). (51)

Assuming the Rayleigh hypothesis, we write the scattered
wave as

ψs(r, z) =
eip·r

(2π)2

∫
R2

eis·r+iβ00(p+s)zA(s)ds (52)

=

∞∑
m,n=−∞

ei(p+q(m,n))·r

Aq

×
∫

Cq

eis·r+iβmn(p+s)zAmn(s)ds, (53)

Fig. 4 Scattering of a plane wave. Ki is the incident wave vector and Ks

is a scattering wave vector.



NAKAYAMA: PERIODIC FOURIER TRANSFORM AND ITS APPLICATION
1029

where (52) is a representation by the Fourier integral. Ap-
plying the harmonic series representation to (52) and using
(38), we obtain (53). Physically, (53) is given by the sum of
ψmn(r, z),

ψmn(r, z) =
ei[p+q(m,n)]·r

Aq

×
∫

Cq

eis·r+iβmn(p+s)zAmn(s)ds, (54)

which we call the (m, n)-th order diffraction beam. The
Amn(s) is the amplitude of a plane wave scattered into the
Ks direction,

Ks = p + s + q(m, n) + βmn(p + s)ez,

p + s + q(m, n)

= k(sin θs cosφsex + sin θs sinφsey), (55)

βmn(p + s) = k cos θs, (56)

where (θs, φs) is a scattering angle (see Fig. 4). If we put
s = 0, (55) is reduced to the grating formula:

p + q(m, n)

= k(sin θmn cosφmnex + sin θmn sinφmney), (57)

where (m, n) stands for the order of diffraction. The diffrac-
tion beams of different orders are orthogonal in the sense
that

Re

[
1
ik

∫
R2
ψmn(r, z)

∂ψ∗m′n′ (r, z)

∂z
dr

]

= δmm′δnn′Φmn, (58)

where δmm′ is Kronecker’s delta and Φmn is the energy car-
ried by the (m, n)-th order diffraction beam,

Φmn =
AL

kAq

∫
Cq

Re[βmn(p + s)]|Amn(s)|2ds. (59)

Since the scattering takes place from the corrugated
part of the surface, the scattered energy always remains fi-
nite. Such a finite energy of the scattering is described by
the optical theorem stating that the total scattered energy Pt

is proportional to Pc, where Pc is the loss of the amplitude
of the plane wave scattered into the specular direction. In
our case, the optical theorem may be written as

Pc = Pt, (60)

where the total scattered energy Pt and the effect of the loss
of the specularly scattered amplitude are given by

Pc =
2β00(p)AL

k
Re[A00(0)], (61)

Pt =
∑
mn

Φmn. (62)

Here, Φmn is given by (59). We denote the differential scat-
tering cross section per unit area by σ(θs, φs|θi, φi),

Pt =
Ae

4π

∫ π/2

0

∫ 2π

0
σ(θs, φs|θi, φi) sin θsdφsdθs, (63)

where sin θsdφsdθs is a differential solid angle. Then we
have

σ(θs, φs|θi, φi) =
A2

Lk2 cos2 θs

Aeπ

∑
m,n

|Amn(Λ

−q(m, n))|2u(Λ − q(m, n)|Cq), (64)

Λ = k sin θs cosφsex + k sin θs sin φsey − p. (65)

Note that the right-hand-side of (64) is divided by the ef-
fective area Ae to obtain the scattering cross section per unit
area.

Let us consider the relation of (53) to the Floquet form
in the grating theory. If we put

Amn(s) = AqÂmnδ(s), (66)

(53) is reduced to the well-known Floquet form for the bi-
grating [12]

ψs(r, z) =
∑
m,n

Âmnei(p+q(m,n))·r+iβmn(p)z. (67)

Therefore, (53) is considered as an extension of the Floquet
form and we call it the extended Floquet form.

5.1 Approximate Solution by Small Perturbation

From (53) and (45), we obtain the integral equation that de-
termines Amn(s),

−2i sin[σhg(r) fp(r)β00(p)] +
∞∑

m,n=−∞

eiq(m,n)·r

Aq

×
∫

Cq

eis·reiσhg(r) fp(r)βmn(p+s)Amn(s)ds = 0. (68)

Assuming a sufficiently small surface deformation, we ex-
pand Amn(s) into a perturbation series with respect to σh,

Amn(s) = σhA(1)
mn(s) + σ2

hA(2)
mn(s) + · · · . (69)

Then we obtain equations for A(1)
mn(s) and A(2)

mn(s) as

−2ig(r) fp(r)β00(p) +
∞∑

m,n=−∞

eiq(m,n)·r

Aq

×
∫

Cq

eis·rA(1)
mn(s)ds = 0, (70)

∞∑
m,n=−∞

eiq(m,n)·r
[ ∫

Cq

eis·rA(2)
mn(s)ds + ig(r) fp(r)

×
∫

Cq

eis·rβmn(p + s)A(1)
mn(s)ds

]
= 0. (71)

Using (A· 6) and (A· 8), we calculate the periodic Fourier
transform of (70) to obtain

−2iβ00(p)Fg(r, s) fp(r)

+

∞∑
m,n=−∞

eiq(m,n)·rA(1)
mn(s) = 0, (72)
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which involves only periodic functions of r. Here, Fg(r, s)
is the periodic Fourier transform of g(r),

Fg(r, s) =
1

AL

∑
m,n

eiq(m,n)·rĜ(s + q(m, n)). (73)

Using (25) and (73), we easily obtain the first order solution
from (72),

A(1)
mn(s) =

2i
AL
β00(p)

×
∑
m1,n1

Ĝ(s + q(m1, n1))Fm−m1,n−n1 , (74)

which holds for any s in the s unit cell.
Let us assume that g(r) is non-negative and is a simple

pulse without ripples. When such a pulse is nearly isotropic
and Ae is much wider than AL, Ĝ(s) is well localized at |s| ≈
0 and Ĝ(s + q(m, n)) ≈ 0 holds except for m = n = 0. In
such a case, we approximately determine

A(1)
mn(s) ≈ 2i

AL
β00(p)FmnĜ(s), (75)

which holds for any s in the s unit cell. This means that
A(1)

mn(s) is also localized at |s| ≈ 0. Thus, the (m, n)-th or-
der diffraction beam ψmn(r, z) is mainly scattered into the
(θmn, φmn) direction given by the grating formula (57). The
relation (75) suggests that the diffraction beam shape is
much affected by Ĝ(s).

Since the surface deformation (40) is real and Fourier
coefficients satisfy (26), one may obtain

Re[A(1)
00 (0)] = 0. (76)

Using (71) and (74), we may obtain the second order
solution as

A(2)
mn(s) = −i

∑
m1,n1

∑
m3,n3

Fm−m1−m3,n−n1−n3

∫
Cq

βm1n1 (p + s′)
ALAq

Am1n1 (s′)Ĝ(s − s′ + q(m3, n3))ds′

=
2β00(p)

AqA2
L

∑
m1,n1

∑
m2,n2

∑
m3,n3

Fm−m1−m3,n−n1−n3

×Fm1−m2,n1−n2

∫
Cq

βm1n1 (p + s′)Ĝ(s′ + q(m2, n2))

×Ĝ(s − s′ + q(m3, n3))ds′. (77)

Putting m = n = 0 and s = 0 in (77), and using (74), we
obtain

2β00(p)AL

k
Re[A(2)

00 (0)]

=
AL

kAq

∑
m,n

∫
Cq

Re[βmn(p + s)]|A(1)
mn(s)|2ds. (78)

By (78) and (76), the optical theorem holds in the order of
σ2

h. From discussions on the applicability of the perturbation
method [14], the first order solution (74) is expected to be
useful when σh ≤ 0.1λ.

5.2 Numerical Example

Using the first order solution, we calculate the scattering
cross section. In this calculation, we put the basic vectors

L1x = L, L1y = 0,

L2x = L cos(π/3), L2y = L sin(π/3). (79)

We set the Fourier coefficients in (25) as

F1,0= F−1,0= F0,1= F0.−1= F1,1= F−1,−1=
1
6
,

Fm,n = 0, any other (m, n), (80)

where only 6 components have non-zero values equal to 1/6.
For simplicity, we consider the Gaussian weight g(r),

g(r) = e−r2/2κ2
, Ĝ(s) = 2πκ2e−κ

2s2/2, (81)

Ae = 2πκ2, (82)

where Ae is the effective area. The Gaussian weight does not
satisfy (41) mathematically, but it satisfies such a relation
physically. We also put

σh = 0.1λ, L = 2.5λ, κ = 5λ, (83)

where λ is wavelength. By (79), (80) and (81), the surface
deformation (40) is revealed to have a weighted triangular
structure that is illustrated as a gray scale image in Fig. 1.

Using the first order solution (74), we numerically cal-
culated the scattering cross section σ(θs, φs|θi, φi) as a func-
tion of (θs, φs), where we put

θi = π/6, φi = π. (84)

The result is shown in Fig. 5, where a black footprint rep-
resents a main-lobe of a diffraction beam. Because of the
Gaussian weight g(r), there are no ripples and sidelobes as-
sociated with a main-lobe. There are only 6 footprints be-
cause fp(r) has 6 non-zero Fourier components given by
(80). Since the surface is symmetrical with respect to the
x axis and φi = π, the footprints are symmetrical with re-
spect to the line φs = π. Let us see the peak values and
the locations of the main-lobe of diffraction beams. The
peak levels and locations are 17.4dB at (θs, φs) ≈ (15◦, 67◦)
and (15◦, 293◦), 15.3dB at (43◦, 43◦) and (43◦, 317◦), and
9.2dB at (68◦, 14◦) and (68◦, 346◦), which correspond to the
diffraction orders (m, n)=(−1, 0), (−1,−1), (0, 1), (0,−1),

Fig. 5 Scattering cross section σ(θs, φs |θi, φi) by the first order solution.
Gray scale image. There are 6 black footprints representing the main-lobes
of diffraction beams. θi = π/6, φi = π, σh = 0.1λ, and κ = 5λ.
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(1, 1), and (1, 0), respectively. These angles almost agree
with the diffraction angles calculated using the grating for-
mula (57).

It is interesting to note that the beams are not isotropic
in the (θs, φs) plane, even though |Ĝ(s)|2 is an isotropic spec-
trum. This is because of the transformation from s to (θs, φs)
by (55). Roughly speaking, the beam width ∆θs in the θs di-
rection is proportional to 1/ cos θs, but the beam width ∆φs

in the φs direction is proportional to 1/ sin θs.

6. Conclusions

The previously introduced periodic Fourier transform con-
cept is extended to a two-dimensional case in this paper. The
relations between the periodic Fourier transform, harmonic
series representation and Fourier integral representation are
discussed. As a simple application of the periodic Fourier
transform, the scattering of a scalar wave from a finite peri-
odic surface with weight is studied by the small perturbation
method.

Our discussions can be immediately extended to the
scattering of electromagnetic waves. However, such an ex-
tension will be left for future study.
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Appendix A: Rectangular Pulse

Let u(s|Cq) be the rectangular pulse in the two-dimensional
plane

u(s|Cq) = u(µ1q1 + µ2q2|Cq)

=

{
1, −1/2 ≤ µ1, µ2 < 1/2
0, else where

, (A· 1)

which satisfies

u2(s|Cq) = u(s|Cq), (A· 2)
∞∑

m,n=−∞
u(s − q(m, n)|Cq) = 1. (A· 3)

Appendix B: Properties of Periodic Fourier Transform

In this section, several properties of the periodic Fourier
transform are discussed. However, for simplicity we will
denote the periodic Fourier transform and its inverse by
f (r)⇐⇒ F(r, s).

modulation and shift

If f (r)⇐⇒ F(r, s), then

f (r)e−iq·r ⇐⇒ F(r, s + q),

f (r − r0)⇐⇒ e−is·r0 F(r − r0, s). (A· 4)

constant and exponential function

Since the Fourier transform of constant 1 is (2π)2δ(s), we
obtain from (37)

1⇐⇒ Fc(r, s),

Fc(r, s) = Aq

∑
m,n

eiq(m,n)·rδ(s + q(m, n)). (A· 5)

Using this and (A· 4), we obtain

eis′ ·r ⇐⇒ Fe(r, s),

Fe(r, s) = Aq

∑
m,n

eiq(m,n)·rδ(s − s′ + q(m, n)). (A· 6)

product of weighting function and periodic function

Let g(r) and fp(r) be a weighting function and a periodic
function with fp(r)= fp(r + L1)= fp(r + L2), respectively. If
we write
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g(r)⇐⇒ Fg(r, s), (A· 7)

the product fp(r)g(r) is transformed into the product of the
periodic function and the periodic Fourier transform of the
weighting function

fp(r)g(r)⇐⇒ fp(r)Fg(r, s), (A· 8)

indicating that a periodic factor is invariant under the peri-
odic Fourier transform. This is an important property of the
periodic Fourier transform.

inner product and Perseval’s theorem

The inner product of f (r) and g(r) may be calculated as∫
R2

f (r)g∗(r)dr

=
1
Aq

∫
CL

dr
∫

Cq

dsF(r, s)G∗(r, s), (A· 9)

=

∞∑
m,n=−∞

AL

Aq

∫
Cq

dsFm,n(s)G∗m,n(s), (A· 10)

where G(r, s) is the periodic Fourier transform of g(r), and
Fm,n(s) and Gm,n(s) are the harmonic spectra of g(r) and
f (r),[

F(r, s)
G(r, s)

]
=

∑
m,n

[
Fm,n(s)
Gm,n(s)

]
eiq(m,n)·r. (A· 11)

Putting g(r) = f (r), we formally obtain Perseval’s the-
orem†,∫

R2
| f (r)|2dr =

1
Aq

∫
CL

dr
∫

Cq

ds|F(r, s)|2

=

∞∑
m,n=−∞

AL

Aq

∫
Cq

|Fm,n(s)|2ds. (A· 12)

†However, Eqs. (A.8) and (A.9) in Ref. [7] were misprinted.
They should be read as

2π
∫ ∞

−∞
f (x)g∗(x)dx = L

∫ kL/2

−kL/2
ds

∫ L/2

−L/2
F(x, s)

×G∗(x, s)dx = L2
∞∑

m=−∞

∫ kL/2

−kL/2
Fm(s)G∗m(s)ds,

2π
∫ ∞

−∞
| f (x)|2dx = L

∫ kL/2

−kL/2
ds

∫ L/2

−L/2
|F(x, s)|2dx

= L2
∞∑

m=−∞

∫ kL/2

−kL/2
|Fm(s)|2ds.
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