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PAPER

Periodic Fourier Transform and Its Application to Wave

Scattering from a Finite Periodic Surface

Junichi NAKAYAMA†a), Member

SUMMARY As a new idea for analyzing the wave scattering
and diffraction from a finite periodic surface, this paper proposes
the periodic Fourier transform. By the periodic Fourier trans-
form, the scattered wave is transformed into a periodic function
which is further expanded into Fourier series. In terms of the
inverse transformation, the scattered wave is shown to have an
extended Floquet form, which is a ‘Fourier series’ with ‘Fourier
coefficients’ given by band-limited Fourier integrals of amplitude
functions. In case of the TE plane wave incident, an integral
equation for the amplitude functions is obtained from the the
boundary condition on the finite periodic surface. When the
surface corrugation is small, in amplitude, compared with the
wavelength, the integral equation is approximately solved by it-
eration to obtain the scattering cross section. Several properties
and examples of the periodic Fourier transform are summarized
in Appendix.
key words: periodic Fourier transform, wave scattering, �nite

periodic surface

1. Introduction

This paper deals with a mathematical formulation for
the wave scattering from a finite periodic surface. Be-
cause any real periodic grating is finite in extent, such
a scattering problem is important in practical applica-
tions.

When a plane wave is incident on a periodically
corrugated surface of infinite extent, the wave is well
known to be scattered into discrete directions. Math-
ematically, the scattered wave is given by the Floquet
form, which is a product of a periodic function and
an exponential phase factor. Many analytical and nu-
merical works have been carried out on the basis of the
Floquet form [1]. However, such a form is valid only for
a periodic grating with infinite extent and is no longer
applicable to a finite periodic case [2] and semi-infinite
periodic case [3], [4], where the surface corrugation has
a continuous spectrum. In such cases, the scattered
waves are often represented by Fourier integrals [2]–[5].
It seems that a periodic case with infinite extent and a
finite periodic case have been considered to be entirely
different in mathematical formulation.

The purpose of this paper is to bridge wide gaps
between an infinite extended and a finite periodic cases.
We introduce a new idea, which is the periodic Fourier

Manuscript received October 8, 1999.
†The author is with the Faculty of Engineering and De-

sign, Kyoto Institute of Technology, Kyoto-shi, 606-8585
Japan.

a) E-mail: nakayama@dj.kit.ac.jp

transform based on the periodicity of grating. The peri-
odic Fourier transform converts any function f(x) into
a spectrum function F (x, s), where F (x, s) is periodic
in the x direction and s is a parameter. The inverse
transform is given by a Fourier integral with s over a
finite interval. Taking the periodic Fourier transform of
the scattered wave and expanding the spectrum func-
tion into Fourier series, it is shown that the scattered
wave has an extended Floquet form, that is a ‘Fourier
series’ with ‘Fourier coefficients’ given by band-limited
Fourier integrals of unknown amplitude functions of s.

As an application of the periodic Fourier trans-
form, we next present a new formulation for the TE
wave scattering from a finite corrugated plane shown in
Fig. 1. By the periodic Fourier transform, the bound-
ary condition is reduced to an equation involving only
periodic functions. Expanding periodic functions into
Fourier series, we obtain an integral equation for the
amplitude function. When the height of the corruga-
tion is sufficiently small, the integral equation is ap-
proximately solved by iteration.

2. Periodic Fourier Transform

As a new idea of analysis, we introduce the periodic
Fourier transform, properties and examples of which
are summarized in Appendix.

Let us define a displacement operator D associated
with a distance L by the relation:

Df(x) = f(x+ L). (1)

Fig. 1 Scattering and diffraction of a plane wave from a finite
periodic surface. The incident plane wave and the scattered wave
are denoted by ψi(x, z) and ψs(x, z), respectively. θi is the angle
of incidence, θs is a scattering angle. W is the width of the
corrugation and σ is the height of the corrugation.
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Since D[Df(x)] = Df(x + L) = f(x + 2L) = D2f(x),
D becomes a one parameter group:

D0 = 1(identity), DmDn = Dn+m,

[Dm]−1 = D−m, (2)

where m and n are any integers. In terms of the dis-
placement operator D, we define a transformation by
the relation,

F (x, s) = eisx
∞∑

m=−∞
eismLDmf(x)

= eisx
∞∑

m=−∞
eismLf(x+mL), (3)

which is implicitly assumed to converge. Here, the
summation with respect to m is the discrete Fourier
transform of the sample sequence {f(x + mL), m =
0,±1,±2, · · ·}. However, we put the factor eisx to make
the spectrum F (x, s) a periodic function of x with the
period L. From (3), one easily finds

DmF (x, s) = F (x+mL, s) = F (x, s). (4)

Because of this property, we call (3) the periodic Fourier
transform and F (x, s) s-periodic function. However,
F (x, s) is not periodic with respect to s but it satisfies,

F (x, s+ kL) = eikLxF (x, s), kL =
2π
L

, (5)

where kL is the spatial angular frequency of the period
L. From (3), we formally find the inverse transform as

f(x) =
1
kL

∫ π/L

−π/L

F (x, s)e−isxds. (6)

In (3), x and s may be any numbers. However,
(6) and (4) mean that it is sufficient to define F (x, s)
over a two dimensional box region with 0 ≤ x ≤ L and
−kL/2 ≤ s ≤ kL/2. We note that the periodic Fourier
transform is a simplified and deterministic version of
the Da-Fourier transform developed previously [6]–[9].

3. Application to Scattering Problem

By use of the periodic Fourier transform, this section
obtains a form of the scattered wave under the Rayleigh
hypothesis.

Let us consider the wave scattering from a finite
periodic plane shown in Fig. 1. We write the surface
corrugation as

z = f(x) = u(x|W )fp(x) =
{

0, |x| > W/2
fp(x), |x| ≤ W/2 ,

(7)

where u(x|W ) is the rectangular pulse defined by
(A· 13) and fp(x) is a periodic function with the pe-
riod L:

Dfp(x) = fp(x) = fp(x+ L). (8)

Note that f(x) is implicitly assumed to be a continuous
function of x and there are no discontinuities at x =
±W/2. We denote the y component of the electric field
by ψ(x, z), which satisfies the wave equation[

∂2

∂x2
+

∂2

∂z2
+ k2

]
ψ(x, z) = 0 (9)

in the region z > f(x) and the Dirichlet condition

ψ(x, z) = 0, z = f(x) (10)

on the surface. We write the incident plane wave
ψi(x, z) as

ψi(x, z) = e−ipxe−iβ0(p)z, p = k · cos θi, (11)

βm(p) =
√

k2 − (p+mkL)
2
, Im [βm(p)] ≥ 0,

(m = 0,±1,±2, · · ·), (12)

where θi is the angle of incidence. Since the surface is
flat for |x| > W/2, we put the electric field as

ψ(x, z)=e−ipxe−iβ0(p)z−e−ipxeiβ0(p)z + ψs(x, z),

ψs(x, z) = e−ipxvs(x, z), (13)

where e−ipxeiβ0(p)z is the specularly reflected wave and
ψs(x, z) = e−ipxvs(x, z) is the scattered wave due to
surface deformation. We take the periodic Fourier
transform of vs(x, z):

Vs(x, z, s) = eisx
∞∑

m=−∞
vs(x+mL, z)eismL, (14)

where it should be noted that L is equal to the period
of the surface corrugation. Since V (x, z, s) is s-periodic
function of x, we write

Vs(x, z, s) =
∞∑

m=−∞
Am(s, z) exp (−imkLx) . (15)

The inverse transform of this gives a form of the scat-
tered wave in the x direction.

ψs(x, z) =
1
kL

∞∑
m=−∞

exp (−imkLx)

×
∫ π/L

−π/L

Am(s, z)e−i(p+s)xds. (16)

However, we may determine the z-dependence of
Am(s, z) from a fact that ψs(x, z) satisfies the wave
Eq. (9). Assuming that (16) satisfies (9) term by term,
we obtain

Am(s, z) = Am(s) exp[iβm(p+ s)z]

+A(−)m (s) exp[−iβm(p+ s)z], (17)
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where βm(p+ s) is defined by (12). Here, the first term
in the right-hand side physically implies an out-going
wave propagating into the z direction and the second
one an in-coming wave. When the surface corrugation
is small in height and is gentle in slope, however, we
simply assume the Rayleigh hypothesis, under which
the scattered wave is expressed in terms of out-going
waves [1]. Thus, we put

Vs(x, z, s) =
∞∑

m=−∞
Am(s)e−imkLx+iβm(p+s)z, (18)

which satisfies the radiation condition at z → ∞ term
by term. Then we obtain a form of the scattered wave
under the Rayleigh hypothesis,

ψs(x, z) =
1
kL

∞∑
m=−∞

e−imkLx

×
∫ π/L

−π/L

Am(s)e−i(p+s)x+iβm(p+s)zds, (19)

which is the main result of this paper. Here, Am(s) is
the complex amplitude of the plane wave propagating
with wave vector k = −(s+ p+mkL)ex+βm(p+ s)ez,
ex and ez being unit vectors in the x and z directions,
respectively. Equation (19) is a ‘Fourier series’ with
‘Fourier coefficients’ given by band-limited Fourier in-
tegrals of amplitude functions Am(s).

Roughly speaking, the amplitude Am(s) has a
sharp peak at s = 0; the height and width of the peak
are proportional to W and 2π/W , respectively. As is
discussed later, the amplitude Am(s) becomes propor-
tional to δ(s) when the widthW goes to infinity and the
surface becomes a periodic grating with infinite extent,

Am(s) = ÂmkLδ(s), (m = 0, ±1, ±2, · · ·), (20)

where Âm is the diffraction amplitude and δ(s) is
Dirac’s delta function. In such a limiting case, the form
(19) is reduced to the Floquet solution for a periodic
grating with infinite extent. Therefore, Eq. (19) should
be regarded as an extension of the Floquet solution for
a periodic surface with infinite extent.

4. Scattering Cross Section and Optical Theo-
rem

Physically, the diffracted waves are radiated from the
corrugated part of the surface and hence they exit only
limited regions in space. Restricting our discussions to
the far field, however, we only evaluate the integrals in
(19) by the saddle point method to get the scattering
cross section.

Denoting a scattering angle by θs (See Fig. 1), we
introduce the polar coordinate:

x = r cos θs, z = r sin θs. (21)

Then, we evaluate (19) by the saddle point method to
obtain,

ψs(r cos θs, r sin θs) ≈
k sin θs

kL

√
2π
kr

eikr−iπ/4

×
∞∑

m=−∞
Am(−k cos θs − p−mkL)

× u(−k cos θs − p−mkL|kL), (22)

where u(−k cos θs−p−mkL|kL) is the rectangular pulse
(A· 13). Form this relation, we obtain the scattering
cross section σ(θs|θi) per unit length

σ(θs|θi) = lim
r→∞

2π
kr

kW
· |ψs(r cos θs, r sin θs)|2

≈
∞∑

m=−∞

(2πk)2

k2LkW
|Am(−k cos θs − p−mkL)|2

× sin2 θsu(−k cos θs − p−mkL|kL), (23)

which is a non-dimensional quantity divided by the cor-
rugation width W .

Because the plane wave is incident on the infinitely
wide surface, the total incident power is infinite phys-
ically. Since the scattering takes place from the corru-
gated part of the surface, the scattered power always
remains finite. We will obtain the optical theorem con-
cerning such a finite quantity of the scattering.

Manipulating the identity Im[div (ψ∗grad ψ)] = 0,
Im and the asterisk being the imaginary part and the
complex conjugate respectively, we obtain the optical
theorem,

4π
kL

β0(p)Re[A0(0)]

=
2π
k2L

∞∑
n=−∞

∫ π/L

−π/L

Re[βn(p+ s)]|An(s)|2ds (24)

=
kW

2π

∫ π

0

σ(θs|θi)dθs, (25)

where Re stands for the real part and we have used (23)
to get (25) from (24). Clearly, the right-hand side is
the total scattering cross section which is non-negative.
Thus, it holds that Re[A0(0)] > 0, where A0(0) is
the complex amplitude of the plane wave scattered into
the direction of specular reflection. Since the reflected
wave given by the second term in (13) has a negative
amplitude, the optical theorem means that the scat-
tering takes place with the loss of specularly reflection
component.

5. Integral Equation

In this section, we will obtain an integral equation for
the amplitude Am(s). By the Rayleigh hypothesis, we
assume the expansion (19) is valid even on the corru-
gated part of the surface. Substituting (13) and (19)
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into the boundary condition (10), we obtain

1
kL

∞∑
m=−∞

e−imkLx

∫ π/L

−π/L

Am(s)e−isx+iβm(p+s)f(x)ds

= −[e−iβ0(p)fp(x) − eiβ0(p)fp(x)]u(x|W ). (26)

The exponential factor in this integral is decomposed
as

eiβm(s)f(x) = 1 + u(x|W ) [exp {iβm(s)fp(x)} − 1] ,
(27)

where the first term 1 in the right-hand side implies the
flat surface (z = f(x) ≡ 0) and the second term is the
effect of variation from the flat surface. By use of this
decomposition, we obtain

1
kL

∞∑
m=−∞

e−imkLx

∫ π/L

−π/L

Am(s)e−isxds

+
1
kL

∞∑
m=−∞

e−imkLx

∫ π/L

−π/L

Am(s)

×e−isx
[
eiβm(p+s)fp(x) − 1

]
u(x|W )ds

= 2i sin[β0(p)fp(x)]u(x|W ). (28)

As is seen in (A· 4), the periodic Fourier transform of a
product of a periodic function and a weighting function
becomes a product of the periodic function and the pe-
riodic Fourier transform of the weighting function. In
other words, periodic factors such as fp(x), e−imkLx,
exp[iβm(p+ s)fp(x)] and sin[β0(p)fp(x)] are all invari-
ant under the periodic Fourier transform. Taking this
property and using (A· 15) and (A· 2), we calculate the
periodic Fourier transform of (28) to obtain,

∞∑
m=−∞

e−imkLxAm(s) +
1
kL

∞∑
m=−∞

e−imkLx

×
∫ π/L

−π/L

Am(s′)
[
eiβm(p+s′)fp(x)− 1

]
Fu(x, s− s′|W )ds′

= 2i sin[β0(p)fp(x)]Fu(x, s|W ), (29)

where Fu(x, s|W ) describes the effect of the corrugation
width W . Our formulation using the periodic Fourier
transform has an advantage such that the boundary
condition (10) is reduced to an equation involving only
periodic functions of x. In fact, fp(x), e−imkLx and
Fu(x, s|W ) are all periodic functions of x with the pe-
riod L. These periodic functions are expanded into
Fourier series,

exp {iσβm(p)fp(x)} =
∞∑

l=−∞
Kl(p+mkL)eilkLx,

sin[σβ0(p)fp(x)] =
1
2i

∞∑
l=−∞

[Kl(p)−K∗
−l(p)]e

ilkLx,

Kl(p) =
1
L

∫ L/2

−L/2

eiσβ0(p)fp(x)e−ilkLxdx, (30)

where the angle θi of incidence and β0(p) are assumed
to be real. Then we finally obtain an integral equation
for the amplitude Am(s) as

Am(s) +
1
2π

∞∑
n=−∞

∫ π/L

−π/L

· C(s+mkL|s′ + nkL)An(s′)ds′

=
1
L

∞∑
l=−∞

[Kl(p)−K∗
−l(p)]

· U (s+ (m+ l)kL|W ) , (31)

C(s+mkL|s′ + nkL)

=
∞∑

l=−∞
U (s− s′ + (m− n+ l)kL|W )

× [Kl(p+ s′ + nkL)− δ(l, 0)], (32)

where U(s|W ) is the Fourier transform of u(x|W ) and
is given by (A· 16).

Let us consider a limiting case where W goes to
infinity and the surface becomes a periodic grating with
infinite extent. From (A· 15), (A· 16) and (A· 17), we
obtain

lim
W→∞

Fu(x, s|W ) =
2π
L

δ(s) = kLδ(s), |s| ≤ kL

2
.

(33)

By this relation and (29), one easily finds that Am(s)
is proportional to δ(s). If we define the diffraction am-
plitude Âm by (20), the condition (29) is reduced to

∞∑
m=−∞

Âme−imkLx+iβm(p)fp(x)=2i sin[β0(p)fp(x)],

(34)

which is a conventional equation determining the
diffraction amplitude Âm. From this example, it is
concluded again that the form (19) is considered as an
extension of the Floquet solution.

6. Sinusoidal Case

Let us consider a case where the surface corrugation is
sinusoidal,

fp(x) = σ · sin (kLx) . (35)

Here, σ is a small height parameter with kσ � 2π.
Since f(x) is continuous at x = ±W/2, the width W
should beW = nL, n being any positive integer. Then,
one easily finds

Kl(p) =
1
L

∫ L/2

−L/2

exp {iσβ0(p) sin(kLx)}
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Fig. 2 Scattering cross section σ(θs|θi) for a finite sinusoidal surface with Mt = 6,
L = 2.5λ, W = 20L = 50λ, σ = 0.1λ and θi = π/3, λ being the wavelength. Peaks
at scattering angles 45.6◦, 72.5◦, 95.7◦, 120.00◦ and 154.2◦ are effects of diffraction by
periodic corrugation. The side-lobes are interferences of waves diffracted from the ends of
corrugation at x = ±W/2.

× exp (−ilkLx) dx = Jl (σβ0(p)) , (36)

where Jl(·) stands for Bessel function. The coefficient
Kl(p) is a small quantity of the order of O(σl). From
this fact and (32), we find that C(s+mkL|s′ + nkL) is
the order of O(σ1).

It is still open question to find out an efficient
method for solving (31). For a sufficiently small σ,
however, the integral Eq. (31) may be approximately
solved by iteration using an initial guess:

Am(s) =
2
L

∞∑
l=−∞

J2l+1 (σβ0(p))

× U (s+ (m+ 2l + 1)kL|W ) , (37)

and putting the higher order amplitudes equal to zero:

Am(s) ≡ 0, |m| ≥ Mt (38)

where Mt is the order of truncation. Here, (37) is de-
rived from the right-hand side of (31). In order to es-
timate the accuracy of the iterative solution, we define
the error Err with respect to the optical theorem as

Err = 1− Pc

Ps
, Pc =

4π
kL

β0(p)Re[A0(0)],

Ps =
kW

2π

∫ π

0

σ(θs|θi)dθs. (39)

Putting Mt = 6, L = 2.5λ, W = 20L = 50λ,
σ = 0.1λ and θi = π/3, λ being the wavelength, we
solved (31) by iteration. Then, it was found that the
error |Err| decreases when the number of iteration in-
creases. The error reaches to |Err| = 1.73 × 10−4

by 10 times of iteration, at which Pc = 123.8972 and
Ps = 123.9187. Using such iterative solution, we cal-
culate the scattering cross section σ(θs|θi) as a func-
tion of θs shown in Fig. 2. In Fig. 2, there are five
major peaks at scattering angles 45.6◦, 72.5◦, 95.7◦,
120.0◦ and 154.2◦. These angles agree with the diffrac-
tion angles calculated from the famous grating formula:
θs = cos−1 (− cos(θi)−m/L), (m = 0,±1,±2, · · ·),
m being the order of diffraction. Thus, we may con-
clude that major peaks are effects of diffraction due to
periodic corrugation. However, we see a lot of side-
lobes around the major peaks, which are mathemati-
cally caused by the rectangular function u(x|W ) in the
the surface deformation (7). Physically, the side-lobes
are considered as interferences of edge diffracted waves
radiated from the ends of the corrugation at x = ±W/2.

7. Conclusions

As a new idea for analyzing the wave scattering and
diffraction from a finite periodic surface, we have pro-
posed the periodic Fourier transform. Then, the scat-
tered wave is shown to have an extended Floquet
form, which is a ‘Fourier series’ with ‘Fourier coeffi-
cients’ given by band-limited Fourier integrals of am-
plitude functions. By the periodic Fourier transform,
the boundary condition on the finite periodic surface
is transformed into an equation involving only peri-
odic functions. Expanding these periodic functions into
Fourier series, the boundary condition is finally reduced
to an integral equation for the amplitude functions. As-
suming that the surface corrugation is small compared
with the wavelength, we approximately solved the in-
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tegral equation by iteration.
However, the periodic Fourier transform is defined

formally but no rigorous mathematical discussions are
given. Also, our discussion was limited to a TE wave
case with Rayleigh hypothesis. However, we note that
our formulation can be immediately applied to TM
wave case and the wave scattering from a dielectric
wave guide with a finite periodic corrugation [10]. How-
ever, it is pointed out that any real grating is finite in
extent and random in various degrees. If a real grat-
ing is modeled by the periodic stationary process in the
probability theory [11], [12], such a finite and random
case may be formulated by a combination of the peri-
odic Fourier transform and the Da Fourier transform
[6], [7]. It is much interesting to extend the periodic
Fourier transform into two and three dimensional cases.
However, these problems are left for future study.

The author would like to thank Gao Lan and Ya-
suhiko Tamura for their valuable comments. Warm
thanks go to Jiro Yamakita, who kindly examined the
idea of the periodic Fourier transform and its applica-
bility to the wave scattering theory.
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Appendix: Periodic Fourier Transformation

This appendix summarizes some properties of the pe-
riodic Fourier transform. For simplicity, we will denote
the periodic Fourier transform and its inverse by the
symbol: f(x)⇐⇒ F (x, s).
linear transform. If f(x) ⇐⇒ F (x, s) and g(x) ⇐⇒
G(x, s), then

αf(x) + βg(x)⇐⇒ αF (x, s) + βG(x, s), (A· 1)

where α and β are any constants.
modulation and shift. If f(x)⇐⇒ F (x, s), then

f(x)eiqx ⇐⇒ F (x, s+ q),
f(x− x0)⇐⇒ eisx0F (x− x0, s). (A· 2)

product of weighting function and periodic func-
tion Let w(x) and fp(x) be a weighting function and a
periodic function with fp(x) = fp(x+ L), respectively.
If we write

w(x)⇐⇒ Fw(x, s), (A· 3)

then, a product fp(x)w(x) is transformed into a prod-
uct of the periodic function and the periodic Fourier
transform of the weighting function

fp(x)w(x)⇐⇒ fp(x)Fw(x, s), (A· 4)

which means that a periodic factor is invariant under
the periodic Fourier transform. This is an important
property of the periodic Fourier transform.

relation with Fourier spectrum Let F̂ (s) be
the Fourier spectrum of f(x). Then, we find

f(x) =
1
2π

∫ ∞

−∞
e−isxF̂ (s)ds

=
1
2π

∞∑
m=−∞

e−imkLx

∫ kL/2

−kL/2

e−isxF̂ (s+mkL)ds.

(A· 5)

Comparing (A· 5) with (6), we formally obtain the re-
lation of F (x, s) with the Fourier spectrum F̂ (s) as

1
kL

F (x, s) =
1
2π

∞∑
m=−∞

e−imkLxF̂ (s+mkL). (A· 6)

inner product and Perseval’s theorem We put

f(x)⇐⇒ F (x, s) =
∞∑

m=−∞
e−imkLxFm(s),

g(x)⇐⇒ G(x, s) =
∞∑

m=−∞
e−imkLxGm(s). (A· 7)

Then, we find the inner product of f(x) and g(x),

1
2π

∫ ∞

−∞
f(x)g∗(x)dx
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= L

∫ kL/2

−kL/2

ds

∫ L/2

−L/2

F (x, s)G∗(x, s)dx

= L2
∞∑

m=−∞

∫ kL/2

−kL/2

Fm(s)G∗
m(s)ds, (A· 8)

where the asterisk denotes the complex conjugate. If we
put f(x) = g(x) in (A· 8), we obtain Perseval’s theorem,

1
2π

∫ ∞

−∞
|f(x)|2dx = L

∫ kL/2

−kL/2

ds

∫ L/2

−L/2

|F (x, s)|2dx

= L2
∞∑

m=−∞

∫ kL/2

−kL/2

|Fm(s)|2ds. (A· 9)

example 1, constant. fc(x) = 1.

1⇐⇒ Fc(x, s), (A· 10)

Fc(x, s) = eisx
∞∑

m=−∞
eismL

= kLe
isx

∞∑
m=−∞

δ(s+mkL)

= kL

∞∑
m=−∞

e−imkLxδ(s+mkL), (A· 11)

where kL = 2π/L and δ(·) stands for the Dirac δ func-
tion. Here, we have used the identity

∞∑
m=−∞

eiLms = 2π
∞∑

m=−∞
δ(Ls+ 2πm)

=
2π
L

∞∑
m=−∞

δ

(
s+

2πm
L

)
. (A· 12)

example 2. rectangular pulse If u(x|W ) is a rect-
angular pulse or gate function

u(x|W ) = u2(x|W ) =
{
1, |x| ≤ W/2
0, |x| > W/2 , (A· 13)

u(x|W )⇐⇒ Fu(x, s|W ), (A· 14)

Fu(x, s|W ) =
1
L

∞∑
m=−∞

U(s+mkL|W )e−imkLx,

(A· 15)

where W is the pulse width and U(s|W ) is the Fourier
transform of u(x|W ),

U(s|W ) =
∫ W/2

−W/2

eisxu(x|W )dx

=W
sin

(
Ws
2

)
(

Ws
2

) , (A· 16)

lim
W→∞

U(s|W ) = 2πδ(s). (A· 17)

example 3. periodic function with the period
L. If fp(x) is a periodic function satisfying fp(x) =
fp(x+ L), then it holds that

fp(x) = fp(x) · 1⇐⇒ fp(x)Fc(x, s), (A· 18)

where 1 in the left-hand side should be understood as a
weighting function and Fc(x, s) is the periodic Fourier
transform of 1.
example 4. product of rectangular pulse and
a periodic function. If u(x|W ) is the rectangular
pulse (A· 13) and fp(x) is a periodic function with fp(x)
= fp(x+ L), then,

fp(x)u(x|W )⇐⇒ fp(x)Fu(x, s|W ) (A· 19)

where Fu(x, s|W ) is defined by (A· 15).
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