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Abstract

Various kinds of railway vehicle suspensions linking the bogies and the car body have 

been designed to cushion riders from vibrations. In general, the suspension systems used in 

railway vehicles can be categorized as two main categories of suspension systems, namely 

passive and active suspension systems. Although active suspension systems can provide 

high control performance over wide frequency range of excitations induced by the rail 

track irregularities beyond that attainable by passive suspensions, hindered by its 

complexity, its cost, and its power consumption have yet to be accepted for conventional 

use. Therefore, passive suspension systems remain dominant in the marketplace because 

they are simple, reliable, and inexpensive. 

This research deals with the design of passive suspension system of railway vehicles. 

Since the classical method that used fixed-point theory is no longer applicable to the design 

of passive suspension system of railway vehicle because of some its limitations such as: It 

is only applicable when suspension system has two degree-of-freedom, it can not apply to 

design a suspension system with robustness performance, and the design result often 

depends on designer’ experience etc.. Therefore, many methods have been developed to 

replace it. In this study, by utilizing feedback control theories the design problem is 

examined from the view of feedback control problem. Consequently, the “feedback gain” is 

a decentralized matrix composed of the suspension parameters to be optimized. Since 

minimizing H norm of the system implies suppressing the peak of the magnitude of 

frequency response of the system, parameters optimization of passive suspension systems 

become a H static output feedback problem, which is solved by 

Bilinear-Matrix-Inequality (BMI) problem. One of the easiest methods to solve this BMI 

problem is alternative algorithm, which is derived from iterative schemes of alternation 
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between analysis and synthesis via Linear Matrix Inequalities (LMIs). Thus many difficult 

problems in passive suspension system design become tractable in the framework of 

structured control. By applying this design method, the degree of freedom can be increased 

until our design model approaches to real-life situations and moreover we can optimize the 

parameters of suspension system with robustness performance in two or more states of 

suspension system. Three design problems corresponding to two-DOF, six-DOF and robust 

design are given to show the performance and computational efficiency of this new design 

method comparing to conventional method. 
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Chapter 1

Introduction

1.1 Motivation

The development of railway vehicles has been an interest of many countries because 

trains have been proven as an efficient and economical transportation means. Increasing

the running speed of railway vehicles is one of effective ways to make the railways more 

competitive with air transport while providing better safety and saving energy. However, 

the high speed of the train would cause significant vehicle car body vibrations, which 

induce the problems such as: the ride stability, the ride quality, and the cost of track 

maintenance. Various kinds of railway vehicle suspensions linking the bogies and the car 

body have been designed to cushion riders from vibrations. In general, the suspension 

systems used in railway vehicles can be categorized as passive, active, and semi-active 

types. A passive railway vehicle suspension employing springs and pneumatic or oil 

dampers can only store energy in the spring and dissipate energy through the damper. Both 

components are fixed at the design stage. If the damper is replaced with a force actuator, 

the suspension becomes a fully active suspension.  The idea behind fully active 
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suspensions is that the force actuator is able to apply a force to the suspension in either 

jounce or rebound. This force is actively governed by the sophisticated control scheme 

employed in the suspension, high power is also required. Nowadays, with the development 

of electronics and microprocessors, commercial railway vehicles with active suspensions 

have become available. Although active suspension systems can provide high control 

performance over wide frequency range of excitations induced by the rail track 

irregularities beyond that attainable by passive suspensions, hindered by its complexity, its

cost, and its power consumption have yet to be accepted for conventional use. Therefore, 

passive suspension systems remain dominant in the marketplace because they are simple, 

reliable, and inexpensive.

The typical passive suspension system can be considered as a spring in parallel with a 

damper placed at each corner of the vehicle. The spring is chosen based solely on the 

weight of the vehicle, while the damper is the component that defines the suspension’s 

placement on the compromise curve. Depending on the realistic condition of vehicle, a 

damper is chosen to make the vehicle perform best in its application.  Ideally, the damper 

should isolate passengers from low-frequency road disturbances and absorb 

high-frequency road disturbances.  Passengers are best isolated from low-frequency 

disturbances when the damping is high.  However, high damping provides poor high 

frequency absorption. Conversely, when the damping is low, the damper offers sufficient 

high-frequency absorption, at the expense of low-frequency isolation.

Generally speaking, passive suspension system design was formerly used fixed-points 

theory (1),(2),(3). This design method is based on the existence of 3 fixed-points in frequency 

response curves of system. By choosing the optimal positions of these 3 points, designers 

are able to design the optimal parameters. But this method could not be applied for 

complex systems that have more than 2 degree-of-freedoms and moreover the results of 

design usually depend on the designer’s experiences. Since the classical fixed point theory 

is no longer applicable to the design of passive suspension system of railway vehicle, 

many methods have been developed to replace it.

In the recent decades, there are numerous optimization methods that have been 

proposed to replace the classical method which applied fixed-points theory due to some 
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problems. Some researchers have utilized the LQG optimal control theory for the design of 

passive mechanical systems (4),(5),(6),(7),(8). L. Zuo, et al.(4) and D. Iba, et al.(3) utilized the H2

and H norm optimization to design passive mechanical suspension (4),(5), MDOF tuned 

mass damper (3),(6),(7) and in vibration control of nuclear components (8) etc. 

This study applies the H norm optimization to design optimal parameters of springs 

and dampers of railway suspension system. The purpose of this optimization is: 

suppressing the peaks of the magnitude of frequency response curves of suspension system 

at resonance, it is equivalent to imply minimizing H norm of our control system. 

Therefore, parameters optimization of passive suspension system becomes H static 

output feedback problems. In other words, the passive suspension design is equivalent to 

design feedback gain of a controller with structured static output. This feedback gain is 

generated by the springs and damping elements which need to be designed. The design 

problem is transformed to the Bilinear Matrix Inequality (BMI) problem, which can be 

solved via the alternative minimization algorithm. Thus, by applying feedback control 

theory, many difficult problems in passive suspension systems will become tractable in the 

framework of structural control and this proposed method is one of solutions to avoid 

limitations of conventional design method.

1.2 Objectives

This study focuses on three primary objectives. The first is to present an overview of 

design method which was applied to design passive suspension system and then establish a 

new design method that utilized control theory in optimizing the parameters of railway

suspension. Second, two design problems corresponding to two-DOF suspension system

and six-DOF suspension system are examined, these two design problems show the 

performance and computational efficiency of proposed design method comparing to 

conventional method. The third is to propose a design method of two-degree-of-freedom

passive suspension system with robust performance in two states of body weight, full and 

empty load of body. This design is in order to provides a good operation in most common 

uncertain parameters of passive suspension system 
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1.3 Approach

This research succeed L. Zuo et al.’s ideal in “Design of passive mechanical systems 

via decentralized control theory” available at 43rd AIAA/ASME/ASCE/AHS/ASC 

Structures, Structural Dynamics and Materials Conference, AIAA2002-1282, pp.1-9. L. 

Zuo et al.’s ideal in “Structured H2 Optimization of Vehicle Suspensions Based on 

Multi-Wheel Models” available at Vehicle System Dynamics, Vol.40 (2003), pp. 351-371. 

and D. Iba et al.’s ideal in “Robust design method of multi-degree-of-freedom passive 

tuned mass damper” available at Proceedings of PVP2006-ICPVT-11-93364, 2006 ASME 

Pressure Vessels and Piping Division Conference, July 23-27, 2006 

1.4 Outline

Chapter 1 presents the motivation for the researching in this thesis by giving a 

background of suspension system, then a general comparison of passive suspension system 

versus active suspension system and classical design method applied fixed-points theory 

versus new design method applied control theory are presented. The objectives and 

approach to this research are discussed.

Chapter 2 provides the methodology of two design methods that will be applied to

design passive suspension systems along with this study. First, the classical design method 

using for a two-degree-of-freedom (2DOF) system will be presented. The existence of 3 

fixed-points in frequency response curves of body acceleration is examined. By choosing 

the optimal position of these 3 points, designers are able to design the optimal parameters 

for suspension systems. Second, the new design method used control theory will be 

established, we can view problem from the view of feedback control, parameters selection 

and optimization of a passive suspension system becomes a control problem. Therefore, 

many difficult problems in passive mechanical systems become tractable in the framework 

of structural control. This chapter shows that applying feedback control theory in 

designing a passive suspension system is one of solutions to avoid limitations of classical 

method.

Chapter 3 describes the application of new methods in designing 2DOF passive 
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suspension system. By giving a comparison between the results and applicable abilities of 

two methods, it can reveal the weak and strong points of each method.

Chapter 4, the DOF of systems will be increased to Six DOF. By investigating a passive 

suspension system with six-degree-of-freedom, this chapter wants to express that the 

degree of freedom of system can be increase until the model approaches to real-life 

situations. This is one of strong points of applying control theory in design passive 

suspension system comparing to classical design method.

Chapter 5 discusses the robust design applies to design suspension system via new 

method. This chapter mentions an important factor in designing an engineering system is 

uncertainty of some parameters, which emanates from natural randomness, limited data, or 

limited knowledge of systems. Concept of a good passive suspension system in this 

chapter is a passive suspension system that provides a good operation in most common 

change in vehicle weight. This chapter proposes a design method of 

two-degree-of-freedom passive suspension system with robust performance in two states 

of body weight, full and empty load of body. This chapter is confirmed to be able to design 

the two-degree-of-freedom passive suspension system with robustness by using control 

theory in particular and ability of utilizing control theory in design robustness of 

multi-degree-of-freedom passive suspension system in general. 

Chapter 6 provides concluding remarks and a summary of the study. The purpose of 

this chapter is to summarize this thesis and determine weak and strong points of each 

method that was presented. The chapter ends with recommendations for future research in 

the field of railway vehicle suspensions are also discussed.
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Chapter 2

Design Methods

This chapter provides two design methods conducted in this study. First, the classical 

design method using for a two-degree-of-freedom system will be presented. The existence 

of 3 fixed-points in frequency response curves of body acceleration is examined. By 

choosing the optimal position of these 3 points, designers are able to design the optimal 

parameters for suspension systems. Second, the new design method which utilized control 

theory in optimizing parameters of suspension system will be established, this new design 

method views design problem from the view of feedback control, therefore, parameters 

selection and optimization of a passive suspension system become a control problem. 

2.1 Classical Design Method via Fixed-Points 

Theory

The proposed two-degree-of-freedom system has multiple masses m1, m2 and they are 

connected in series by springs k1, k2 and dampers c1, c2 as illustrated in Fig. 2.1. train 

wheel displacement x0 takes the role of excitation. x1, x2 are vertical translational motions 
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of bogie and body respectively.

The equations of motion can be written as:

1 1 1 1 1 1 2 1 2 2 2 1 2 2 1 0 1 0m x k x c x k x k x c x c x k x c x           

2 2 2 1 2 2 2 1 2 2m x k x k x c x c x      (2.1)

where x0 is displacement which is generated by rail tracks error: x0 = a0sint.

General speaking, a good suspension should provide a comfortable ride and good 

handling within a reasonable range of deflection. Moreover, these criteria subjectively 

depend on the purpose of the vehicle. For example, a freight vehicle driver will accept a 

relatively hard ride as a compromise for high speed handling and safe fast cornering. But 

the same ride would be intolerable for the passengers of a Pullman vehicle. 

Normally, the stiffness of springs is chosen based solely on the weight of the vehicle, 

while the damper is the component that defines the suspension’s placement on the classic 

suspension compromise curve in Fig. 2.2. Ideally, the damper should isolate passengers 

from low-frequency tracks disturbances and absorb high-frequency tracks disturbances. 

Passengers are best isolated from low-frequency disturbances when the damping is high. 

However, high damping provides poor high frequency absorption. Conversely, when the 

damping is low, the damper offers sufficient high-frequency absorption, at the expense of 

c1  k1

  k2 c2

x2

x1

x0

Mass Body m2

Mass Bogie m1 

   Fig. 2.1. Two-DOF suspension system model
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low-frequency isolation. 

If we just consider how to reduce the vibration of vehicle’s body, we should choose the 

spring as soft as possible. However, it will be dangerous when driving. In designing 

passive suspension of commercial railway vehicles, the stiffness of primary k1 can be 

defined roughly 2～2.5MN/m for 1 axle (15). c1, c2, k2 are parameters which need to be 

designed. 

Given parameters of scale model of railway vehicle are shown in Table 2.1.

Table 2.1 Given parameters of railway vehicle

m1 3,000 Kg

m2 20,000 Kg

k1 2,200,000 N/m

By applying fixed-points theory we can choose optimally values of c1 and k2, this 

method is based on the existence of three fixed-points in frequency response curves of 

body displacement. To exist three fixed-points in frequency response curves, designer have 

to consider which dampers are main dampers then neglect auxiliary dampers (2). 

In our case, m1 << m2 hence, c1 is chosen as damping of main dampers and c2 is 

damping of auxiliary dampers. For this reason we can neglect auxiliary dampers, thus 

High Damping 

Fig. 2.2. Relationship between ride comfort and vehicle stability

Ride comfort

Low Damping 

Vehicle stability
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damping of auxiliary dampers c2 = 0 then 2 0   ( 2
2

2 1

c

m



 )

By solving the equation of motion (2.1) with 2 0  , acceleration of vehicle body can be 

defined as following equation (2).

         

2 2 2 2 4
1

24 2 2 2 2 2
1

2

2
0 1

(1 )

[ {1 (1 ) } ] ( )

a
a

   
        




  
 

      
(2.2)

where a2 is the acceleration of vehicle body, a is the displacement of vehicle body, a0

is maximum amplitude of excitation x0 and 

1 2 1 1
1 1

2 1 2 1 1 2

; ; ; ;
m k c k

m k m m

    
 

    

From Eq. (2.2) we can plot the frequency response curves of body acceleration, as

shown in Fig. 2.3. There are three fixed-points P1, Q and P2 and all curves will go through

these three fixed-points. 

If ratio of k2 to k1 increases, then altitude of point P1 will be decreased and at Q will be 

increased. Therefore, the optimal value of ratio of k2 to k1 will exist when the altitudes of 

these two points are the same level as shown in Fig. 2.4. 

To get optimally the value of 1, we choose the mean value of 1 so that curve reaches 

maximum altitude at P1 and Q. From the optimal values of  and 1 we can define the 

parameters of k2 and c1

According to condition of minimizing the body frequency response curve at frequency 

of Q when the system doesn’t have auxiliary damper (2), we can define the damping 

coefficient of secondary damper c2 by following equation:

2

2 2 2

2 1 1 1

1

1 1 1 1 1 1 1 4
1 (1 ) 1 (1 )

2 (1 ) 1 1 (1 ) 1 1 1

    
         

         
   

          
      

                        

with 2
2

2 1

c

m




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By choosing the optimal positions of these three points, designers are able to design 

Fig. 2.4. Frequency response curves with optimal value of   
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Fig. 2.3. Three fixed points in frequency response curves
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f

optimal parameters of suspension system.

Designed results by using fixed-points theory are shown in Table 2.2.

Table 2.2 Design results by using fixed-points theory

c1 216,960 Ns/m

c2 52,906 Ns/m

k2 3,576,600 N/m

2.2 Design Problem in the View of Control Theory

This section examines the design of a passive suspension in the view of designing a 

controller with structured static output feedback. The feedback gains are generated by the 

springs and damping elements which need to be designed. The closed-loop inputs are the 

track disturbances and the closed-loop outputs are the performance indices.

2.2.1 Problem Formulations

By examining the design problem from the view of feedback control, the springs 

feedback the relative displacements locally, the damping elements feedback the relative 

velocities locally, and the control forces are generated by springs and dampers which need 

to be designed (4). 

The equations of motion in matrix form can be written as: 

p vMX KX CX Eu F f F f                           (2.3)

where: M, K, C are positive definite equivalent mass, stiffness and damping matrices 

respectively, u is control force which is generated by the springs and damping elements to 

be designed, f and  are vectors of displacement excitations and velocity excitations, Fp

and Fv are positive definite stiffness of equivalent springs and damping of equivalent 

dampers matrices which connect between our suspension system and excitation base

By defining the state variable as:

1 T

s vx X X M F f                             (2.4)
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The equation of motion can be written in state-space form as:

1 2s sx Ax B f B u                               (2.5)

where 

 
1

1 21 11 1 1

00
; ; ;

v

p v

M FI
A B B

M F CM FM K M C M E



   
  

 

    
        

The vector of “measured” output Y can be written as: 

2 21sY C x D f                            (2.6)

We can write the vertical displacement of train body as an output vector z, which can be 

expressed in the form:

1 11sz C x D f                             (2.7)         

where 1 2 11 21
; ;C GC D GD 

The forces generated by the suspension springs and dampers are determined from Y

according to: su K Y  where the “feedback gain” Ks is a decentralized matrix 

(block-diagonal) composed of the suspension parameters to be optimized. 

Equations (2.5), (2.6) and (2.7) cast the design of suspension system of train as a 

decentralized control problem, as indicated by the diagram shown in Fig. 2.5. Based on 

this formulation, we use decentralized control techniques H to directly optimize the 

stiffness and damping coefficients of springs and dampers to achieve performance 

(measured by z) under the disturbance of  f.  The goal of solving this problem is to 

determine the feedback law:

su K Y                              (2.8)
The feedback gain Ks is a decentralized matrix composed of the parameters to be 

designed, and all parameters of springs and dampers which need to be designed are 

designable by determining Ks.
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2.2.2 H Control Theory and H Control Problem 

Based on BMI

The H control problem is defined as follows (10).

Definition 1: Given a scalar  > 0. The controller Ks is a “H controller”, if two 

following conditions are met: 

 The closed loop system is asymptotically stable.

 zfG 



where zfG


is the H norm (the maximum gain from f to z) of the General Plant (Fig. 

2.6).

The H norm of an LMI system Hzf is the gain of input energy to output energy. For 

D11
z

Fig. 2.5. Block diagram of feedback control system

B1

B2

Ks

A

C2
s

1u xs

f
D21

Y

C1

G

Ks

y

  Fig. 2.6. General plant

f z

u
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multi-input-multi-output linear time invariant systems, it is the supreme of the largest 

singular value over all frequencies (4). Minimizing the H norm of the system is equivalent 

to suppressing the peak of the magnitude of the frequency response. 

2 2

max

max

sup ( ( ))

sup ( '( ) ( ))

zf
R

R

H H j

H j H j





 

  





 



The following theorem is a link between H optimization and LMIs (4).

Theorem: The continuous-time LMI system (A, B, C, D) is stable and the L2 gain is less 

than ,  if and only if there exists some symmetric matrix X such that:

' '

' ' 0

0

A X XA XB C

B X I D

C D I

X







 





 
 
 
  

From Eqs. (2.5), (2.6) and (2.7), the generalized plant is derived as: 

1 2

2 21

1 11

0

0

A B B

G C D

C D



 
 
 
  

The closed-loop system from f to z can be written in the standard form:

s s

s

x x f

z x f

  

   



where the closed-loop system is given by

Substituting the closed-loop system into above theorem, our problem is expressed as 

follows:

The continuous-time LMI system (, , , ) is stable and the Ks gain is less than  if 

and only if there exists some symmetric matrix S such that:

2 2 1 2 21

1 11

s sA B K C B B K D

C D

     
       
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' '

' ' 0

' 0

0s

S S S

S I

I

S S

K





    

   

  

 



 
 
 
  

                 (2.9)

Static decentralized control turns out to be a BMI problem. Generally BMI problems 

are not convex and have multiple local solutions (11) and it is not solvable in polynomial 

time. Hence, solving BMI problems is more complex than Linear Matrix Inequality (LMI). 

Many methods were proposed to search for the local minima of BMI. The easiest method 

to implement for solving BMI problem that is alternative minimization algorithm, this 

method is based on iterative schemes of alternation between analysis and synthesis via 

LMIs. It will transform the BMI problem to LMI problems, which can be solved easily via 

LMI solver (12),(13). However, this algorithm might converge very slowly and even stop at a 

non-stationary point. The choice of initial values is important for convergence so that an 

acceptable solution could be achieved.

Alternative Algorithm 

Starting with a stabilized Ks and repeat OP1 and OP2 until  can no longer decrease (3)

in the alternative algorithm.

OP1: Fix Ks, minimize  over the S, subject to constraints (2.9).

OP2: Fix S, minimize  over the Ks, subject to constraints (2.9).

Since Ks and S are fixed in Eq. (2.9) and OP1 and OP2 become LMI problems, it can be 

solved easily by LMI solver. The alternative minimization will generate a decreasing 

sequence of , and it works well in most practical problems. 

2.3 Summary

This chapter provides two methods of design a two-degree-of-freedom passive 

suspension system: a classical method which utilities fixed-points theory in optimizing 

parameters and a new method which utilities control theory in optimizing parameters. 

In the beginning of this chapter, author presented classical design method via 
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fixed-points theory. This section explained to readers some limitations of classical design 

method such as: it is complicated, the design results usually depend on the designer’s 

experiences and this method could not be applied for complex systems that have more than 

2 degree-of-freedoms. Since the classical fixed-points theory is no longer applicable to the 

design of a passive suspension system, other design methods are necessary to develop and 

replace it. In the ending of this chapter a new design method via control theory is 

established, passive suspension design is equivalent to design of a controller with 

decentralized architecture and additional constrains on the symmetry of the vehicle and the 

ranges of the design parameters, therefore, many difficult problems in passive mechanical 

systems become tractable in the framework of structural control. This chapter reveals that 

applying control theory in designing a passive suspension system is one of solutions to 

avoid foregoing limitations of classical method.
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Chapter 3

Two-DOF Passive Suspension 

System via Control Theory

This chapter provides the design result of two design methods conducted in this study 

in the case the system has two-degree of freedom. By giving a comparison between the 

results of two methods, this chapter will express the weak and strong points of two

mentioned design method.

3.1 Problem Formulations

Equation (2.1) can be written as:

0 0p vMX KX CX Eu F x F x                     (3.1)

where: M, K and C are positive definite mass, stiffness and damping matrices 

respectively, u is control force generated by the springs and damping elements which need 

to be designed, k1 is considered as a given parameter and 
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By defining the state variable as:

0

1 T

vsx X X M F x    .

The equation of motion can be written in state-space form as:

1 20s sx Ax B x B u                        (3.2)
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Based on the geometry of the train model, we write the vector of “measured” outputs, 

the relative displacements and velocities at the suspension connections as a linear 

combination of the states and inputs, that is: 

2 21 0sY C x D x                              (3.3)

where 2 ;
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The vertical displacement of train body x2 is output vector z, which can be expressed in 

the form:

1 11 0sz C x D x                             (3.4)          

where 1 2 11 21
; ;C NC D N D   0 1 0 0N 

The forces generated by the suspension springs and dampers are determined from Y

according to: su K Y where the “feedback gain” Ks is a decentralized matrix 

(block-diagonal) composed of the suspension parameters to be optimized. In this problem 

Ks is shown as:
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 2 2 2 2
diagsK k k c c                  (3.5)

Equations (3.2), (3.3) and (3.4) cast the design of the suspension system of train as a 

decentralized control problem, as indicated by the diagram (9) shown in Fig. 2.4. Based on 

this formulation, we use decentralized control techniques H to directly optimize the 

stiffness and damping coefficients of springs and dampers to achieve performance 

(measured by z) under the excitation of x0.  The goal of solving this problem is to 

determine the feedback law: 

su K Y                          (3.6)

The feedback gain Ks is a decentralized matrix composed of the parameters to be 

designed, and all parameters of springs and dampers which need to be designed are 

designable by determining Ks. 

3.2 Design of Two-DOF Passive Suspension 

System of Railway Vehicle

Given parameters of scale model of railway vehicle are shown in Table 3.1. Parameters 

of primary stage of railway suspension system are determined by classical method. 

Table 3.1 Given parameters of railway vehicle

m1 3,000 (Kg) m2 20,000 (Kg)

k1 2,200,000 (N/m) c1 216,960 (Ns/m)

To solve BMI problems by alternative algorithm, we have chosen initial values for the 

alternative algorithm. In this design problem, the initial values are the parameters which 

are optimized by using fixed point theory (Table 2.2).

Start with a stabilizing Ks and repeat OP1 and OP2 until  can not decrease any more 

then by the results of obtained iterations when  does not decrease, we obtain the final 

parameters. Final design parameters are shown in Table 3.2.
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Table 3.2 Final design parameters

k2 2,181,700 (N/m) c2 237,660 (Ns/m)
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Figures 3.1, 3.2 show frequency responses and unit-step responses of train body when 

suspension system were designed by classical method and new method.

The dash-curve is the frequency response of system with parameters which were 

designed by using classical method (fixed-points theory). 

Solid-curve is the gain of frequency response of system with final parameters which 

was designed by decentralized H∞ optimization. 

Dot-curve is the frequency response of system with parameters which were designed by 

using classical method in the case no damping in secondary stage of railway suspension 

system. 

Dash dot-curve shows the frequency response of suspension system in the case of no 

dampers in both stage of railway suspension system.

It can be observed that the peak of solid-curve is the lowest peak comparing to other 

curves, Fig. 3.2 also demonstrates that the suspension system designed by decentralized H∞

optimization can absorb vibration energy faster than classical method. 

From these figures, we can see that the performance of suspension system which was 

designed by control theory is significantly better than that of the designed system by 

classical method.

3.3 Summary
This chapter presented and compared the design results of two design methods 

mentioned in chapter 2, when our passive suspension system has two-degree of freedom. 

In new design method, design problem turns into BMI problem and it was solved by 

using alternative algorithm. The initial values for alternative algorithm are the values of 

parameters which are optimized by using fixed point theory. It has been clear that the 

results of design by using classical method are quite close to optimal parameters. Thus, this

algorithm converges quickly.

This chapter has been shown that the peaks of frequency response curve which was 

plotted by using result of new method are lowest at resonance frequency. It proved that the 
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result of design by using control theory was better than classical method. In other words, 

the performance of this system which was designed by control theory is significantly better 

than that of the designed system by classical method. 
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Chapter 4

Six-DOF Passive Suspension 

System

This chapter proposes a design method of six-degree-of-freedom passive suspension 

system by utilizing feedback control theory mentioned in chapter 2. By investigating a 

passive suspension system with six-degree-of-freedom, this chapter wants to express that

the degree of freedom of system can be increased until the model approaches to real-life 

situations. This is one of strong points of applying control theory in design passive 

suspension system compared to classical design method.

4.1 Problem Formulations

The design problem of the proposed six-degree-of-freedom system has multiple masses 

m0, m1, m2 and they are connected in series by springs k0, k1, k2 and dampers c0, c1, c2 as 

illustrated in Fig. 4.1. xtr1 and xtr2 are displacements of rail tracks excitations, l is standard 

distance between rail tracks. In this model, the motion of train body, bogie and wheel-axles
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f

can be simultaneously translational and rotational in two-dimensional space. x01, x02, x1, x2, 

x3, and x4 are translational motions at wheels, at sides of bogie and side of body 

respectively. J0, J1 and J2 are inertia moments of wheel-set, bogie and body respectively. 

By examining the design problem from the view of feedback control, the springs feed

back the relative displacements locally, the damping elements feed back the relative 

velocities locally, and the control forces are generated by springs and dampers which need 

to be designed (4). From this point, the equations of motion can be written as: 

p vMX KX CX Eu F f F f                         (4.1)

where M, K, C are positive definite equivalent mass, stiffness and damping matrices 

respectively, u is control force generated by springs and dampers which need to be 

designed, f and  are vectors of displacement excitations and velocity excitations and
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The vector of “measured” output Y can be written as:

2 21sY C x D f                           (4.4)

We can write the vertical displacement of train body (x3 and x4) as an output vector z,

which can be expressed in the form:

 3 4 1 11

T

sz x x C x D f                      (4.5)  

where: 

   1 2 11 21
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The forces generated by the suspension springs and dampers are determined from Y

according to: su K Y  where the “feedback gain” Ks is a decentralized matrix 

(block-diagonal) composed of the suspension parameters to be optimized. In this problem 

Ks is shown as:

 
1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2

diagsK k k k k k k k k c c c c c c c c

Equations (4.3), (4.4) and (4.5) cast the design of the suspension system of train as a 

decentralized control problem, as indicated by the diagram (9) shown in Fig. 2.4.

Based on these formulations, we use decentralized control techniques H to directly 

optimize the stiffness and damping coefficients of springs and dampers to achieve 

performance (measured by z) under the disturbance of  f.  The goal of solving this 

problem is to determine the feedback law: 

su K Y                            (4.6)

The feedback gain Ks is a decentralized matrix composed of the parameters to be 

designed, and all parameters of springs and dampers which need to be designed are 

designable by determining Ks. 
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4.2 Design of Six-DOF Passive Suspension 

System of Railway Vehicle

Given parameters of scale model of railway vehicle are shown in Table 4.1.

Table 4.1 Given parameters of scale model of railway vehicle

m0 3,500 (Kg) J0 5,000 (Kgm2)

m1 3,000 (Kg) J1 4,000 (Kgm2)

m2 20,000 (Kg) J2 60,000 (Kgm2)

c0 100,000,000 (Ns/m) k0 1,000,000,000 (N/m)

To solve BMI problems by alternative algorithm, we have chosen initial values for the 

alternative algorithm. Initial values for alternative algorithm are shown in Table 4.2.

Table 4.2 Initial values for alternative algorithm

k1 2,200,000 N/m c1 216,960 Ns/m

k2 3,576,600 N/m c2 52,906 Ns/m

Start with a stabilizing Ks and repeat OP1 and OP2 until  can not decrease any more 

then by the results of obtained iterations when  do not decrease, we obtain the final 

parameters (14). 

Final design parameters are shown in Table 4.3.

Table 4.3 Final design parameters

k1 1,783,000 N/m c1 217,000 Ns/m

k2 1,614,800 N/m c2 45,200 Ns/m

Figures 4.2, 4.3, 4.4 and 4.5 show four frequency response outputs corresponding to 

two inputs respectively. The dash curves are the frequency response of system with 

parameters which were designed by using classical method (fixed-point theory). Solid 

curves are the gain of frequency response of system with final parameters which was 

designed by decentralized H∞ optimization. Dot curves are the gain of frequency response 
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of system in the case of system has no dampers in both stages.
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Our model is symmetric thus the outputs also have symmetric property. Therefore, we 

can see that Fig. 4.2 looks like Fig. 4.5 and Fig. 4.3 looks like Fig. 4.4.

The displacement at right side of train body is the combination of x3(s) excited by xtr1(s)

and x3(s) excited by xtr2(s) and at the left side of train is the combination of x4(s) excited by 

Fig. 4.5. Gain of frequency response of x4(s)/xtr2(s)
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xtr1(s) and x4(s) excited by xtr2(s).

The goal of this design is the selection of parameters of system so that the peaks of 

frequency response curve at resonance frequency are lowest. 

From these figures, we can obviously see the peaks of solid curves are lower than dash 

curves. This shows that the results of design by using control theory are better than 

classical method. In other words, the performance of this system which was designed by 

control theory is significantly better than that of the designed system by classical method. 

4.3 Summary

By investigating a passive suspension system with six-degree-of-freedom, this chapter 

wants to confirm that the degree of freedom of system can be increased until the model of 

passive suspension system approaches to real-life situations of degree of freedom. 

Moreover, it has been shown by simulations that the peaks of frequency response curve 

which was plotted by results of new method are lowest at resonance frequency. It shows 

that the performance of this system which was designed by control theory is significantly 

better than that of the designed system by classical method.

On the other hand, the limitation of applying control theory in design suspension 

systems is solving BMI problems. Although this BMI problem can be solved by using 

alternative algorithm, but none of the algorithms can be guaranteed to converge to a local 

optimum or a stationary point, it depends on the choice of initial values. Its convergence 

maybe very slow or even never happens. In this chapter, the initial values for alternative 

algorithm in solving BMI problems also are the values of parameters which are optimized 

by using fixed point theory. Therefore, the algorithm may converge quickly.

This chapter elucidated clearly the strong and weak points of applying control theory in 

design passive suspension system of multi-degree-of-freedom and compared to classical 

design method.
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Chapter 5

Robust design with Two States 

of Two-DOF Passive Suspension 

System

One of the important factors to be considered in designing an engineering system is 

uncertain parameters of system, which emanates from natural randomness, limited data, or 

limited knowledge of systems. Designing a system that provides a good operation in most 

common uncertain parameters of the passive suspension system is required. This chapter 

proposes a design method of two-degree-of-freedom passive suspension system with 

robust performance in two states of body, full and empty load. The passive suspension 

system is also investigated from the view of feed back control theory. This chapter also

confirms to be able to design the two-degree-of-freedom passive suspension system with 

robustness by using control theory in particular and ability of utilizing control theory in 

design robustness of multi-degree-of-freedom passive suspension system in general. This 
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is one of strong points of applying control theory in design passive suspension system 

comparing to classical design method.

5.1 Problem Formulations

The proposed model of half railway suspension system has multiple masses: bogie 

mass m’ and body mass m1, m2 corresponding to state 1 and state 2 as illustrated in Fig. 

5.1. These mass are connected in series by springs k1, k2 and dampers c1, c2. x0 is 

displacement of rail track excitation. 

In this model, the motion of train body, bogie and train wheel can be simultaneously 

translational up and down in paper space. x'i, xi are translational motions at bogie and body 

respectively. 

The equations of motion in the state i can be written as: 

0 0i i i i i p vM X KX CX Eu F x F x      

where: Mi, Ki, Ci are positive definite equivalent mass, stiffness and damping matrices 

of state i respectively, ui=KkYi is control force, x and x are vectors of velocity excitations 

and displacement excitations:
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Fig. 5.1. Two states of mass of proposed system
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;i k iu K Y
1 1 1 1

1 1 1 1
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 
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 
2 2 2 2

diag ;kK k k c c   ;' '
T

ii i i iY x x x x  

Designing with robustness performance is examined in the change of body weight 

corresponding to state 1 and state 2 of vehicle load. 

The equations of motion for these two states can be rewritten as:

                 0 0s s s s ps vsM X K X C X E u F x F x       (5.1)

where 
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            2

1
;

Y
Y

Y
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;cu K Y  1 2 ;
T

Y Y Y diag( );k kcK K K

By defining the state variable as:

1
0

T

s s vsx X X M F x    (5.2)

The equation of motion can be written in state-space form as:

1 20s sx Ax B B ux     (5.3)

where  1 2

1

1 1 11 1

0 0
; ;

s vs

s s s s s ss ps s s vs

I M F
A B B

M K M C M EM F C M F



   
  

  

    
    

     

We write the vector of “measured” outputs, with the relative displacements and 

velocities at suspension connections as a linear combination of the states and inputs, that 

is: 

           
2 21 0sY C x D x                (5.4)
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where     
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We can write the vertical displacement of train body in two states (x1, x2) as an output 

vector z, which can be expressed in the form:

1 11 0sz C x D x              (5.5)

where:

1 2 11 21; ;C GC D G D 
0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0
;G

 
  

The forces generated by the suspension springs and dampers are determined from Y

according to: u = KcY where the “feedback gain” Kc is a decentralized matrix 

(block-diagonal) composed of the suspension parameters to be optimized. In this problem 

Kc is shown as:

    diag k kcK K K                 (5.6)

Equations (5.3), (5.4) and (5.5) cast the design of the suspension system of train as a 

decentralized control problem, as indicated by the diagram shown in Fig. 2.4. Based on 

this formulation, we use decentralized control techniques H to directly optimize the 

stiffness and damping coefficients of springs and dampers to achieve performance 

(measured by z) under the disturbance of x0.  The goal of solving this problem is to 

determine the feedback law: 

cu K Y   (5.7)

The feedback gain Kc is a decentralized matrix composed of the parameters to be 
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designed, and all parameters of springs and dampers which need to be designed are 

designable by determining Kc. 

5.2 Robust Design of Two-DOF Passive 

Suspension System of Railway Vehicle with Two 

States

Given parameters of scale model of railway vehicle are shown in Table 5.1.  The 

parameters of primary stage were determined by classical method.

Table 5.1 Given parameters of railway vehicle

m'’ 3,000 Kg k1 2,200,000 N/m

m1 14,000 Kg c1 201,080 Ns/m

m2 20,000 Kg

To solve BMI problems by alternative algorithm, we have chosen initial values for the 

alternative algorithm. In our problem initial values are the values which are optimized by 

using fixed point theory in above classical design method. Initial values for alternative 

algorithm are shown in Table 5.2. 

Table 5.2 Initial values for alternative algorithm

k2 3,459,500 N/m c2 55,799 Ns/m

Start with a stabilizing Ks and repeat OP1 and OP2 until  can not decrease any more 

then by the results of obtained iterations when  does not decrease, we obtain the final 

Gstate2

Kc

   Fig. 5.2. Concept of block diagram of proposed system

Gstate1
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parameters (14). Final design parameters are shown in Table 5.3.

Table 5.3 Final design parameters

k2 3,555,300 N/m c2 82,100 Ns/m

Figures 5.3, 5.4 show frequency response outputs corresponding to two states of model. 

The two solid-curves are the frequency responses of system in state 2 with parameters 

which were designed by using classical method (higher curve) and with parameters which 

were designed by using control technique (lower curve). Two center-curves are the 

frequency responses of system in nominal state with parameters which were designed by 

using classical method (higher curve) and with parameters which were designed by using 

control technique (lower curve). Two dash-curves are the frequency responses of system in 

state 1 with parameters which were designed by using classical method (higher curve) and 

with parameters which were designed by using control technique (lower curve).
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The goals of this design is the selection of parameters of system so that the peaks of 

frequency response curve at resonance frequency are lowest and also prove that by 

applying control theory, robust design of passive suspension system can be performed 

easily with multi-degree-of-freedom and in multi-states of system. 

From these figures, we can obviously see the peaks of curves which have parameters 

designed by control technique are lower than the curves which have parameters designed 

by classical method in the case of nominal mass. The performance of this system which 

was designed by control theory is significantly better than that of the designed system by 

classical method in the case of nominal mass.

5.3 Summary

This chapter proposes a design method of two-degree-of-freedom passive suspension 

system with robustness performance in two states of body, full and empty load. The 
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passive suspension system is also investigated from the view of feed back control theory. 

This chapter confirms to be able to design the passive suspension system with robustness 

performance by using control theory, not only in design the multi-degree-of-freedom

passive suspension system. This is one of strong points of applying control theory in 

design passive suspension system comparing to other methods.
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Chapter 6

Conclusions and 

Recommendations

The purpose of this chapter is to summarize this thesis and to determine weak and 

strong points of each method that was utilized.  The chapter ends with recommendations 

for future work in the field of railway vehicle suspensions.

Conclusions and Recommendations

This study focuses on design of passive suspension systems of railway vehicle. Chapter 

2 and chapter 3 provide two design methods and its application in two-degree of freedom 

passive suspension system: a classical method which utilities fixed-points theory in 

optimizing parameters and a new method which utilities control theory in optimizing 

parameters. In new design method, passive suspension design is equivalent to design of a 

controller with decentralized architecture and additional constrains on the symmetry of the 

vehicle and the ranges of the design parameters, therefore, many difficult problems in 
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passive mechanical systems become tractable in the framework of structural control. These 

chapters show that applying feedback control theory in designing a passive suspension 

system is one of solutions to avoid foregoing limitations of classical method. By giving a 

comparison between the results and applicable abilities of two methods, these chapters

expressed the weak and strong points of each method. 

Chapter 4 presents an applicable ability of new method in design passive suspension 

system of six-degree-of-freedom. By investigating a passive suspension system with 

six-degree-of-freedom, this chapter proves that the degree of freedom of system can be 

increased until the model approaches to real-life situations. This is one of strong points of 

applying control theory in design passive suspension system comparing to classical design 

method. 

With the purpose of optimization in design a passive suspension system is to suppress

the peaks of the magnitude of the vehicle body’s frequency response at resonance 

frequency. We can see that the performance of system which was designed by control 

theory is significantly better than that designed by classical method.

At high frequency range, we can not avoid that the performance of system which is 

designed by new method is worse than performance of system which is designed by 

classical method and even worse than performance of system has no dampers, because this 

method just suppresses the peaks of frequency response curve at resonance frequency but 

does not in all frequency range.

Chapter 5 discusses about an important factor in designing an engineering system is 

uncertainty of some parameters, which emanates from natural randomness, limited data, or 

limited knowledge of systems. Thus designing a passive suspension system that provides a 

good operation in most common uncertain parameters of the passive suspension system is 

necessary to develope. This chapter proposes a design method of two-degree-of-freedom

passive suspension system with robust performance in two states of body weight, full and 

empty load of body. The passive suspension system is also investigated from the view of 

feed back control theory. This chapter confirms to be able to design the 

two-degree-of-freedom passive suspension system with robustness by using control theory 

in particular and ability of utilizing control theory in design robustness of 
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multi-degree-of-freedom passive suspension system in general. This is also one of strong 

points of applying control theory in design passive suspension system comparing to 

classical design method.

With our proposed robust design method, two equations of motion that express these 

states were extended as one control object and one controller designed by the static output 

H feedback control theory controlled the extended model. Thus, the designed suspension 

system could be controlled two simultaneous states, and suspension system had robustness 

performance about two states.

On the other hand, the limitation of applying control theory in design suspension 

systems is solving BMI problems. There are many researchers in control community have 

investigated the decentralized H optimization and various techniques have been proposed 

to search for the local minima of BMI problems but none of the algorithms can be 

guaranteed to converge to a local optimum or a stationary point, it depends on the choice 

of initial values, its convergence was slow or even never happens. In this paper, the BMI 

problems were solved by using alternative algorithm, the initial values for alternative 

algorithm are the values of parameters which are optimized by using fixed point theory. It 

has been clear that the results of design by using classical method are quite close to 

optimal parameters. Therefore, the algorithm may converge quickly.

For further research it is necessary to develop a new algorithm that can search for the 

local minima of BMI problems and it need to be guaranteed to converge to a local 

optimum.
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