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Chapter 1

Introduction

In electronics, there are several devices with periodic structure such as metal parallel lines on the

integrated circuits and LCD(liquid crystal displays) electrodes. However, such periodic structure

often has defects due to inaccurate fabrications. Therefore, measurement and inspection of

defects are essential to control manufacturing processes. To develop a real-time non-destructive

measurement, optical methods making use of the scattering from defects are important. These

periodic structures of electronic devices mentioned above can be modelled as rectangular grooves

formed on the surface and defects where grooves are not formed. However, there has not been

studied the scattering from a periodic structure with defects. From a standpoint of analysis, a

single groove or a finite number of grooves can be considered as a finite number of scatterers.

Further, a periodic structure has an infinite number of scatterers, however, diffraction from a

periodic structure results in a problem of a single scatterer by use of describing the wavefield

in the Floquet form of solution. Thus, numerical analysis is available as a single scattering

problem. On the other hand, when there are defects in periodic structure, it is necessary to

take an infinite number of scatterers into account. Due to this aspect, numerical approaches

may have difficulties. Therefore, this thesis proposes a new theory of analysis on diffraction and

scattering from a periodic surface with defects.

On another front, recent digital recording devices, such as CD (compact discs) and DVD

(digital versatile discs), have been widely used. Such devices store binary random data by

periodically located surface deformations, which can be modelled as periodic surfaces with binary

fluctuations. Since such a binary random surface is manufactured by known binary data, its

surface profile is known, while it is difficult to know statistical properties of natural random

surfaces exactly. Such manufactured periodic random surfaces may be used as a ’standard

scatterer’ with known statistical properties of fluctuations. Thus, analysis of diffraction and

scattering from such binary periodic random surfaces has been an important subject. They are

theoretically interesting because the diffraction due to the periodicity, the incoherent scattering

due to the fluctuation and the interaction between such diffraction and scattering may occur.

Also, because of binary fluctuations, the properties of the scattering may differ from the Gaussian

fluctuation case. Moreover, it is necessary to study such optical properties of such binary periodic

random surfaces for higher density storage on recording devices. There have been some works

on diffraction and scattering from periodic random surfaces [1–8], however, only a few studies on

such binary fluctuations of periodic random surfaces have been carried out by a single scattering

approximation. Thus, this thesis proposes a theoretical approach involving effects of multiple

scattering.

Under these circumstances, this thesis theoretically studies diffraction and scattering from

1



2 Ch.1 Introduction

(1) flat surface (2) single groove (3) homogeneous random surface

(4) corrugated periodic surface (5) periodic grooves

(6) corrugated periodic surface with a finite extent (7) periodic grooves with a finite extent

Figure 1.1 Types of surfaces: (1) flat surface, (2) single groove, (3) homogeneous
random surface, (4) corrugated periodic surface, (5) periodic grooves, (6) corrugated
periodic surface with a finite extent, (7) periodic grooves with a finite extent.

periodic surfaces with binary fluctuations aiming at developing methods of optical measurement

and inspection of defects in the periodic structure. We study two types of binary fluctuations:

one is the case of single defect in the perfectly periodic array of rectangular grooves. This can

be considered as the simplest case of defects in the periodic structure. We discuss it from a

standpoint of the electromagnetic theory. The other is the case of binary fluctuations on the

height parameter, that is, a boss and pit appear randomly with equal probability. To clarify

effects of these binary fluctuations on the optical properties of the diffraction and scattering,

we treat two-dimensional problems and take a plane wave incidence. Then, several numerical

results of these problems are described and illustrated in figures.

1.1 Diffraction and scattering by rough surfaces: A brief review

In this section, we briefly review the preceding studies on wave diffraction and scattering from

rough surfaces. Some types of rough surfaces are drawn in Figure 1.1.

When a plane wave is incident on a flat surface or a flat boundary between two media,

reflection and refraction take place following the law of reflection and Snell’s law(See Figure

1.1(1)). When the surface is perfectly conductive and flat, only the specular reflection takes
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height parameter

(1)−a fluctuations of random height parameter

σ

local surface profile with periodL L

(1)−b fluctuations of discrete height parameter

− binary random height −

σ

−σ L

(2) displacement of a local profile

displacement 

with constant period

(3) fluctuations of width of the grooves

L L L

(4) defects where grooves are not formed

defects

w w′

ε ε′

L

Figure 1.2 Types of fluctuations of periodic surfaces: (1)-a fluctuations of random
height parameter, (1)-b fluctuations of discrete height parameter (binary random
height), (2) fluctuations of period of the surface, (3) fluctuations of width of the
groove, (4) defects where gooves are not formed.

place. If a single groove is formed on the flat surface, the groove generates scattering to all

directions(See Figure 1.1(2)). Such a scattering has been analyzed by several authors [9–12]

for estimation of crack depth and other aims. There are also works on scattering from a finite

number of rectangular grooves [13, 14].

On the other hand, scattering from homogeneous random surfaces(See Figure 1.1(3)) has

been studied by many authors, since sea and land surfaces are randomly rough. For analysis,

the Kirchhoff approximation, the perturbation method, the multiple scattering approach among

others [15–18] have been developed. Ogura and Nakayama developed a probabilistic method

called the stochastic functional approach [19–25], in which the scattered wave is assumed to be

a functional of a random surface.

As another type of rough surface, however, periodic surfaces have attracted interests of the

researchers [27–34], because periodic surfaces work as diffraction gratings. When a corrugation

of surface appears repeatedly(See Figure 1.1(4)) or grooves are formed with an equal interval(See

Figure 1.1(5)), such surfaces can be assumed to have periodicity. We may call such deformation of

the surface for one period ‘a local profile’. From such a periodic surface, the incident wave may be
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diffracted into discrete directions. Further, Nakayama et al. have been studied periodic surfaces

with a finite extent (See Figure 1.1(6) and (7)) by use of periodic Fourier transform [35–42], and

an expression of the scattered wavefield from such surfaces with a finite extent is obtained. Due

to the finite extension of the local surface profile, the incident wave is scattered to all directions,

however, the scattered wave becomes strong into the directions of diffraction with the period as

the extension of the local profile spreads.

These types of rough surfaces mentioned above have been extensively studied. Actually, real

periodic surfaces are not ideal and imperfect, and there often have fluctuations due to inaccurate

manufacturing or varying conditions in manufacturing processes. Thus, it becomes necessary

to study diffraction and scattering from such periodic surfaces with fluctuations, however, there

has not been many works on analysis of diffraction and scattering from periodic surfaces with

fluctuations.

Fluctuations of the periodic surfaces could be classified into several types:

(1) height or depth of the local profile

a. fluctuations of random height parameter

b. fluctuations of discrete height parameter such as binary random height

(2) displacement of a local profile

(3) width of the groove or boss

(4) defect where a local profile is not formed

among others. These types are illustrated in Figure 1.2. Studies on fluctuations of random

height parameter of the surface, (1)-a in Figure 1.2, have been reported in the case of Gaussian

random fluctuations by J.Nakayama and L.Gao [7,8], and those on fluctuations of displacement

of a local profile, (2) in Figure 1.2, for a volume disorder (dislocations of periodically located

many particles in a dielectric medium) by M.Tateiba [43]. However, there are few works on

binary fluctuations in the height parameter and studies on defects in the periodic structure have

been accomplished.

A periodic random surface with binary random height, (1)-b in Figure 1.2, has binary fluc-

tuations, which we call a binary periodic random surface. We assume that a binary periodic

random surface is generated by a stationary binary sequence and obtain the wavefield from such

a periodic random surface by use of a probabilistic approach. From a viewpoint of analysis, it

is essentially important to distinguish the cases whether the ensemble average of the periodic

random surface is periodic or becomes flat with zero average. A binary periodic random surface

was first studied by Gao et al. [44], however, the discussion was limited to the case where the

ensemble average of the periodic random surface is periodic and to the TE incidence. When

the average surface is flat, the first-order scattered wave diverges unphysically for the TM inci-

dence, if multiple scattering effects are not taken into account [44]. This thesis overcomes this

divergence problem, and the representation of the wavefield for the TM incidence.

Among these types of fluctuations, defects in the periodic structure, (4) in Figure 1.2, could

be also considered as a type of binary fluctuations, because a local profile is not formed at the

positions of the defect. From a standpoint of electromagnetic theory, it is a new problem to

obtain an representation of the scattered wavefield due to the defect. In this thesis, we study a

deterministic case of single defect in the periodic array of rectangular grooves, of which position

is known. It can be considered as the simplest case of defects in the periodic structure.

In this thesis, we will study these two types of binary fluctuations in the periodic structure.
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y

θφφ φ

−2

incident wave

diffracted wave

+1

0
−1

+1
0 −1

period

x

z

Figure 1.3 Diffraction from a periodic surface with the period L. The inci-
dent wave the angle of incidence θ is diffracted into discrete directions φn (n =
0,±1,±2, · · ·), which is determined by wavelength and the period.

1.1.1 Diffraction by perfectly periodic structure

In this thesis, we consider two-dimensional problems, where the geometry and wavefield are

uniform in the y direction. In the two-dimensional cases, incident waves can be decomposed

into two plane waves: a transverse electric wave (TE plane wave), the electric field with only the

y component, and a transverse magnetic wave (TM plane wave), the magnetic field with only

the y component. When a wavefield in free space is a function of x and z and constant in the y

direction, the Maxwell equations, which the wavefield satisfies, are separated into two sets:

TE :























[

∂2

∂x2
+
∂2

∂z2
+k2

]

Ey(x, z) = 0,

∂

∂y
Ey(x, z) = 0,

TM :























[

∂2

∂x2
+
∂2

∂z2
+k2

]

Hy(x, z) = 0,

∂

∂y
Hy(x, z) = 0,

(1.1)

where Ey and Hy denotes the y component of the electric and magnetic fields, and k is wavenum-

ber in free space. On the perfectly conductive surface z = f(x), TE and TM plane waves satisfies

Dirichlet and Neumann conditions because the electric field vanishes on the surface:

TE : Ey(x, z)

∣

∣

∣

∣

z=f(x)

= 0, TE :
∂

∂n
Hy(x, z)

∣

∣

∣

∣

z=f(x)

= 0, (1.2)

where n is the normal to the surface.

When the surface has perfectly periodic structure † such as a periodically corrugated surface

(see Figure 1.3), the incident plane wave eipxe−iβ0(p)z may be diffracted into discrete directions

†Since we consider a periodic surface with single defect or with binary fluctuations on the height parameter
of such a local profile in what follows, we utilize the word ’perfectly periodic’ for the classical periodic surfaces
without fluctuations even though the word ’periodic’ implies periodicity without any fluctuation.
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and the total wavefield Ψ(x, z) can be considered to have the well known Floquet form

Ψ(x, z) = eipx

[

e−iβ0(p)z +

∞
∑

n=−∞

An(p)einkLx+iβn(p)z

]

, (1.3)

p = −k cos θ, kL =
2π

L
, βn(p) =

√

k2 − (p+ nkL)2, (1.4)

where the second term of the right-hand side in (1.3) is a sum of the diffracted waves with the

diffraction amplitude An(p), which are diffracted into discrete directions of the grating orders [30]

as

φn = cos−1

(

cos θ +
nλ

L

)

, (1.5)

where λ is wavelength, L is the period of the surface, θ is the angle of incidence and φn is the

angle of diffraction with nth-order of the grating (see Figure 1.3).

However, real gratings are not ideally periodic and there may be some degree of fluctuations

in the periodic structures. Such fluctuations generate scattering to all directions with continuous

wavenumbers. In this thesis, diffractions due to the periodicity and scattering due to the fluctu-

ations are analyzed, and properties of such diffractions and scattering are numerically calculated

and illustrated in figures.

1.1.2 Wood’s anomaly and incoherent Wood’s anomaly

In the cases of classical random surfaces [15, 45], which have random fluctuations of height

parameter and do not have periodicity, several phenomena in the scattering such as anomalous

scattering [19,20], which can be observed as a peak of the radar cross section (an average power

flux per unit aperture length) to the low grazing angles, and backscattering enhancement [21–23],

have been reported for the incidence of TM plane wave or vertically polarized wave.

On the other hand, in the cases of periodic structure, rapid variations in the intensity of the

diffracted spectral orders against the observation angles found in experiments on a reflection

grating by R.W.Wood in 1902 [28], which is well known as Wood’s anomaly. Hessel and Olinear

classified such anomalies into two types [29]: one is a resonance behavior in the amplitudes and

the other is a rapid variation of the amplitudes corresponding to the Rayleigh wavenumber k.

The latter phenomenon appears for specific angles of incidence θ
[n]
W , which are determined

only with the wavelength λ and the period of the surface L as

k2 −
(

−k cos θ
[n]
W − n

kλ

L

)2

= 0, (n = ±1,±2, · · ·), (1.6)

where λ is wavelength and k is wavenumber in free space.

The latter type of Wood’s anomaly has been reported to occur in the diffraction from a peri-

odic random surface with random height fluctuations which is periodic on average [8]. However,

we newly find that this anomaly appears in the diffraction from periodic grooves with single

defect and a binary periodic random surface with zero average.

On the other hand, due to the fluctuations, random height or binary height parameters,

scattered wave can be generated from periodic random surfaces. Recently, another anomaly

similar to Wood’s anomalies, which appears as rapid variations in the angular distribution of

the scattering, have been found in cases of random surfaces that are periodic on average [6,8]. We
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z

x

z

x

(a) diffraction from periodic grating

(b) scattering as perturbation from perfectly periodic grating

incoherent Wood’s anomaly

ψ̂
(−1)
1

ψi
ψ̂

(0)
1

ψ̂
(1)
1

ψ̂
(−2)
1

ψ̂
(0)
2 ψ̂

(1)
2 ψ̂

(2)
2 ψ̂

(3)
2ψ̂

(−1)
2ψ̂

(−2)
2ψ̂

(−3)
2

ψs

−ψ̂(0)
2ψ

(−1)
Gψ

(−2)
Gψ

(−3)
G ψ

(1)
G ψ

(2)
G ψ

(3)
G

Figure 1.4 Diffraction and scattering from periodic grating with single defect.
Scattered wave is determined by two steps: (a) The first step determines the
diffracted wave by the perfectly periodic grating. (b) The second step determines
the scattered wave as variation from perfectly periodic grating due to single defect.

ψi is the incident wave, ψ̂
(n)
1 is the nth-order diffracted wave, ψ̂

(m)
2 is the wavefield

inside the mth groove for the perfectly periodic grating, ψs is the scattered wave and

ψ
(m)
G is the perturbed wavefield inside the mth groove due to single defect. When

a TM plane wave is incident, incoherent Wood’s anomaly appears in the scattering,
however, it does not occur for a TE case.

call that anomaly “incoherent Wood’s anomaly”. In this thesis, we newly show that incoherent

Wood’s anomaly appears in a deterministic case of periodic grooves with single defect [46] and

a case of a binary periodic random surface even when it has zero average. Further, we discuss

the physical mechanisms of Wood’s anomaly and incoherent Wood’s anomaly.

1.2 Methods of analysis

1.2.1 Periodic grooves with single defect

Scattering as variation from perfectly periodic case Let us consider periodic rectangular

grooves with single defect of which position is known. This type may be the simplest case among

various types of binary fluctuations.
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In such a case, the surface is almost periodic but single defect generates scattering. This

thesis presents a new idea of analysis, where the scattering is considered as a variation from

the perfectly periodic case [27,30] †. Therefore, the total wavefield above the surface Ψ1(x, z) is

expressed as a sum of the diffracted waves Ψ̂1(x, z) and the scattered wave ψs(x, z) as

Ψ1(x, z) = Ψ̂1(x, z) + ψs(x, z), (1.7)

Ψ̂1(x, z) = ψi(x, z) +
∞
∑

n=−∞

ψ̂
(n)
1 (x, z), (1.8)

where ψi is the incident wave, ψ̂
(n)
1 is the nth-order diffracted wave for the perfectly periodic

grating. On the other hand, the wavefield inside the grooves Ψ2(x, z) as a sum of the wavefield

which consists of base components Ψ̂2(x, z) and perturbed components ψG(x, z) due to the defect

as

Ψ2(x, z) = Ψ̂2(x, z) + ψG(x, z), (1.9)

Ψ̂2(x, z) =

∞
∑

m=−∞

ψ̂
(m)
2 (x, z) =

∞
∑

m=−∞

eipmLψ̂
(0)
2 (x−mL, z), (1.10)

ψG(x, z) =

∞
∑

m=−∞

ψ
(m)
G (x, z), (1.11)

where ψ̂
(m)
2 (x, z) is the wavefield inside the mth groove for the perfectly periodic grating and

eipmL is a phase factor for the mth groove to the x direction with p = k cos θ, and ψ
(m)
G is the

perturbed wavefield inside the mth groove due to single defect.

The wavefield can be obtained in two steps (See Figure 1.4). First, Ψ̂1(x, z) and Ψ̂2(x, z)

are determined as the wavefields for the perfectly periodic case. Then, equations to obtain the

scattered wave ψs(x, z) and the perturbed components of the wavefield inside grooves ψG(x, z)

are derived from the boundary condition.

Boundary conditions For the case of periodic grooves with single defect, it is possible to

treat the boundary conditions without approximation, since the analysis is based on the mode-

matching method and the position of defect is known. Boundary conditions are specified at

z = 0 both on the apertures of the grooves and upon the flat part outside the grooves.

1.2.2 Binary periodic random surfaces

Stochastic functional approach The other type of the surface studied in this thesis is binary

periodic random surfaces shown in Figure 1.5. We will make use of a concept of stochastic

processes to formulate the problem and to express the scattered wave. It is a known concept,

however, we explain it to make our approach understood easily.

Let us consider a binary sequence {bm(ω)} in the sample space Ω, which is of function space

type [47] and is the ensemble of such stationary binary sequences. ω is a sample point in Ω and

is an infinite-dimensional vector as

ω = (· · · , ω−1, ω0, ω1, · · ·), ωm = bm(ω), (1.12)
†In this thesis, we take the “mode-matching method” in a wide sense, that is, we determine wavefields from

the conditions of the continuity of both electric and magnetic fields. Thus, it does not exactly mean so-called
mode-matching method proposed in [32].
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z

1, 1, 1, 1, 1,−1, −1, −1, −1,

x

z

−1, 1, 1,

0

1,1,−1, −1, −1, 1,

x

0

binary sequence : {bm(ωi)}
· · · , b−1(ωi), b0(ωi), b1(ωi), · · ·

ω · · · · · ·

· · · · · ·ω′ = T 1ω

f(x, ω)

f(x, ω′)

Figure 1.5 Generation of a binary periodic random surface from a stationary
binary sequence {bm(ω)} (average height σ0 = 0). A local surface becomes a boss
when bm(ω) = 1, while it becomes a pit when bm(ω) = −1. In this case, ω′ = T 1ω
is obtained by shifting ω with T 1.

where ωm is the nth component of ω. Each component bm(ω) takes the value +1 or −1.

Physically, bm(ω) = +1 or −1 becomes a boss or a pit. Then, we write a binary periodic

random surface f(x, ω)

z = f(x, ω) =
∞
∑

m=−∞

g(x−mL)[σ0 + σ1bm(ω)], (1.13)

where L is the period of the surface, g(x) is a local surface profile defined in |x| ≤ L/2, m is integer

and σ0 and σ1 are an average component and a fluctuating component of the height parameter,

respectively. When ω changes, the height of the corresponding local surface changes. Therefore,

the scattered wave from such a periodic random surface can be expressed as a functional of the

stationary binary sequence. On the other hand, a binary sequence which corresponds to any

realization of a binary periodic random surface exists in such Ω. A translation by n of a binary

sequence {bm(ω)}: bm(ω) → bm+n(ω) can be regarded as a shift of a sample point ω → ω ′
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(n=2)

nL

x

x

f(x, ω)

f(x+ nL, ω) = f(x, ω′)

Ω
ω

T nωω′ = T nω

Figure 1.6 Shift of binary periodic random surface f(x, ω) by nL along x-axis :
f(x, ω) → f(x+ nL, ω), and shift in sample space Ω : ω → T nω.

in sample space Ω (See Figure 1.6). which is represented by shift operator T as ω ′ = T nω,

where the shift T is a measure-preserving transformation with P (ω) = P (T nω), and has a group

properties: T 0 ≡ 1 (identity); Tm+n = TmT n [7]. Such a shift corresponds to a shift of the

surface along the x-axis by mL as f(x, ω) → f(x + mL,ω). Thus, we find that the surface

f(x, ω) is invariant under the translation (x, ω) → (x+ nL, T −nω)

f(x, ω) = f(x+ nL, T−nω). (1.14)

Let us consider the scattered wave Ψs(x, z, ω) under a plane wave incidence Ψi(x, z) =

eipx−iβ0(p)z, where β0(p) is often called a propagator defined as β0(p) =
√

k2 − p2, and p is

wavenumber in the x direction. Such a scattered wave Ψs(x, z, ω) can be considered as a response

from a periodic random surface. To determine a form of Ψs(x, z, ω), we define a translation

operator D acting on the wave function Ψs(x, z, ω) by

DmΨs(x, z, ω) = Ψs(x+mL, z, T−mω), (m = 0,±1,±2, · · ·). (1.15)

Since f(x, ω) is invariant under Dm by (1.14), if Ψi(x, z)+Ψs(x, z, ω) satisfies the wave equation

[∂2/∂x2 +∂2/∂z2 +k2]Ψ(x, z, ω) = 0 and the boundary condition, then DmΨs(x, z, ω) = Ψs(x+

mL, z, T−mω) becomes a solution for the incident plane wave DmΨi(x, z) = eipmLeipx−iβ0(p)z.

Thus, we get

DmΨs(x, z, ω) = Ψs(x+mL, z, T−mω) = eipmLΨs(x, z, ω). (1.16)

If we put

Ψs(x, z, ω) = eipxU(x, z, ω), (1.17)

then from (1.16) we find that U(x, z, ω) satisfies the shift invariance property :

DmU(x, z, ω) = U(x+mL, z, T−mω)

= U(x, z, ω). (1.18)

This and (1.14) mean that U(x, z, ω) is a periodic stationary process of x. If U(x, z, ω) is a

deterministic periodic function, (1.17) is the Floquet form for periodic gratings. However, in



1.2 Methods of analysis 11

our case, U(x, z, ω) is not periodic, but the ensemble average 〈U(x, z, ω)〉 over the sample space

Ω becomes periodic, since U(x, z, ω) is periodic stationary:

〈U(x+mL, z, ω)〉 = 〈U(x, z, Tmω)〉 = 〈U(x, z, ω)〉. (1.19)

Thus, (1.17) is considered as an extension of the Floquet form, which we call the stochastic

Floquet form [7]. Note that the wavefield Ψs(x, z, ω) itself is not shift-invariant.

Because of this shift invariant property, U(x, z, ω), which is a response from a binary periodic

random surface, could be considered to belong to a translation-invariant system on (R × Ω) †,

that is, the ensemble average over the sample space Ω becomes periodic. Thus, it is constant in

sampling by any integer multiple of the period L. On the other hand, the periodic grating with

single defect does not belong to such translation-invariant systems.

Periodic stationary process, binary expansion and harmonic series representation

By the stochastic Floquet form (1.17), the problem to obtain the scattered wave Ψs(x, z, ω) is

reduced to determine the periodic stationary process U(x, z, ω).

Since the scattered wave is a response from a binary periodic random surface and such

a binary periodic random surface is generated by the stationary binary sequence of binary

random variables bm(ω) ‡, the scattered wave is regarded as a functional of binary random

variables. Such a functional can be represented in the binary orthogonal expansion with binary

polynomials. Binary orthogonal expansion was given by J.Nakayama and L.Gao [49] with multi-

variate orthogonal polynomials, recurrence formulae and generating function in explicit form [50].

By use of the binary orthogonal expansion, the periodic stationary process of the scattered

wavefield can be written as

U(x, z, ω)=C0(x, z)+

∞
∑

n=1

∞
∑

ml=−∞
l=1,···,n

Bn[bm1(ω), · · · , bmn(ω)]Cn(x−m1L, · · · , x−mnL, z), (1.20)

where Bn[·] is the binary polynomial defined in Appendix A and coefficients of the nth-order

polynomials Cn(x1, · · · , xn, z) (n = 0, 1, 2, · · ·) are deterministic functions called binary kernels.

However, it is necessary to rewrite (1.20) so that eipxU(x, z, ω) satisfies the Helmholtz equation

(1.1). Representing the binary kernels by multiple Fourier integrals, we write

U(x, z, ω) =

∞
∑

q=−∞

C
(q)
0 (p)eikLqxeiβ0(p)z

+

∞
∑

n=1

∞
∑

ml=−∞
l=1,···,n

Bn[bm1(ω), · · · , bmn(ω)]

∫

· · ·
∫ ∞

−∞
Cn(λ1, · · · , λn−1, λs|p)eiβ0(p+λs)z

× eiλ1(x−m1L)+···+iλn−1(x−mn−1L)+i(λs−(λ1+···+λn−1))(x−mnL)dλ1 · · · λn−1dλs. (1.21)

†Translation-invariant systems can be classified into several types: (1) constant systems such as flat boundary
between two media, (2) periodic systems such as periodic grating, (3) random system such as Gaussian random
surfaces, (4) periodic random systems such as Gaussian periodic random surfaces and binary periodic random
surfaces among others [48].

‡If the fluctuations are given by the Gaussian random variables such as the classical random surfaces and
random media, another stochastic approach the Wiener analysis, which is another stochastic approach, is used to
obtain the wavefield [7, 8].
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Although the expression (1.21) satisfies (1.1), it is still redundant and is not possible to determine

binary kernels Cn(λ1, · · · , λn−1, λs|p) uniquely. Thus, we write (1.21) in the harmonic series

representation [51, 52] dividing the integral intervals of λ1, · · · , λn−1, λs into bands with equal

width [−kL/2, kL/2] as

U(x, z, ω) =
∞
∑

q=−∞

eikLqxU (q)(x, z, ω) (1.22)

U (q)(x, z, ω) = C
(q)
0 (p)eiβq(p)z

+

∞
∑

n=1

∞
∑

ml=−∞
l=1,···,n

Bn[bm1(ω), · · · , bmn(ω)]

∫

· · ·
∫ kL/2

−kL/2
C(q)

n (λ1, · · · , λn−1, λs|p)

× eiλ1(x−m1L)+···+iλn−1(x−mn−1L)+iλs(x−mnL)+iβ0(p+λs)zdλ1 · · · λn−1dλs, (1.23)

where kL is defined in (1.4). To obtain the scattered wavefield, we should determine the band-

limited binary kernels C
(q)
n (λ1, · · · , λn−1, λs|p) from the boundary conditions. Substituting the

expressions of the scattered wave (1.22) and (1.23) into the boundary conditions, hierarchical

equations for such band-limited binary kernels are derived, which continue to the infinite order of

n. The n-th order hierarchical equation for the n-th order binary kernel C
(q)
n describes relations

both with the (n− 1)-th order binary kernel C
(q)
n−1 and with integrations of the (n+ 1)-th order

binary kernel C
(q)
n+1, which are called ascending and descending couplings, respectively [53,54]. In

this thesis, we solve such hierarchical equations by use of truncation and diagonal approximation

[53] in Chapters 4 and 5.

Boundary conditions In the binary random case, as is mentioned above, it is necessary to

determine the band-limited binary kernels to obtain the diffracted and scattered wave form the

boundary condition.

For a periodic stationary process Φ(x, ω), we introduce the norm ‖ Φ(x, ω) ‖, which is defined

as an ensemble average of a space average of |Φ(x, ω)|2 over one period † :

‖ Φ(x, ω) ‖2=

〈

1

L

∫ L/2

−L/2
|Φ(x, ω)|2 dx

〉

, (1.24)

and we assume that the wavefield Ψ(x, z, ω) satisfies the boundary condition in the norm sense

(1.24).

Generally, in the boundary value problems of random surfaces, it is extremely difficult to

evaluate boundary conditions rigorously, so that boundary conditions have been often approx-

imated [19–22]. In the scattering problem for perfectly conductive surfaces, so-called effective

boundary conditions [18], which are Taylor’s expansion of the wavefield in terms of z = f(x, ω)

at z = 0 and their higher order terms are neglected, as

Dirichlet (TE) : Ψ(x, z, ω)+f(x, ω)
∂Ψ(x, z, ω)

∂z
=0, (z=0), (1.25)

Neumann (TM) : −df(x, ω)

dx

∂Ψ(x, z, ω)

∂x
+
∂Ψ(x, z, ω)

∂z
+
∂2Ψ(x, z, ω)

∂z2
=0, (z=0), (1.26)

†In [59], the norm was defined as a space average of 〈|Φ(x, ω)|2〉 over one period, however, it should be modified
as is defined in (1.24), when the boundary condition is not approximated and is taken along the binary periodic
random surface.
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(a) binary periodic random  surface

− average surface is periodic − − average surface is flat −

(b) binary periodic random surface

Figure 1.7 Binary periodic random surfaces: (a) average surface is periodic (thin
solid line is an average surface), (b) average surface is flat.

are often used [7, 8, 19, 20, 44, 53].

On the other hand, we may employ the Dirichlet and Neumann conditions without approx-

imation in the binary case.

Since the boundary conditions are related to the value of the incident wave eipx−iβ0(p)z upon

the surface z = f(x, ω), the z-dependency of the scattered wavefield generally appears as eiβ0(λ′)z.

By substituting z = f(x, ω) and using the special property bm(ω) = ±1, we get an identity as

eiβ0(λ′)f(x,ω) = eiβ0(λ′)g(x){σ0+σ1b0(ω)}

= eiσ0β0(λ′)g(x)
{

cos[σ1β0(λ
′)g(x)] + i sin[σ1β0(λ

′)g(x)]b0(ω)
}

(1.27)

for |x| ≤ L/2 (m = 0). With this property, the binary random variable bm(ω) comes out of the

exponential phase factor. Thus, the boundary conditions can be evaluated without approxima-

tion.

Effects of multiple scattering From the viewpoint of analysis, it is essentially important to

distinguish that the ensemble average of the surface is periodic or flat.

In [44], the binary periodic random surface, of which ensemble average is a periodic surface,

was studied(See Figure 1.7(a)). Similarly in [7] and [8], the Gaussian periodic random surfaces,

of which ensemble average are periodic, were discussed. On the other hand, this thesis deals

with the binary periodic random surface, of which ensemble average is a flat plane(See Figure

1.7(b)). When the ensemble average of the periodic surface is flat, it is necessary to evaluate

effects of multiple scattering much strictly for the TM plane wave incidence.

In the stochastic functional approach, the random scattering problem is reduced to obtain

deterministic kernel functions from hierarchical equations. To solve the hierarchical equations
†, Ref [7] and [44] employ truncation in the first order hierarchical equation and the diagonal

approximation, and then effects of multiple scattering are involved with the iterative mass

operator [54, 55] for TE incidence. Further, Ref [8] determines the wavefield by use of what we

call a single scattering approximation, which neglects the integration of descending coupling.

These approaches are valid even for TM incidence as far as the ensemble average of the periodic

†The hierarchical equations in [7] and [8] are for unknown Wiener kernels since the fluctuation of the height
parameter is describes as a Gaussian random variable and the wavefield is expressed in the Wiener expansion
with Wiener kernels.
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random surface is periodic. However, when the average surface becomes flat, the scattered wave

obtained by these methods diverges unphysically.

In Chapter 5, we overcome such divergence difficulties for TM incidence by use of multiply

renormalizing approximation [53]. After obtaining the binary kernels by use of truncation and

diagonal approximation with the iterative mass operator, we consider a limit where the trunca-

tion number goes to infinity. In terms of such a limit, we may obtain an approximate solution

by the multiply renormalizing approximation.

1.3 Compositions of the thesis

This thesis consists of six chapters and several appendices.

Chapter 2 and Chapter 3 deal with the scattering from a periodic grating with single defect,

of which position is known. The surface is perfectly conductive and made up with a periodic

array of rectangular grooves and a defect where a groove is not formed. Scattering from such a

periodic surface with single defect is analyzed from a standpoint of the electromagnetic theory

and a new formulation of the problem is proposed, which is made up of two steps. First, we

obtain the diffracted wave and the guided modes inside the grooves by use of the modal expansion

method for the perfectly periodic case. Then, assuming that such diffracted wave is scattered

by the single defect, we derive a set of infinite-dimensional equations for the scattered wave and

the perturbed component of the guided modes inside the grooves due to the defect. Such a

set of equation could be considered to involve effects of multiple scattering. We then obtain a

new representation of the optical theorem, relating total scattering cross section with reduction

of the scattering amplitude, and also propose an analytical expression of a single scattering

approximation. In Chapter 2, an infinite-dimensional equation for unknown amplitudes of the

perturbed component of the guided modes is newly derived from the set of equations for the TE

case. By use of truncation, we numerically obtain the perturbed component, in terms of which

the total scattering cross section and the differential scattering cross section are calculated

and illustrated in figures. It is found that effects of multiple scattering is small in the TE

incident case, so that the single scattering approximation can describe the scattered wave for

the shallow case. Chapter 3 studies the TM incident case. From the set of equations, an integral

equation for an unknown amplitude of the scattered wave in the spectral domain is derived,

since the scattered wave may decay slowly along the surface and affect the guided modes in the

grooves far from the defect. Then, such an integral equation is solved numerically by use of

truncation and the iteration method. The differential scattering cross section and the optical

theorem are calculated in terms of the scattering amplitude and are illustrated in figures. It

is found that effects of multiple scattering should be involved to describe the wavefield for TM

incidence. It is also shown that incoherent Wood’s anomaly appears as steep peaks and dips at

critical scattering angles. The physical mechanisms of Wood’s anomaly and incoherent Wood’s

anomaly are discussed in relation to the guided surface wave excited by the incident plane wave.

It is concluded that incoherent Wood’s anomaly is caused by the coupling between the scattered

wave and the guided surface wave along the surface.

Chapter 4 and Chapter 5 deal with the diffraction and scattering from a periodic random

surface generated by a stochastic binary sequence, of which ensemble average is a flat surface,

using a stochastic functional approach. The surface is periodically modulated in amplitude,

forming a boss and a pit corresponding to the binary random variable. Such a periodic random

surface has been known to become a periodic stationary process, and the diffracted and scattered
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waves from such a surface are also written as a periodic stationary process and can be expanded

with orthogonal binary polynomials. In the preceding work [44], the first-order scattered wave

was determined from the effective boundary condition. However, when the ensemble average of

the binary periodic random surface is a flat plane, an unphysical divergence problem arises in

the scattered wave in case of the TM incidence. This thesis provides methods to avoid such a

divergence problem involving effects of multiple scattering in the scattered wave.

The scattered wave is first expressed by a product of an exponential phase factor and a pe-

riodic stationary process. The periodic stationary process is then expressed by ”Fourier series”,

where ”Fourier coefficients” are mutually correlated stationary processes. These stationary pro-

cesses are regarded as stochastic functionals of the binary sequence and they are represented by

orthogonal binary functional expansions with band-limited binary kernels. In Chapter 4, the

binary kernels are determined up to the second order from the Dirichlet boundary condition

without approximation. Then, several statistical properties of the scattering are numerically

calculated and illustrated in figures. It is found that the diffracted wave to discrete directions

is generated even when the periodic random surface has zero average, and in the binary case,

the second order scattering cross section has a subtractive part and becomes much smaller than

the first order one. Chapter 5 studies the case of TM incidence. With the representation of the

scattered wave by the orthogonal binary functional expansion with band-limited binary kernels,

hierarchical equations for the binary kernels are derived from the Neumann boundary condition

without approximation. The expressions of such binary kernels are then obtained by use of the

multiply renormalizing approximation, which involves effects of multiple scattering. Statistical

properties such as differential scattering cross section and optical theorem are numerically cal-

culated with first two order binary kernels and illustrated in figures. It is found that Wood’s

anomaly appears for critical angles of incidence and incoherent Wood’s anomaly appears in the

angular distribution of scattering, even when the surface has zero average. It is also found that

the power of diffracted wave increases for critical angles of incidence, while the power of scat-

tered wave decreases contrarily and the scattered wave becomes small around the direction of

specular reflection except for the critical scattering angles.

Chapter 6 is the conclusion of this thesis. We will give some problems which are left for the

future study.

In Appendix A, we summarize definitions of multi-variate binary polynomials and several

formulae on such binary polynomials and binary expansion, which are used in Chapter 4 and

Chapter 5. Moreover, in these chapters, we have represented the wavefield in the harmonic series

representation of the periodic stationary process, which can be considered as ”Fourier series”

with ”Fourier coefficients”. Such ”Fourier coefficients” are given by stationary processes, which

are written with band-limited binary kernels. In Appendix B, we discuss properties of such band-

limited binary kernels and the stationary processes. Appendix C summarizes the derivation of

the optical theorem both for the single defect case and the binary random case. In Appendix

D, we derive expressions of the binary kernels by the multiply renormalizing approximation for

TE incidence in the same manner as chapter 5.

The time dependence e−i2πf0t with the frequency f0 is assumed and suppressed throughout

the thesis.





Chapter 2

Scattering of TE plane wave from

periodic grating with single defect

2.1 Introduction

In electronics, many devices such as memory chips and LCD electrodes have periodic structure

with rectangular parallel lines. Defects in such periodic structure due to the imperfection in the

manufacturing processes have been a serious problem for years. It is practically important to

study the possibility of optical detection of such defects and to develop a method of measurement

and inspection. Theoretically, such defects in the periodic structure could be modelled as defects

in the periodic gratings with rectangular grooves.

Lately, there have been many works [9–14, 34] on the scattering and diffraction by a single

groove, a finite number of grooves and a periodic array of grooves without any defects. However,

there has not been studied the scattering from a periodic grating with defects. From a standpoint

of analysis, a single groove or a finite number of grooves can be considered as a finite number of

scatterer, which determine the wavefield. Further, a periodic surface has an infinite number of

scatterers, however, it results in problems of a single scatterer by the Floquet form. On the other

hand, when there are defects in periodic structure, it is necessary to take an infinite number of

scatterers into account. Thus, we newly present a theoretical formulation on the scattering from

a periodic gratings with defects.

As a simple model of such a periodic grating with defect, this chapter studies TE wave

scattering from a periodic array of rectangular grooves with single defect shown in Figure 2.1.

Since there is only one defect in the periodic grating, we consider that the diffracted wave for

the periodic grating is scattered by a single defect. Therefore, we obtain the scattered wave as

a variation from the diffracted wave. The wavefield above the surface is written as a sum of

the incident wave, diffracted wave and the scattered wave due to the defect, while the wavefield

inside the grooves is expressed as a sum of guided modes with unknown mode amplitudes by

use of the modal expansion method [30]. The mode amplitudes are regarded as a sum of base

components and perturbed components due to the defect, where the base component is the

solution in case of the perfectly periodic grating without any defect.

We introduce a two-step method to determine the wavefield. In the first step, an equation

for the diffracted wave and the base component of the guided modes is obtained for the periodic

case without any defect. Then, by use of the base component and the diffracted wave, a new

equation for the scattered wave and the perturbed component of the guided modes is derived in

17
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the second step.

We begin in Section 2.2 with the mathematical formulation of the periodic grating with

single defect. We assume that the surface is perfectly conductive and made up with a periodic

array of rectangular grooves and a defect where a groove is not formed. In Section 2.3, the

diffracted wave and the base component of the guided modes are obtained for the perfectly

periodic grating. In Section 2.4, the scattered wave and the perturbed component of the guided

mode are represented in terms of the base component of the guided modes obtained in Section

2.3. We give a new representation of the optical theorem, which relates the total scattering cross

section with the reduction of the scattering amplitude. To determined the scattered wave, we

derive an equation for the perturbed component of the guided modes in the grooves, including

an integral part for the coupling between different guided modes. We find that such an integral

part is independent of the angle of incidence and is determined only by the geometry of the

surface. To evaluate the scattering property approximately, we introduce a single scattering

approximation, which is written only by the base component of the guided modes. In Section

2.5, we obtain a numerical solution of the perturbed component by use of truncation, in terms of

which the amplitude of the scattered wave is described. The optical theorem and the differential

scattering cross section are calculated with such an amplitude of the scattered wave and are

illustrated in figures.

Then, we find that the optical theorem for the periodic grating with single defect holds

within an accuracy of 0.5% for most angles of incidence both in the shallow and resonant cases

of the groove depth, but the accuracy decreases for low grazing angles of incidence and angles

corresponding to the entry of a new spectral order. For the shallow cases, scattering is relatively

strong in the direction of specular reflection, however, for the resonant case, the differential

scattering cross section seems symmetric with respect to the normal scattering angle. It is also

found that the single scattering approximation almost agrees with the numerical solution, which

suggests that the single scattering approximation is valid for a TE incidence when the depth of

the groove is shallow.

2.2 Periodic grating with single defect

Let us consider a periodic array of rectangular grooves with a single defect at x = 0 (See figure

2.1). We write such an array as

z = f(x) = −d
[

∞
∑

g=−∞

u(x−gL|w)− u(x|w)

]

, (2.1)

where L is the period, w and d are the width and the depth of the groove. Here, u(x|w) is a

rectangular groove defined as

u(x|w) =

{

1, |x| ≤ w/2,
0, |x| > w/2.

(2.2)

It has the orthogonal property such that

u(x− gL|w)u(x − g′L|w) = δgg′u(x− gL|w), (g, g′ = 0,±1,±2, · · ·), (2.3)

where δgg′ is Kronecker’s delta. The Fourier transform of u(x|w) is calculated as

U(q) =

∫ ∞

−∞
u(x|w)e−iqxdx = 2

sin(qw/2)

qw
w, (2.4)
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Figure 2.1 Scattering of TE plane wave from a periodic grating with single defect.
The surface is a periodic array of rectangular grooves and has a defect where a groove
is not formed. ψi(x, z) is the incident wave and ψs(x, z) is the scattered wave. θ is
the angle of incidence, φ is the scattering angle, L is the period of surface, w and d
are the width and the depth of groove.

which will be used later to obtain the scattered field.

For convenience, we put kL and kw as

kw =
π

w
, kL =

2π

L
, (2.5)

and we define an auxiliary function sm(q) as follows.

sm(q) =

∫ ∞

−∞
u(x|w) sin(mkw(x+ w/2))e−iqxdx (2.6)

=
1

2i

[

U(q −mkw)eimπ/2 − U(q +mkw)e−imπ/2
]

, (2.7)

where m is integer. Figure 2.2 illustrates sm(q) for m = 1, 4, 7 with width the w = 1.3λ, where

λ is wavelength. sm(q) becomes a real even function for odd integer m, and an imaginary odd

function for even integer m. Note that sm(q) ∼ 1/q2 when |q| becomes large. This auxiliary

function sm(q) takes the phase shift by e−iqmL with the shift of x by mL.

∫ ∞

−∞
u(x−mL|w) sin(mkw(x+ w/2 −mL))e−iqxdx = e−iqmLsm(q). (2.8)

We denote the y component of the electric field by Ψ(x, z), which satisfies the Helmholtz

equation

[

∂2

∂x2
+

∂2

∂z2
+ k2

]

Ψ(x, z) = 0, (2.9)
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Figure 2.2 Auxiliary function sm(q) against wave number q for m = 1, 4, 7 with
width w = 1.3λ, λ is wavelength.

in the region z > f(x). Here, k = 2π/λ is wavenumber. We consider that the surface is perfectly

conductive. On the surface z = f(x), the wavefield Ψ(x, z) satisfies the Dirichlet condition,

Ψ(x, z)|z=f(x) = 0. (2.10)

We write the incident plane wave ψi(x, z) as

ψi(x, z) = eipxe−iβ0(p)z, p = −k cos θ, (2.11)

βn(p) = β0(p+ nkL) =
√

k2 − (p+ nkL)2, (2.12)

Im[βn(p)] ≥ 0, (n = 0,±1,±2, · · ·), (2.13)

where θ is the angle of incidence (See Figure 2.1) and Im stands for imaginary part.

2.3 Diffraction from a perfectly periodic grating

First, we consider a perfectly periodic case without defect. We write such a perfectly periodic

surface fp(x) as

z = fp(x) = −d
∞
∑

g=−∞

u(x− gL|w). (2.14)

For the region z ≥ 0, we put the y component of the electric field Ψ̂1(x, z) as a sum of the

incident wave ψi(x, z) and the diffracted wave ψd(x, z) due to the periodicity of the surface,

Ψ̂1(x, z) = eipxe−iβ0(p)z + ψd(x, z), (2.15)

ψd(x, z) = eipx
∞
∑

n=−∞

An(p)einkLx+iβn(p)z. (2.16)
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Here, An(p) is the amplitude of the mth order diffracted wave. On the other hand, by use of the

modal expansion method [30], we write the y component of the electric field inside the grooves

Ψ̂2(x, z) as a sum of the guided modes,

Ψ̂2(x, z) =
∞
∑

g=−∞

u(x−gL|w)eipgL

×
[

∞
∑

m=1

Qs
m(p) sin(mkw(x+w/2−gL))

sin(γm(z+d))

γm

]

, (2.17)

γm =
√

k2 − (mkw)2, (2.18)

where Qs
m(p) is the amplitude of the guided mode which we call the base component, and γm is

the propagation constant of the mth guided mode. Note that the number of the guided modes

starts from m = 1 since there is no constant mode for TE case.

Energy conservation relation Let us obtain the energy conservation relation for the per-

fectly periodic case. Using the identity Im[divΨ̂1gradΨ̂∗
1] = 0 and the fact that Ψ̂1gradΨ̂∗

1 is a

periodic function with the period L, we obtain after some manipulation,

Im

[

∫ L/2

−L/2
Ψ̂1(x, z)

∂

∂z
Ψ̂∗

1(x, z)dx

]

= 0, (2.19)

where z > 0. Substituting (2.15) into (2.19), we get

β0(p) =

∞
∑

n=−∞

Re[βn(p)]|An(p)|2, (2.20)

which is the well known energy conservation relation. Here, Re stands for the real part, β0(p) is

the power of the incident wave per unit length, and Re[βn(p)]|An(p)|2 is themth order diffraction

power. The normalized energy conservation relation and energy error due to the appoximation

Errenergy are written as follows.

1 =

∞
∑

n=−∞

Re[βn(p)]|An(p)|2/β0(p), (2.21)

Errenergy =

∣

∣

∣

∣

∣

∣

1 −
Nd
∑

n=−Nd

Re[βn(p)]|An(p)|2/β0(p)

∣

∣

∣

∣

∣

∣

, (2.22)

where Nd is the number of the diffracted modes considered in the numerical calculation. The

normalized energy conservation relation will be illustrated in Figure 2.3.

Solution for a perfectly periodic grating Let us determine An(p) and Qs
m(p) from the

continuity of both the electric field and the magnetic field at z = 0.

From Ψ̂1(x, 0) = Ψ̂2(x, 0), we get

eipx

[

1 +
∞
∑

n=−∞

An(p)einkLx

]

=

∞
∑

g=−∞

u(x−gL|w)eipgL

[

∞
∑

m=1

Qs
m(p) sin(mkw(x+w/2−gL))

sin(γmd)

γm

]

. (2.23)
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Multiplying e−inkLx and integrating over one period L, we get

An(p) = −δn0 +
1

L

∞
∑

m=1

Qs
m(p)

sin(γmd)

γm
sm(p+ nkL). (2.24)

Next, from
∑

g 6=0 u(x− gL|w)[∂Ψ̂1/∂z − ∂Ψ̂2/∂z]z=0 = 0, we get

∞
∑

g=−∞

u(x− gL|w)eipx

[

−iβ0(p) + i
∞
∑

n=−∞

βn(p)An(p)einkLx

]

=
∞
∑

g=−∞

u(x− gL|w)eipgL
∞
∑

m=1

Qs
m(p) sin(mkw(x+w/2−gL)) cos(γmd). (2.25)

Taking Fourier transform after multiplying u(x−mL|w) × sin(mkw(x+w/2−mL)), we obtain

i
∞
∑

n=−∞

βn(p)An(p)sm(−p− nkL) = iβ0(p)sm(−p) +
wQs

m(p)

2
cos(γmd). (2.26)

From (2.24) and (2.26), An(p) and Qs
m(p) can be determined. Note that for the normal incidence

θ = 90◦ (p = 0), Qs
m(p) vanishes for even numbers m = 2, 4, 6, · · · since sm(0) in the right hand

side of (2.26) becomes 0 for evenm and βn(0)An(0)sm(−mkL) and β−n(0)A−n(0)sm(mkL) cancel

each other. This will be discussed later.

In the following section, we will obtain the scattered wave by using Ψ̂1(x, z) and Ψ̂2(x, z).

2.4 Scattering from a periodic grating with single defect

A single defect in a periodic grating generates the scattering. We express such scattering as a

perturbation from the diffracted wave for the perfectly periodic case. Thus, we write for z > 0,

Ψ1(x, z) = Ψ̂1(x, z) + ψs(x, z), (2.27)

ψs(x, z) =

∫ ∞

−∞
a(s|p)ei(p+s)x+iβ0(p+s)zds, (2.28)

where ψs(x, z) is the scattered wave due to the defect, which is described as a sum of plane waves

with a continuous spectrum into the +z direction, and a(s|p) is the amplitude of the scattered

wave. Since ψs(x, z) is scattered from the single defect, ψs(x, z) is an outgoing cylindrical wave

and satisfies the radiation condition, that is, ψs(r cos θ, r sin θ) ∼ f(θ)eikr/
√
kr (r =

√
x2 + z2)

and decays at kr → ∞. This property will be used below. a(s|p)ei(p+s)x+iβ0(p+s)z is a component

of the scattered wave with the scattering angle φ(p+ s) given by

φ(p+ s) = cos−1

[

−p+ s

k

]

. (2.29)

On the other hand, we write the wavefield inside the grooves Ψ2(x, z) as a sum of the wavefield

for the perfectly periodic grating and the fluctuated term ψG(x, z) due to the defect.

Ψ2(x, z) = Ψ̂2(x, z) + ψG(x, z),

ψG(x, z)=
∞
∑

g=−∞

u(x−gL|w)eipgL
∞
∑

m=1

q(g)
m (p) sin(mkw(x+w/2−gL))

sin(γm(z+d))

γm

− u(x|w)

∞
∑

m=1

Qs
m(p)sin(mkw(x+w/2))

sin(γm(z+d))

γm
.

(2.30)
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Here, q
(g)
m (p) is the perturbed amplitude of the mth guided mode in the nth groove. Note that

q(0)m (p) ≡ 0 (2.31)

for all m since a groove is not formed at g = 0.

Optical theorem and scattering cross section Let us obtain the optical theorem for the

single defect case. Since ψs(x, z) decays proportional to (x2 + z2)−1/4, Ψ̂1gradψ
∗
s , ψsgradΨ̂∗

1 and

ψsgradψ
∗
s vanish at |x| → ∞. Further, Ψ̂1gradΨ̂∗

1 is a periodic function of x with the period L.

Using these facts and the identity Im[div(Ψ̂1 + ψs)grad(Ψ̂1 + ψs)
∗] = 0, we obtain after some

manipulation,

lim
N→∞

Im

[

∫ (N+ 1
2
)L

−(N+ 1
2
)L
Ψ1(x, z)

∂

∂z
Ψ∗

1(x, z)dx

]

= lim
N→∞

Im

[

∫ (N+ 1
2
)L

−(N+ 1
2
)L

Ψ̂1(x, z)
∂

∂z
ψ∗

s(x, z)

+ ψs(x, z)
∂

∂z
Ψ̂∗

1(x, z)+ψs(x, z)
∂

∂z
ψ∗

s(x, z)dx

]

=0, (2.32)

where z > 0. Here, we have applied (2.19).

Substituting (2.15), (2.16) and (2.28) into (2.32), we get a new representation of the optical

theorem, which is written as

Pc = Φs, (2.33)

Pc = −2

k

∞
∑

n=−∞

Re[β∗
n(p)]Re[a(kLm|p)A∗

n(p)], (2.34)

Φs =
1

k

∫ ∞

−∞
Re[β0(p+ s)]|a(s|p)|2ds. (2.35)

Here, Pc is related to the reduction of the scattering amplitude and Φs expresses the total

scattering cross section. The optical theorem (2.33) can be used to estimate accuracy of a

numerical calculation. It is an extension of the forward scattering theorem [15, 57]. The total

scattering cross section can be rewritten as

1

k

∫ ∞

−∞
Re[β0(p+s)]|a(s|p)|2ds =

L

2π

∫ π

0
σ(φ|θ)dφ, (2.36)

where φ is the scattering angle and σ(φ|θ) is the differential scattering cross section per period,

σ(φ|θ) =
2πk sin2 φ |a(−k cosφ− p)|2

L
, (2.37)

which has no dimension.

Erropt =

∣

∣

∣

∣

1 − Φs

Pc

∣

∣

∣

∣

(2.38)
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Scattered wavefield and single scattering approximation In this section, we determine

a(s|p) and q
(g)
m (p) to solve the single defect case. From the continuity of both the electric field

and the magnetic field, the equations to obtain a(s|p) and q
(g)
m (p) are derived.

Since Ψ1(x, 0) = Ψ2(x, 0) means ψs(x, 0) = ψG(x, 0), we get

∫ ∞

−∞
a(s|p)ei(p+s)xds =

∞
∑

g=−∞

u(x−gL|w)eipgL
∞
∑

m=1

q(g)
m (p) sin(mkw(x+w/2−gL))

sin(γmd)

γm

− u(x|w)
∞
∑

m=1

Qs
m(p)sin(mkw(x+w/2))

sin(γmd)

γm
. (2.39)

Taking Fourier transform after multiplying e−i(p+s)x/2π, we obtain the amplitude of the scattered

wave a(s|p) as

a(s|p) =
1

2π

∞
∑

m=1

sm(p+ s)
sin(γmd)

γm

[

∞
∑

g=−∞

e−isgLq(g)
m (p) −Qs

m(p)

]

. (2.40)

When the depth d is not so large that the resonance does not occur in the grooves of the grating,

the term related to the first order guided mode m = 1 may become large. However, when the

resonance occurs in the grooves, that is, the value of the depth d satisfies sin(γ1d) = 0, the

summation on m starts from m = 2, so the property of the scattering may become different. In

such a case, the term related to the second order guided mode m = 2 may give large effect in

the scattering. This will be discussed later.

On the other hand, from
∑

n6=0 u(x−gL|w)[∂Ψ1/∂z−∂Ψ2/∂z]z=0 = 0, we obtain
∑

n6=0 u(x−
gL|w)[∂ψs/∂z − ∂ψG/∂z]z=0 = 0. Then, we get

∞
∑

g=−∞

u(x−gL|w)

∫ ∞

−∞
iβ0(p+s)a(s|p)ei(p+s)xds−u(x|w)

∫ ∞

−∞
iβ0(p+s)a(s|p)ei(p+s)xds

=
∞
∑

g=−∞

u(x− gL|w)eipgL
∞
∑

m=1

q(g)
m (p) sin(mkw(x+w/2−gL)) cos(γmd). (2.41)

Taking Fourier transform after multiplying u(x− gL|w) × sin(mkw(x+ w/2 − gL)), we obtain

i (1−δg0)

∫ ∞

−∞
β0(p+s)sm(−p−s)eisgLa(s|p)ds =

w

2
cos(γmd)q

(g)
m . (2.42)

Substituting (2.40) into (2.42), we get the equation for the perturbed component q
(g)
m (p) as

∞
∑

m′=1

∞
∑

g′=−∞

Cmg(m
′, g′)q

(g′)
m′ (p) =

∞
∑

m′=1

Qs
m′(p)

[

Cmg(m
′, 0) + δg0δmm′

w

2
cos(γmd)

]

. (2.43)

Here, Qs
m′(p) is the base component obtained from (2.24) and (2.26), and Cmg(m

′, g′) is given

as

Cmg(m
′, g′)=(1−δg0)

i

2π

sin(γm′d)

γm′

e−ip(g−g′)L

∫ ∞

−∞
β0(s

′)sm(−s′)sm′(s′)eis
′(g−g′)Lds′

−δgg′δmm′

w

2
cos(γmd), (2.44)
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Figure 2.3 Relative diffraction power against the angle of incidence θ for depths
d = 0.1λ(upper figure), 0.542λ(lower figure) with period L = 2λ and width w = 1.3λ,
λ is wavelength. Power of incident wave is normalized to 1. The line ’(0)’ means
the relative power of the 0th order Floquet mode, i.e, Re[β0(p)]|A0|2/β0(p), and the
line ’(1)’ that of the 1st order Floquet mode, and so on. In the upper figure for
d = 0.1λ, ’[x5]’ means that values are multiplied by 5 and ’[x20]’ means that values
are multiplied by 20.

where the integral can be easily evaluated numerically because the integrand decays proportional

to 1/s′3 when |s′| → ∞. Here, Cmg(m
′, g′) represents coupling between the m′th guided mode

at the g′th groove and the mth guided mode at the gth groove. Note that the integral part of

Cmg(m
′, g′) is independent of p. which means that properties of such coupling are determined

only by the geometry of the grooves. We will calculate Cmg(m
′, g′) numerically to solve (2.43)

for the perturbed component q
(g)
m (p), in terms of which a(s|p) is calculated.

Single scattering approximation On the other hand, if q
(g)
m (p) is small, the approximated

amplitude of the scattered wave â(s|p) could be calculated from (2.40) only with Qs
m(p) as

â(s|p) = − 1

2π

∞
∑

m=1

sm(p+ s)
sin(γmd)

γm
Qs

m(p), (2.45)
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Figure 2.4 Optical theorem against the angle of incidence θ for widths w = 0.7λ,
1.0λ, 1.3λ with period L = 2λ, depth d = 0.1λ(upper figure) and d = 0.542λ(lower
figure), λ is wavelength. Total scattering cross section Φs is drawn with line, while
the reduction of scattering amplitude Pc is shown with dots.

which we call the single scattering approximation. â(s|p) is written only by the base component

Qs
m(p) neglecting q

(g)
m (p), which is the effect of coupling between neighboring grooves. We

will compare this single scattering approximation â(s|p) with numerical solution a(s|p) in what

follows.

2.5 Numerical examples

Let us obtain some numerical examples for L = 2λ.

Since (2.43) is a linear equation for infinitely many unknown q
(g)
m (p), it is still an open

question how to solve (2.43). However, we attempt to solve this by use of truncation. We

introduce the truncation number Nd of the diffraction orders, the truncation number Nm of the
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Figure 2.5 Differential scattering cross section σ(φ|θ) for widths w = 0.7λ, 1.0λ,
1.3λ with period L = 2λ, and depth d = 0.1λ, angle of incidence θ = 60◦, λ is
wavelength. Note that σ(φ|θ), which is devided by the period L, has no dimension,
since the amplitude of the scattering a(s|p) and k has the dimension of [m] and
[m−1], respectively (See eq. (2.37)).

guided modes inside the groove and the number of the grooves Ng. This means that we assume

An(p) = 0, |n| > Nd,
Qs

m(p) = 0, m > Nm,

q
(g)
m (p) = 0, |g| > Ng, m > Nm,

(2.46)

in the summation (2.24) and (2.26) and we take into account the perturbed effect in the grooves

between g = −Ng and Ng, In this case, we set

Nd = 7, Nm = 15, Ng = 7. (2.47)

Thus, [An(p)] becomes a (2Nd+1) vector, [Qs
m(p)] becomes anNm vector and [q

(g)
m (p)] becomes an

(Nm)× (2Ng +1) matrix in the calculation below. We numerically calculate the base component

Qs
m(p) and Cmg(m

′, g′) to solve (2.43) for the perturbed component q
(g)
m (p). Then, we obtain a

numerical solution a(s|p) to calculate the optical theorem and the scattering cross section.

First, we consider the perfectly periodic case. Figure 2.3 illustrates the relative diffraction

power against the angle of incidence θ for the depths d = 0.1λ (upper figure) and d = 0.542λ

(lower figure) with the width w = 1.3λ. Note that with the depth d = 0.542λ the lowest

guided mode l = 1 becomes resonant, that is, sin(γ1d) = 0. The power of incident wave is

normalized to 1. The line ’(0)’ means the relative power of the 0th order Floquet mode, i.e,

Re[β0(p)]|A0|2/β0(p), and the line ’(1)’ that of the 1st order Floquet mode, and so on. The

energy error is always less than 10−14 in these cases. It suggests that the truncation numbers

Nd and Nm are sufficient for the perfectly periodic case. For d = 0.1λ, the power of the 0th

mode is quite large. However, for d = 0.542λ, the powers of the −2nd mode and the −3rd mode

become large and that of the 0th mode decreases when the angle of incidence is between 30◦

and 70◦.

For the case with single defect, we calculate the optical theorem by truncating the number of

the grooves with Ng. Figure 2.4 illustrates the total scattering cross section Φs and the reduction

of the scattering amplitude Pc against the angle of incidence θ for the widths w = 0.7λ, 1.0λ,
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Figure 2.6 Differential scattering cross section σ(φ|θ) when the widths of the
groove are relatively small(w = 0.1λ and 0.5λ) with period L = 2λ, angle of incidence
θ = 60◦ and depths d = 0.1λ and 0.2λ, λ is wavelength.

1.3λ with the depths d = 0.1λ (upper figure) and 0.542λ (lower figure). The total scattering

cross section is drawn with lines, while the reduction of scattering amplitude is shown with dots.

In both figures, the total scattering cross section Φs almost agrees with the reduction of the

scattering amplitude Pc in three cases of w. However, there are some cases in which relative

error Erropt = |(Ψs − Pc)/Pc| becomes large. For d = 0.1λ, Erropt is less than 0.01, but, it

becomes approximately 0.02 when θ is close to 60◦ where the 1st mode appears and the −3th

mode disappears. For d = 0.542λ, Erropt is less than 0.02, but, it becomes approximately 0.1

when θ is close to 60◦, and becomes approximately 0.2 when θ is close to 90◦ where the 2nd

mode appears and the −2nd mode disappears. When θ < 20◦, Erropt increases up to 0.1 for

both cases of d. These facts suggest that the truncation in (2.43) gives a reasonable solution

in general, but is not good enough for several cases. Thus, practical methods of approximation

must be studied to solve (2.43).

Figure 2.5 illustrates the differential scattering cross section σ(φ|θ) for the widths w = 0.7λ,

1.0λ, 1.3λ with the depth d = 0.1λ and the angle of incidence θ = 60◦. The differential scattering

cross section is determined by sm(q) in (2.40), which is the spectrum of the groove with the width

w. Figure 2.6 illustrates σ(φ|θ) when the widths of the groove are relatively small (w = 0.1λ and

w = 0.5λ) with the angle of incidence θ = 60◦. Calculations are done for two cases of the depths

d = 0.1λ and 0.2λ. For w = 0.1λ, which is much smaller than the half wavelength, all order

guided modes inside the grooves become cutoff. This makes little difference in the differential

scattering cross section for different values of the depth d. Figure 2.7 illustrates σ(φ|θ) for the

angles of incidence θ = 90◦, 60◦, 30◦ with the width w = 1.3λ and the depths d = 0.1λ (upper

figure) and 0.542λ (lower figure). It is found that for d = 0.1λ, scattering is relatively strong

in the direction of specular reflection. However, for d = 0.542λ, the differential scattering cross

section seems symmetric with respect to φ = 90◦. It may be due to the fact that the resonance

inside the grooves depends on the depth d and the width w, but is independent of the angle of

incidence θ. In these cases, the term related to the second order guided mode (mainly s2(p+ s))

in (2.40) becomes large. For θ = 90◦, the scattering amplitude becomes small due to the fact

that Qs
2 vanishes for the normal incidence and the term related to the third order guided mode

determines the scattering property. Figure 2.8 illustrates σ(φ|θ) for the depths d = 0.1λ, 0.271λ,
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Figure 2.7 Differential scattering cross section σ(φ|θ) for angles of incidence θ =
90◦, 60◦, 30◦ with period L = 2λ, width w = 1.3λ, depth d = 0.1λ(upper figure)
and 0.542λ(lower figure), λ is wavelength.

0.542λ with w = 1.3λ and θ = 60◦. For d = 0.1λ and 0.271λ, the differential scattering cross

section increases as the depth d becomes large and the forward scattering around the direction

of the specular reflection is relatively strong. However, for d = 0.542λ, the differential scattering

cross section is smaller than that for d = 0.271λ around the direction of specular reflection.

Figure 2.9 examines the single scattering approximation (2.45). Comparison of the numerical

solution with the single scattering approximation is illustrated for the depths d = 0.1λ (upper

figure) and 0.542λ (lower figure) with the width w = 1.3λ and θ = 60◦. For d = 0.1λ, the

single scattering approximation (2.45) almost agrees with the numerical solution, which takes

q
(g)
m (p) into account. However, for d = 0.542λ, the agreement becomes worse since some ripples

appear in the scattering cross section due to the effect of the perturbed component q
(g)
m . This

may suggest that when the depth of the grooves is not large the interaction between neighboring

grooves may be small for TE incidence.
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Figure 2.8 Differential scattering cross section σ(φ|θ) for depths d = 0.1λ, 0.271λ,
0.542λ with period L = 2λ, and width w = 1.3λ and angle of incidence θ = 60◦, λ
is wavelength.

2.6 Conclusions

We considered a one-dimensional periodic grating with single defect, of which position is known.

We took TE plane wave as an incidence, wrote the wavefield above the grooves as a perturbation

from the diffracted wave for the perfectly periodic case. We derived two sets of equations to

determine the wavefield from the boundary condition, and we obtained a new representation of

the optical theorem, which relates the total scattering cross section with the reduction of the

scattering amplitude. Further, we proposed the single scattering approximation given only by

the base components for the perfectly periodic grating.

We found that the differential scattering cross section is determined by the spectrum of

the groove. This property may be applicable to the measurement of the condition of surfaces

combining with the other polarization. We found that when a guided mode in the grooves

becomes resonant, the differential scattering cross section becomes almost symmetric even for

oblique incidence. We found the single scattering approximation is useful when the depth of the

groove is small.

We obtained the scattered wave by use of truncation, and there are several cases in which

relative error with respect to the optical theorem becomes large. This means that our truncation

method is not good enough and practical methods of approximation must be studied to obtain

a highly accurate solution.

Our discussion was limited to the case of TE incidence. It can be extended to TM case,

which will be studied in the following chapter.
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Figure 2.9 Comparison of numerical solution with the single scattering approx-
imation for depths d = 0.1λ(upper figure) and 0.542λ(lower figure), for period
L = 2λ, width w = 1.3λ and angle of incidence θ = 60◦, λ is wavelength. The
approximation is shown in dotted lines.





Chapter 3

Scattering of TM plane wave from

periodic grating with single defect

3.1 Introduction

In the previous chapter, we have discussed the properties of diffraction and scattering of TE

plane wave from periodic rectangular grooves with single defect. We successfully obtained the

scattered wave as variation from the perfectly periodic case. In this chapter, we will study the

TM case.

When a TE plane wave is incident, the scattered wave from a single defect may decay rapidly

along the surface. This means that the scattered wave does not affect the distant grooves, thus

we have solved an equation for the perturbed component of the guided modes inside the grooves.

However, when a TM plane wave is incident, the scattered wave may decay slowly for |x| → ∞
and affect the guided modes in the grooves far from the defect. Therefore, for the TM case,

we will solve an integral equation for the scattered wave in the spectral domain by use of the

Fourier transform. This point is different from the solution in Chapter 2.

We write the wavefield both above the surface and inside the grooves as a variation from the

perfectly periodic case, and obtain a set of equations for the scattered wave and the perturbed

component of the guided modes from the Neumann boundary condition. Then, we derive an

integral equation for the scattering amplitude in the spectral domain. Then, we numerically

obtain the scattering amplitude by use of truncation and the iteration method starting from the

diagonal approximation solution as an initial value of the integral. The differential scattering

cross section and the optical theorem are calculated in terms of the scattering amplitude and

are illustrated in figures.

We begin in Section 3.2 with the mathematical formulation of the perfectly conductive

periodic grating with single defect, which is made up with a periodic array of rectangular grooves

and a defect where a groove is not formed. In Section 3.3, the diffracted wave and the base

component of the guided modes are obtained for the perfectly periodic grating. In Section 3.4,

the scattered wave and the perturbed component of the guided mode are represented in terms

of the base component of the guided modes obtained in Section 3.3. To determine the scattered

wave, we derive an integral equation for the scattered wave, which is solved by the iteration

method. Section 3.5 discusses the physical mechanisms of Wood’s anomaly and incoherent

Wood’s anomaly. In Section 3.6, we obtain a numerical solution of the scattered wave by use of

iteration method employing the diagonal approximation solution as an initial guess, in terms of

33
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which the optical theorem and the differential scattering cross section are calculated with such an

amplitude of the scattered wave and are illustrated in figures. As is well known, in the perfectly

periodic case, Wood’s anomaly appears for critical angles of incidence as rapid variations of the

diffraction powers. In the case of a periodic grating with defect, however, another anomaly, which

we call incoherent Wood’s anomaly, appears at critical angles of scattering as rapid variations in

the angular distribution of the scattering. In this chapter, we discuss the physical mechanisms of

Wood’s anomaly and incoherent Wood’s anomaly. Incoherent Wood’s anomaly has been found

in cases of periodic random surfaces [6, 8]. However, we newly find that such anomaly appears

in the case of a periodic surface with single defect.

3.2 Periodic grating with single defect

Let us consider a periodic array of rectangular grooves with single defect at x = 0 (See figure

3.1). We write such an array as

z = f(x) = fp(x) + d · u(x|w), (3.1)

fp(x) = −d
∞
∑

g=−∞

u(x−gL|w), (3.2)

where L is the period, w and d are the width and the depth of a groove. fp(x) is a perfectly

periodic surface without defect and the second term in (3.1) expresses the defect. Here, u(x|w)

is a rectangular groove defined as

u(x|w) =

{

1, |x| ≤ w/2,
0, |x| > w/2.

(3.3)

It has the orthogonal property such that

u(x− gL|w)u(x − g′L|w) = δgg′u(x− gL|w), (g, g′ = 0,±1,±2, · · ·), (3.4)

where δgg′ is Kronecker’s delta. For convenience, we put kL and kw as

kw = π/w, kL = 2π/L, (3.5)

and we define an auxiliary function cm(q) as follows.

cm(q) =

∫ ∞

−∞
u(x|w) cos(mkw(x+ w/2))e−iqxdx, (3.6)

where m is integer. Note that cm(q) ∼ 1/q when |q| becomes large.

We denote the y component of the magnetic field by Ψ(x, z), which satisfies the Helmholtz

equation
[

∂2

∂x2
+

∂2

∂z2
+ k2

]

Ψ(x, z) = 0, (3.7)

in the region z > f(x). Here, k = 2π/λ is wavenumber and λ is wavelength. On the surface

z = f(x), the wavefield Ψ(x, z) satisfies the Neumann condition,

∂Ψ(x, z)

∂n

∣

∣

∣

∣

z=f(x)

= 0. (3.8)
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Figure 3.1 Scattering of TM plane wave from a periodic grating with single defect.
The surface is a periodic array of rectangular grooves and has a defect where a groove
is not formed. ψi(x, z) is the incident wave and ψs(x, z) is the scattered wave. θ is
the angle of incidence, φ is the scattering angle, L is the period of surface, w and d
are the width and the depth of groove.

We write the incident plane wave ψi(x, z) as

ψi(x, z) = eipxe−iβ0(p)z, p = −k cos θ, (3.9)

βn(p) = β0(p+nkL) =
√

k2−(p+nkL)2, (3.10)

Im[βn(p)] ≥ 0, (n = 0,±1,±2, · · ·), (3.11)

where θ is the angle of incidence (See Figure3.1) and Im stands for the imaginary part.

3.3 Diffraction by a perfectly periodic grating

First, we consider a perfectly periodic case. For the region z ≥ 0, we write the y component

of the magnetic field Ψ̂1(x, z) as a sum of the incident wave ψi(x, z) and the diffracted wave

ψd(x, z) due to the periodicity of the surface,

Ψ̂1(x, z) = eipxe−iβ0(p)z + ψd(x, z), (3.12)

ψd(x, z) = eipx
∞
∑

n=−∞

An(p)einkLx+iβn(p)z. (3.13)

Here, An(p) is the amplitude of the nth order Floquet mode. On the other hand, by use of the

modal expansion method [30], we write the y component of the magnetic field inside the grooves

Ψ̂2(x, z) as a sum of the guided modes,

Ψ̂2(x, z) =

∞
∑

g=−∞

u(x− gL|w)eipgL
∞
∑

m=0

Qc
m(p)
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× cos(mkw(x+ w/2 − gL)) cos(γm(z + d)), (3.14)

γm =
√

k2 − (mkw)2, (3.15)

where Qc
m(p) is the amplitude of the guided mode which we call the base component, and γm is

the propagation constant of the mth guided mode. Note that the guided mode number starts

from m = 0 in the TM case.

The normalized energy conservation relation for the perfectly periodic case can be obtained

as

1 =

∞
∑

n=−∞

Re[βn(p)]|An(p)|2/β0(p), (3.16)

which is same as (2.21) for the TE case. Re denotes the real part and Re[βn(p)]|An(p)|2/β0(p)

is the nth order relative diffraction power. The normalized energy conservation relation will be

illustrated below.

Solution for a perfectly periodic grating Let us determine An(p) and Qc
m(p) from the

continuity of both the magnetic field and the electric field at z = 0.

We start with a boundary condition [∂Ψ̂1/∂z − ∂Ψ̂2/∂z]|z=0 = 0. Multiplying this by

e−i(p+nkL)x and integrating over one period L, we get

iβn(p)LAn(p) − iβ0(p)Lδn0 = −
∞
∑

m=0

γmQ
c
m(p) sin(γmd)cm(p+ nkL). (3.17)

Next, we have another boundary condition
∑∞

g=−∞ u(x−gL|w)[Ψ̂1(x, 0)−Ψ̂2(x, 0)] = 0. Taking

Fourier transform of this after multiplying u(x− gL|w) × cos(mkw(x+ w/2 − gL)), we obtain

∞
∑

n=−∞

An(p)cm(−p−nkL) + cm(−p) =
wQc

m(p)

2
cos(γmd)(1 + δm0). (3.18)

Here, (3.17) and (3.18) are infinitely dimensional equations. By use of truncation [29, 30], we

will numerically solve (3.17) and (3.18) to obtain An(p) and Qc
m(p).

In what follows, we always consider a non-resonance case, that is, cos(γmd) 6= 0 for any m.

Eliminating Qc
m(p) from (3.17) and (3.18), we get an equation for An(p) as

∞
∑

l=−∞

[iβn(p)δnl + kLM(p+ nkL, p+ lkL)]Al(p) = iβ0(p)δn0 − kLM(p+nkL, p), (3.19)

where kL is defined in (3.5), iβ0(p)δn0 is an excitation by the incident wave. and M(s, s′) is a

coupling factor defined as

M(s, s′) =

∞
∑

m=0

γm tan(γmd)

πw(1 + δm0)
cm(s)cm(−s′), (3.20)

where the difference s − s′ works as a Bragg vector. When the depth of the grooves d is

small, M(s, s′) becomes small. We regard (3.19) as an infinitely dimensional matrix equation

for An(p). Thus, the inverse matrix of [iβn(p)δnl+kLM(p+nkL, p+lkL)] can be considered as

Green’s function of the periodic grating in the spectral domain. Since the periodic surface fp(x)

has a discrete spectrum, M(p+ nkL, p+ lkL) represents the discrete Bragg coupling from Al(p)



3.4 Scattering from a periodic grating with single defect 37

to An(p), where (p+nkl)−(p+lkL) = (n−l)kL is the Bragg vector transforming the wave vector

p+ lkL of Al(p) to p+nkL of An(p). When p = −k cos θ ≈ ±k+ lkL (l = ±1,±2, · · ·) holds, i.e.,

θ ≈ cos−1(∓1− lkL/k), a well-known phenomenon, so-called Wood’s anomaly [28,29], occurs as

a rapid variation of the diffraction amplitude. However, as far as the author knows, there have

been few discussions on the physical mechanism of Wood’s anomaly in the periodic cases. We

will point out that such an anomaly is caused by a coupling with guided surface waves [8] in

what follows.

In the single defect case, however, the surface f(x) has a continuous component in the

spectrum. Thus, a continuous Bragg coupling appears in the case with defect, as is discussed

below.

3.4 Scattering from a periodic grating with single defect

The single defect in a periodic grating generates the scattering. We express such scattering as

a variation from the diffracted wave for the perfectly periodic case. Thus, we write for z > 0,

Ψ1(x, z) = Ψ̂1(x, z) + ψs(x, z), (3.21)

ψs(x, z) =

∫ ∞

−∞
a(s|p)ei(p+s)x+iβ0(p+s)zds, (3.22)

where ψs(x, z) is the scattered wave due to the defect and a(s|p) is the scattering amplitude.

Since ψs(x, z) is scattered from the single defect, we assume that ψs(x, z) satisfies Sommerfeld’s

radiation condition, that is, ψs(r cos θ, r sin θ) ∼ f(θ)eikr/
√
kr (r =

√
x2 + z2) and is expected

to decay at kr → ∞.

On the other hand, we write the wavefield inside the grooves Ψ2(x, z) as a sum of the wavefield

for the perfectly periodic grating and the fluctuated term ψG(x, z) due to the defect.

Ψ2(x, z) = Ψ̂2(x, z) + ψG(x, z), (3.23)

ψG(x, z)=

∞
∑

g=−∞

u(x−gL|w)eipgL
∞
∑

m=0

q(g)
m (p) cos(mkw(x+w/2−gL)) cos(γm(z+d))

−u(x|w)

∞
∑

m=0

Qc
m(p) cos(mkw(x+w/2)) cos(γm(z+d)). (3.24)

Here, q
(g)
m (p) is the perturbed amplitude of the mth guided mode in the gth groove. Note that

q
(0)
m (p) ≡ 0 for all m since a groove is not formed at g = 0.

Optical theorem and scattering cross section The optical theorem for the single defect

case can be obtained from the identity Im[divΨ1gradΨ∗
1] = 0 as [56]

Pc = Φs, (3.25)

Pc = −2

k

∞
∑

n=−∞

Re[β∗
n(p)]Re[a(kLn|p)A∗

n(p)], (3.26)

Φs =
1

k

∫ ∞

−∞
Re[β0(p+ s)]|a(s|p)|2ds =

L

2π

∫ π

0
σ(φ|θ)dφ, (3.27)
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which is an extension of the forward scattering theorem [15, 57]. Here, the asterisk denotes the

complex conjugate, Pc is related to the reduction of the scattering amplitude, Φs expresses the

total scattering cross section and σ(φ|θ) is the differential scattering cross section per period

σ(φ|θ) =
2πk sin2 φ |a(−k cosφ− p|p)|2

L
, (3.28)

where φ = cos−1(−(p + s)/k) is a scattering angle (See Fig. 1). Note that σ(φ|θ) has no

dimension. The optical theorem (3.25) can be used to estimate accuracy of a numerical solution.

Scattered wavefield by single defect Let us obtain equations for a(s|p) and q
(g)
m (p) from

the continuity of both the magnetic field and the electric field. From [∂Ψ1/∂z−∂Ψ2/∂z]|z=0 = 0,

we have [∂ψs/∂z − ∂ψG/∂z]|z=0 = 0. Taking Fourier transform of this relation and multiplying

e−i(p+s)x/2π, we obtain an equation for a(s|p) and q
(g)
m (p) as

iβ0(p+s)a(s|p)=
1

2π

∞
∑

m=0

γmcm(p+s) sin(γmd)

[

Qc
m(p)−

∞
∑

g=−∞

e−isgLq(g)
m (p)

]

. (3.29)

On the other hand, from
∑

g 6=0 u(x− gL|w)[Ψ1(x, 0)−Ψ2(x, 0)] = 0, we obtain
∑

g 6=0 u(x−
gL|w)[ψs(x, 0)−ψG(x, 0)] = 0. Then, taking Fourier transform of this after multiplying u(x −
gL|w) × cos(mkw(x+ w/2 − gL)), we obtain

(1 − δg0)

∫ ∞

−∞
cm(−p−s)eisgLa(s|p)ds =

w

2
q(g)
m (p) cos(γmd)(1 + δm0). (3.30)

Here, (3.29) and (3.30) are infinitely dimensional. However, these equations can be solved

approximately by use of truncation.

Substituting (3.30) into (3.29), we get

iβ0(p+s)a(s|p)=
1

2π

∞
∑

m=0

γmcm(p+s) sin(γmd)

×
(

Qc
m(p)−

∞
∑

g=−∞

e−isgL 1 − δg0
w
2 cos(γmd)(1+δm0)

∫ ∞

−∞
cm(−p−s′)eis′gLa(s|p)ds′

)

. (3.31)

Taking the sum on g and using the Fourier series representation of delta pulse series

∞
∑

g=−∞

eisgL = kL

∞
∑

l=−∞

δ(s−lkL), (3.32)

then we get an integral equation for the scattering amplitude a(s|p) as

∞
∑

l=−∞

[iβ0(p+ s)δl0 + kLM(p+ s, p+ s+ lkL)]a(s+lkL|p)

=
∞
∑

m=0

γm

2π
cm(p+ s) sin(γmd)Q

c
m(p) +

∫ ∞

−∞
M(p+ s, p+ s′)a(s′|p)ds′, (3.33)

which is analogous in form with (3.19). Here, M(p + s, p + s + lkL) on the left-hand side

represents a discrete Bragg coupling due to the surface periodicity, whereas M(p+ s, p+ s ′) on

the right-hand side is a continuous coupling due to the single defect.
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Figure 3.2 (a) Free guided waves propagating into the x direction along a per-
fectly conductive flat surface without any roughness. Such free guided waves have
the Rayleigh wavenumber +k and −k, and satisfy the Helmholtz equation (3.7)
and the Neumann boundary condition ∂Hy/∂z = 0 at z = 0. (b) Guided surface
waves propagating along the perfectly conductive grating. Guided surface waves
have complex propagation constants ±sp into the x direction.

We regard (3.33) as an infinitely dimensional matrix equation for a(s|p). Thus, the inverse

matrix of [iβ0(p+s)δl0 +kLM(p+s, p+s+ lkL)] may be considered as Green’s function of the

periodic grating with single defect. When p+ s = −k cosφ ≈ ±k + lkL (l = ±1,±2, · · ·) holds,

the amplitude of the scattered wave into the direction φ ≈ cos−1(∓1− lkL/k) changes rapidly as

a function of the scattering angle φ, which we call incoherent Wood’s anomaly. Such an anomaly

may occur due to a strong coupling of the scattered wave with guided surface waves. We will

discuss the physical mechanism of incoherent Wood’s anomaly and show numerical examples of

the anomaly in the angular distribution of the scattering below.

In what follows, we solve (3.33) by iteration.

3.5 Wood’s anomaly and Incoherent Wood’s anomaly

When βn(p) in (3.19) vanishes, the diffraction amplitude An(p) may become large in a shallow

case with d� λ. As is well known, this causes Wood’s anomaly, which appears at critical angles

of incidence as rapid variations of the diffraction powers against the angle of incidence.



40 Ch.3 Scattering of TM plane wave from periodic grating with single defect

N<O PN<ORQ�OMS Q�O

TVU WYX[Z\

T U WR].Z\

N<ORQ�^7O S

Q�OP Q�O_N`OMSN<O

T U \ ]aZW

T U \ X[ZW

Q�O_N`^�O S

bdc@eKf#g5h
i4c7j%k�g�l�m6l+nYk�o/p1q7r/g3f#p�fJs�r/i.n0c7j�p�tEc2u�p

b0v�eKf#g5h�iwc�j�k�g�l�m6l+n_k�o/p1q7r/g�f/p�fJs.r!i.n0c7j�p)tKc2u7p

txg5k�o6k�o!p1tKc2u7p�mMr/y`v�p�iEm/pBc+i N<O

txg5k�o6k�o/p1tEc2u�p�mMr/y`v�p�iEm/pBc+i Q�O

N<ORQFz7OMS

Q�O_N{z7OMS

| Q�}

| Q�}

Figure 3.3 Incoherent Wood’s anomaly at critical angles of scattering (a) φ
[+1]
−

and φ
[+2]
− and (b) φ

[−1]
+ and φ

[−2]
+ for L = 1.3λ. (a) Guided surface wave with the

wavenumber near −k is diffracted into −k+kL and −k+2kL by the periodic grating.
It is also diffracted to −k + 3kL in the evanescent region. (b) Guided surface wave
with the wavenumber near +k is diffracted into +k−kL and +k−2kL by the periodic
grating. It is also diffracted to +k − 3kL in the evanescent region.
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First, we point out a mathematical fact. In a flat surface case without any roughness, TM

plane waves with the Rayleigh wavenumber +k and −k are the exact solutions of the Helmholtz

equation (3.7) and satisfy the Neumann boundary condition on the surface (See figure 3.2 (a)):

Hy = e±ikx±iβ0(±k)z = e±ikx (3.34)

∂Hy

∂z
= 0 (z = 0) (3.35)

Therefore, a plane wave with the Rayleigh wavenumber +k or −k is a free guided wave prop-

agating along the flat surface [20, 58]. Such a free guided wave does not exist in the TE case.

When the surface has a periodic structure, such a free guided wave is scattered by the sur-

face roughness and decays exponentially with propagation distance. As a result, it becomes

a guided surface wave with a complex propagation constant +sp or −sp into the x direction

(See figure 3.2 (b)). Mathematically, such ±sp are given as complex roots of the determinant

of [iβn(p)δnl +kLM(p+nkL, p+ lkL)]. When the surface roughness is sufficiently small, how-

ever, we may expect that the complex propagation constant sp exists very close to the Rayleigh

wavenumber k †. In the case of a perfectly periodic surface, the surface has a discrete spectrum,

and such a guided surface wave is excited by the incident wave due to the discrete Bragg cou-

pling. Therefore, such excitation takes place only for the critical angles of incidence θ
[l]
W , which

are determined by

k2 − (−k cos θ
[l]
W − lkL)2 = 0, (l = ±1,±2, · · ·). (3.36)

When the angle of incidence θ is critical, such a guided surface wave is excited and may have

a large amplitude. Then, it is scattered by the periodic surface again. Thus, the multiple

scattering takes place for a critical angle of incidence, which causes Wood’s anomaly. As a

result, Wood’s anomaly appears as rapid variations of the diffraction powers. Note that, at

θ = θ
[l]
W , the lth order Floquet mode becomes cutoff.

In the case of a periodic grating with single defect, another anomaly, which we call incoherent

Wood’s anomaly, appears at several angles of scattering as rapid variations in the angular distri-

bution of the scattering. The surface spectrum has a discrete component due to the periodicity

and a continuous component due to the defect. Because of the scattering by the continuous

component, such a guided surface wave is always excited by the incident plane wave with any

angle of incidence and then diffracted into discrete directions by the discrete component. To

describe these processes, we introduce a critical wavenumber s
[l]
± as

s
[l]
± = ±k − p+ lkL, (l = 0,±1,±2, · · ·). (3.37)

Let us consider the solution a(s|p) of (32). When β0(p + s) = 0 and s = s
[0]
± = ±k − p,

the solution a(s|p) = a(s
[0]
± |p) has a large amplitude, because M(p + s, p + s + lkL) is small

in the shallow case. We regard a(s
[0]
± |p) as the amplitude of the guided surface wave, which is

diffracted into discrete directions. This means that a(s
[l]
± |p) = a(±k − p + lkL|p) could have a

large amplitude for any integer l, due to the discrete Bragg coupling from s
[0]
± = (±k − p) to

s
[l]
± = (±k − p+ lkL). Thus, we may observe incoherent Wood’s anomaly at a critical angle of

†Since this complex propagation constant sp should exist very close to the Rayleigh wavenumber k in the
shallow case, we assume Re(sp) ≈ k and put such complex sp as real k in the following discussion for simplicity.
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scattering φ
[l]
± (See figure 3.3),

p+ s
[l]
± = ±k + lkL = −k cosφ

[l]
± , (3.38)

φ
[l]
± = cos−1

(

∓1 − l
λ

L

)

, (l = ±1,±2, · · ·), (3.39)

where the signs ± and ∓ go together in (5.65). In the numerical results below, we will see that

|a(s|p)| has a steep peak or dip at s=s
[l]
± =±k + lkL. Note that s

[l]
± and φ

[l]
± only depend on the

period L and the wavelength λ and are independent of the angle of incidence θ.

Incoherent Wood’s anomaly has been found in cases of periodic random surfaces [6,8]. How-

ever, we newly show that it takes place in such a deterministic case as a periodic surface with

single defect. We also note that incoherent Wood’s anomaly appears in the TM case but does

not occur in the TE case [56].

3.6 Numerical examples

3.6.1 Perfectly periodic case

Here, we obtain some numerical examples for the perfectly periodic case. We determine the

diffraction amplitude An(p) and the base component Qc
m(p) by introducing the truncation num-

bers Nd and Nm. Nd is the truncation number of the diffraction orders and Nm is that of the

guided modes inside the groove in the summation (3.17) and (3.18), which means that we assume

An(p) = 0, |n| > Nd,
Qc

m(p) = 0, m > Nm.
(3.40)

In this paper, we set

Nd = 10, Nm = 20. (3.41)

Thus, [An(p)] becomes a (2Nd+1)-vector, [Qc
m(p)] becomes an (Nm+1)-vector in the calculation

below.

Figure 3.4 illustrates the relative diffraction power against the angle of incidence θ for the

periods L = 1.3λ (upper figure) and L = 1.7λ (lower figure) with the width w = 0.7λ and the

depth d = 0.1λ. The incident power is normalized to 1. The line ’(0)’ means the relative power

of the 0th order Floquet mode, i.e, Re[β0(p)]|A0|2/β0(p), and the line ’(1)’ that of the 1st order

Floquet mode, and so on. The energy error defined in (2.22) is always less than 10−10, which

suggests that the truncation numbersNd and Nm in (3.41) are sufficient for the perfectly periodic

case. For L = 1.3λ, the diffraction power changes rapidly near the critical angles θ
[−2]
W = 57.42◦

and θ
[1]
W = 76.66◦ given by (3.36). For L = 1.7λ, Wood’s anomaly appears at critical angles

θ
[−3]
W = 40.12◦, θ

[1]
W = 65.68◦ and θ

[−2]
W = 79.84◦.

3.6.2 Single defect case

Let us solve the integral equation (3.33) to obtain numerical examples for the single defect case.

Here, we only consider the case with w = 0.7λ.

Since (3.33) is an equation for infinitely many unknowns and has an integral term including

a(s′|p), it is still an open question how to solve (3.33). In this paper, we attempt to solve (3.33)

approximately by the iteration method. However, we introduce a single scattering approximation

and a diagonal approximation.
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Figure 3.4 Relative diffraction power against the angle of incidence θ for periods
L = 1.3λ(upper figure), 1.7λ(lower figure) with depth d = 0.1λ and width w =
0.7λ. The line ’(0)’ means the relative power of the 0th order Floquet mode, i.e,
Re[β0(p)]|A0|2/β0(p), and the line ’(1)’ that of the 1st order Floquet mode, and so on.
Wood’s anomaly occurs at angles where one particular diffraction mode disappears.
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Single scattering approximation First, neglecting M(p + s, p + s + lkL) and the integral

term in (3.33), we obtain a single scattering solution aS(s|p) as

aS(s|p) =
1

2π

Nm
∑

m=0

γmcm(p+ s) sin(γmd)Q
c
m(p)

iβ0(p+ s)
, (3.42)

where
∑Nm

m=0γmcm(p+s) sin(γmd)Q
c
m(p) represents the effect of the single defect, however, the

discrete Bragg coupling and the continuous Bragg coupling are neglected. Since the factor

1/β0(p + s) is the free space Green’s function in the spectral domain, the single scattering

approximation gives non-vanishing amplitudes for the grazing limit of the scattering angles and

no peaks nor dips appear in the differential scattering cross section, as is illustrated in Figure

3.6. It is due to the fact that (3.42) does not involve effects of the diffraction by the periodic

surface.

Diagonal approximation Next, neglecting the integral term in (3.33), we obtain an equation

for the diagonal approximation aD(s|p) with the truncation numbers Nl and Nm as

Nl
∑

l=−Nl

[iβ0(p+ s)δl0 + kLM(p+ s, p+ s+ lkL)] aD(s+ lkL|p)

=

Nm
∑

m=0

γm

2π
cm(p+ s) sin(γmd)Q

c
m(p), (3.43)

which is solved numerically. Such the diagonal approximation is analogous to the Gaussian

random rough case discussed in [53]. The diagonal approximation aD(s|p) is then used as an

initial guess of the iterative solution below.

Numerical calculation by iteration To solve (3.33), however, we rewrite (3.33) as an iter-

ative form,

Nl
∑

l=−Nl

[iβ0(p+ s)δl0 + kLM(p+ s, p+ s+ lkL)] a(N)(s+ lkL|p)

=

Nm
∑

m=0

γm

2π
cm(p+ s) sin(γmd)Q

c
m(p) +

∫ ξ−p

−ξ−p
M(p+ s, p+ s′)a(N−1)(s′|p)ds′, (3.44)

where (N) is the iteration number and ξ is the truncated bandwidth of a(s|p). We set the initial

value as a(0)(s|p) = aD(s|p) and iteration is repeated until N = Nite. In this paper, we set Nl,

ξ and Nite as

Nl = 11, ξ = 3k, Nite =







21, (d = 0.05λ),
31, (d = 0.1λ),
51, (d = 0.125λ, 0.15λ).

(3.45)

Figure 3.5 illustrates the diagonal approximation aD(s|p) against wavenumber s with L =

1.3λ, d = 0.1λ, θ = 90◦ (p = −k cos θ = 0). As is discussed above, aD(s|p) becomes large at
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Figure 3.5 Diagonal approximation aD(s|p) with L = 1.3λ, d = 0.1λ, w = 0.7λ

and θ = 90◦ (p = 0). aD(s|p) has steep peaks and dips at s ≈ +k and s ≈ s
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±k + lkL (l = ±1,±2, · · ·).
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Figure 3.6 Comparison of differential scattering cross section σ(φ|θ) by numerical
solution and single scattering approximation with L = 1.3λ, d = 0.1λ and w = 0.7λ
and θ = 60◦. Note that σ(φ|θ), which is devided by the period L, has no dimension,
since the amplitude of the scattering a(s|p) and k has the dimension of [m] and
[m−1] respectively (See eq. (3.28)).
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s ≈ −p + k = +k, which means the guided surface wave propagating along the surface has

a large amplitude at the Rayleigh wavenumber β0(p + s) = 0. Such the guided surface wave

is diffracted by the periodic surface. As a result, aD(s|p) has several steep peaks and dips at

s ≈ s
[l]
± = ±k + lkL (l = ±1,±2, · · ·) given by (3.38), and incoherent Wood’s anomaly appears

in the differential cross section at φ ≈ φ
[l]
± .

Figure 3.6 illustrates the differential scattering cross section σ(φ|θ) with L = 1.3λ, d = 0.1λ

and θ = 60◦. Here, the iterative solution by (3.44) is compared with the single scattering solution

(3.42). We see that, in the differential scattering cross section σ(φ|θ) by the iterative solution,

incoherent Wood’s anomaly appears near the critical angles of scattering, which are calculated

by (5.65) with L = 1.3λ as φ
[−2]
+ = 57.42◦, φ

[1]
− = 76.66◦, φ

[−1]
+ = 103.34◦ and φ

[2]
− = 122.58◦.

It is important to note that the iterative solution a(N)(s|p) gives σ(π|θ) = 0 and σ(0|θ) = 0,

which mean that no scattering takes place into grazing directions due to the periodic surface.

On the other hand, the single scattering approximation aS(s|p) yields no peaks and dips in the

differential scattering cross section σ(φ|θ). But it gives non-vanishing amplitudes for σ(π|θ)
and σ(0|θ). This is because the single scattering approximation neglects the scattering by the

periodic surface. In the following calculation, the iterative solution a(N)(s|p) is used to evaluate

σ(φ|θ). Figure 3.7 illustrates σ(φ|θ) for θ = 76◦ and 60◦ with L = 1.3λ and d = 0.1λ. This

figure shows that the critical scattering angles at which incoherent Wood’s anomaly appears are

independent of the incident angles θ. For θ = 76◦, however, the total scattering cross section

becomes much larger than that with θ = 60◦. This is because θ = 76◦ is close to a critical

angle of incidence θ
[1]
W = 76.66◦. This point will be shown later. Figure 3.8 illustrates σ(φ|θ)

for L = 1.3λ and L = 1.7λ with d = 0.1λ and θ = 60◦. It can be seen that scattering angles

at which incoherent Wood’s anomaly appears depend on the period L and the wavelength λ.

This is because φ
[l]
± is dependent on the period. Figure 3.9 illustrates σ(φ|θ) for d = 0.1λ and

d = 0.05λ with L = 1.3λ and θ = 60◦. Behavior of σ(φ|θ) near φ
[−2]
+ and φ

[1]
− is shown in the

lower figure. It is found that, in the shallow case with d = 0.05λ, anomalous peaks and dips

become narrow and steep.

Figure 3.10 illustrates the total scattering cross section Φs and the reduction of the scattering

amplitude Pc against θ for L = 1.3λ, d = 0.1λ. The total scattering cross section Φs is drawn

with dots, while the reduction of scattering amplitude Pc is shown with line. Pc and Φs becomes

large when the angle of incidence θ is close to one of the critical angles of incidence θ
[1]
W = 76.66◦.

Figure 3.11 shows the normalized optical theorem Pc/Φs for d = 0.05λ, 0.1λ, 0.125λ and 0.15λ

with w = 0.7λ and L = 1.3λ in the upper figure. Behavior of Pc/Φs between θ = 73◦ and

θ = 79◦ is shown in the lower figure. From figure 3.11, it is found that error |1 − Pc/Φs| is less

than 0.1 for any angles of incidence except for ones close to the critical angle of incidence θ
[l]
W

and grazing angle incidence smaller than 10◦. For the incident angles close to θ
[l]
W , error become

large, which suggests that the iterative solution of the integral equation has limitation to apply

and other approaches might be necessary to obtain a highly accurate solution.

3.7 Conclusions

We have considered the scattering of a TM plane wave from a periodic grating with single defect.

We wrote the scattered wave above the grooves as a variation from the diffracted wave for the

perfectly periodic case. Then, we obtained an integral equation for the scattering amplitude,
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Figure 3.7 Differential scattering cross section σ(φ|θ) for θ = 60◦ and 76◦ with
L = 1.3λ, d = 0.1λ and w = 0.7λ.
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which is solved by the iteration method using the diagonal approximation solution as an initial

guess.

We found that incoherent Wood’s anomaly appears in the differential scattering cross section

for the periodic grating with single defect. The critical angles of scattering where incoherent

Wood’s anomaly appears only depend on the period of the grating and the wavelength, and

are independent of the angle of incidence. We pointed out that incoherent Wood’s anomaly is

caused by the diffraction of the guided surface waves.

When the angle of incidence becomes close to one of the critical angles of incidence or close

to a low grazing angle, error with respect to the optical theorem becomes large. This means

that our iterative solution is not good enough for such angles of incidence. Therefore, practical

methods of approximation must be studied to obtain a highly accurate solution.

Our discussion in Chapter 2 and Chapter 3 was limited to the single defect case in the periodic

grating. However, there are other mathematical models of periodic grating with defects: one

is a case with double or finite number of defects of which positions are known. Another model

is a case with random defects, that is, the defect probability is known but their positions are

unknown. It is theoretically interesting to study such periodic gratings with defects. Although

it is practically important to consider a metallic or dielectric grating with single defect for the

optical measurement or inspection, it is still difficult to treat the cases with defects for such

materials. However, these problems are left for the future studies.
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Chapter 4

Diffraction and scattering of TE

plane wave from a binary periodic

random surface

4.1 Introduction

Natural and artificial periodic surfaces often have randomly fluctuating components. For ex-

ample, real gratings are not ideally periodic but have fluctuations due to inaccurate fabrica-

tions [1–4]. Other examples are ocean surfaces which are sometimes modeled by a sinusoidal

surface superimposed with random ripples of small amplitude [61]. Recently, digital recording

devices which store binary random data are widely used. These devices usually record data

by periodically located binary surface deformations, and it has been required higher density

integration of devices and more accuracy in manufacturing processes. Therefore, it has been an

important problem to study the diffraction and scattering from such periodic random surfaces

with binary deformation. Although they are theoretically interesting and practically impor-

tant [5,6], diffraction and scattering from such a binary periodic random surface have not been

extensively studied.

This and the following chapters deal with the scattering of plane waves from a binary periodic

random surface making use of the concept of periodic stationary processes in the probability

theory. This chapter studies the case of TE plane wave incidence. A periodic stationary process

is a non-stationary process [51, 65], of which ensemble average and correlation function are

periodic. We assume that the binary periodic random surface is generated by a stochastic

binary sequence taking only ± 1 with equal probability, shown in figure 4.1. Since such a binary

periodic random surface is simple in structure, it may be easy to fabricate and may be applicable

as a standard random surface with known statistical properties. For analysis, we employ by the

stochastic functional approach [7, 8, 44, 59], which is made up of several steps. First, by use of

the shift invariance property of the periodic random surface, the scattered wave is shown to

become a product of an exponential phase factor and an unknown periodic stationary process

of which average and correlation functions are periodic. We regard such periodic stationary

processes as stochastic functionals of the binary sequence [49,60] generating the periodic random

surface and they are represented by a sum of orthogonal binary functional series with unknown

binary kernels. We write such binary kernels by multiple Fourier integrals. Dividing such

Fourier integrals into bands with equal band width, we then find that the unknown periodic

51
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stationary process is reduced to a sum of mutually correlated stationary processes given by binary

functionals with band-limited binary kernels, which can be considered as ”Fourier series”, where

”Fourier coefficients” are the mutually correlated stationary processes. Such binary functionals

were studied in [44] to calculate properties of the scattering and diffraction from a binary periodic

random surface. However, only the first order binary kernels were obtained from an approximate

boundary condition for a sufficiently small surface roughness. No mathematical discussions were

given for higher order binary functionals representing mutually correlated stationary processes.

Thus, this chapter discusses such binary functionals representing the stationary processes to

obtain the second order scattering.

Hierarchical equations for such unknown binary kernels are derived from the Dirichlet bound-

ary condition without approximation. We then determine the band-limited binary kernels up to

the second order, from which several statistical properties of the scattering, such as scattering

cross section and optical theorem, are numerically calculated and illustrated in figures. It is

found that the second order incoherent scattering has dips in the diffraction direction of the

coherent Floquet modes.

We find that the binary and Gaussian cases become essentially different in the second order.

It is shown that, in the binary case, the second order scattering cross section has a subtractive

term and becomes much smaller than the first order one. This is mathematically caused by a

fact that, for a binary random variable b taking ± 1, b2 always becomes a constant equal to 1,

whereas ε2 remains random when ε is a Gaussian random variable.

4.2 Probabilistic formulation of the problem

Let us consider a periodic random surface, shown in figure 4.1, where the surface deformations

are expressed by a periodic stationary process f(x, ω) generated by a binary sequence :

z = f(x, ω) = σ
∞
∑

m=−∞

g(x−mL)bm(ω), (−∞ < x <∞), (4.1)

= σg(x)b0(ω), (−L/2 < x < L/2). (4.2)

Here, L is the period, g(x) is the local surface profile with g(x) = 0 for |x| ≥ L/2 under which

(4.2) holds. The bm(ω) is an independent stationary binary sequence taking ±1 with equal

probability : P (bm = 1) = P (bm = −1) = 1/2. Then, bm(ω) has zero average and orthogonal

correlation,

〈bm(ω)〉 = 0, 〈bm(ω)bn(ω)〉 = δ(m,n), (4.3)

where ω is a probability parameter denoting a sample point in the sample space Ω, the angular

brackets 〈·〉 denote the ensemble average over Ω, and δ(m,n) is the Kronecker delta. Further-

more, it is important to notice that bm(ω) is random, but b2m(ω) takes the deterministic value 1

:

b2m(ω) = 1. (4.4)

When εm(ω) is a Gaussian random variable, ε2m(ω) is also random. Thus, (4.4) is the special

property of the binary random variable bm(ω), which may lead an essential difference between

Gaussian and binary cases in the statistical properties of the scattering.
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Figure 4.1 Wave scattering and diffraction from a periodic random surface gen-
erated by a binary sequence. L is the period, θ is the angle of incidence, φ is a
scattering angle. Coherently diffracted waves are denoted by numbers.

From (4.1) and (4.3), one easily finds the average and the correlation function of f(x, ω) as

〈f(x, ω)〉 = 〈σ
∞
∑

m=−∞

g(x−mL)bm(ω)〉 = 0, (4.5)

Rf (x, x′) = 〈f(x, ω)f(x′, ω)〉 = σ2
∞
∑

m=−∞

g(x−mL)g(x′ −mL)

= Rf (x+ nL, x′ + nL) (4.6)

where n is any integer and Rf (x, x′) is periodic in the direction of x = x′ in the x-x′ plane.

Figure 4.2 shows Rf (x, x′) with L = 3.0λ, a0 = 0.5λ and κ = 0.18λ in the x − x′ plane. From

(4.5) and (4.6), it is found that the periodic random surface is a periodic stationary process with

the period L [7].

We assume that the sample space Ω is of function space type [47], where Ω is regarded as

an infinite-dimensional Euclidean space and a sample point ω is an infinite-dimensional vector

in Ω given by a sample sequence :

ω = (· · · , ω−1, ω0, ω1, · · ·), ωn = bn(ω) (4.7)

where ωn is the n-th component of ω. Under this assumption, a translation by m : bn(ω) →
bn+m(ω), generates a shift from ω to another sample point ω ′ = (· · · , ωm−1, ωm, ωm+1, · · ·). Such

a shift in the sample space Ω is represented as ω ′ = Tmω with a shift operator T . Since bm(ω)

is independent and stationary, the shift T becomes a measure-preserving transformation with

P (ω) = P (Tmω), and has group properties : T 0 ≡ 1 (identity) ; Tm+n = TmT n [7]. Thus, we

may write,

bn(ω) = b0(T
nω). (4.8)
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Using this property, we find that f(x, ω) is invariant under the translation (x, ω) → (x +

nL, T−nω)

f(x, ω) = f(x+ nL, T−nω). (4.9)

On the other hand, from (4.9) and the measure-preserving property : P (ω) = P (T nω), we

obtain

〈f(x, ω)〉 =

∫

Ω
f(x, ω)dP (ω) =

∫

Ω
f(x+ nL, T−nω)dP (ω)

=

∫

Ω
f(x+nL, ω′)dP (T nω′) =

∫

Ω
f(x+nL, ω′)dP (ω′) = 〈f(x+nL, ω)〉. (4.10)

If we replace f(x, ω) with f(x, ω)f(x′, ω) in (4.10), we find that Rf (x, x′) = Rf (x+nL, x′ +nL)

holds for any integer n. Therefore, if f(x, ω) has the shift invariance property (4.9), f(x, ω)

becomes a periodic stationary process. This fact will be used later.

Let us denote the y component of the TE electric field by Ψ(x, z, ω), which satisfies the wave

equation in free space,
[

∂2

∂x2
+

∂2

∂z2
+ k2

]

Ψ(x, z, ω) = 0, (4.11)

where k is the wave number. For a periodic stationary process Φ(x, ω), we introduce the norm

‖ Φ(x, ω) ‖, which is defined as an ensemble average of a space average of |Φ(x, ω)|2 over one

period :

‖ Φ(x, ω) ‖2=

〈

1

L

∫ L/2

−L/2
|Φ(x, ω)|2 dx

〉

. (4.12)
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On a perfectly conductive random surface z = f(x, ω), the wave function satisfies the Dirichlet

condition :

Ψ(x, z, ω)

∣

∣

∣

∣

z=f(x,ω)

= 0. (4.13)

We write the wave field as a sum of the incident plane wave Ψi(x, z) and the scattered wave

Ψs(x, z, ω), which is a functional of a binary sequence {bn(ω)},

Ψ(x, z, ω) = Ψi(x, z) + Ψs(x, z, ω), (4.14)

Ψi(x, z) = eipx−iβ0(p)z, (4.15)

p = k cos θ, βn(λ′) =

√

k2 −
(

λ′ +
2πn

L

)2

= βn+q

(

λ′ − kLq
)

, (4.16)

Im[βn(λ′)] ≥ 0, (n = 0,±1,±2, · · ·), kL =
2π

L
,

where θ is the angle of incidence, kL is the spatial angular frequency of the period L and Im

denotes the imaginary part.

To determine a form of the scattered wave Ψs(x, z, ω), we define a translation operator D

acting on the wave function Ψs(x, z, ω) by

DmΨs(x, z, ω) = Ψs(x+mL, z, T−mω), (m = 0,±1,±2, · · ·). (4.17)

Since f(x, ω) is invariant under Dm by (4.9), if Ψs(x, z, ω) is a solution of the wave equation

(4.11) and the boundary condition (4.13), then DmΨs(x, z, ω) = Ψs(x+mL, z, T−mω) becomes

a solution for the incident plane wave DmΨi(x, z) = eipmLeipx−iβ0(p)z. Thus we get

DmΨs(x, z, ω) = Ψs(x+mL, z, T−mω) = eipmLΨs(x, z, ω). (4.18)

If we put

Ψs(x, z, ω) = eipxU(x, z, ω), (4.19)

then from (4.18) we find that U(x, z, ω) satisfies the shift invariance property :

DmU(x, z, ω) = U(x+mL, z, T−mω)

= U(x, z, ω). (4.20)

This and (4.9) mean that U(x, z, ω) is a periodic stationary process of x. If U(x, z, ω) is a

deterministic periodic function, (4.19) is the Floquet form for periodic gratings. However, in

our case, U(x, z, ω) is not periodic, but 〈U(x, z, ω)〉 becomes periodic. Thus, (4.19) is considered

as an extension of the Floquet form, which we call the stochastic Floquet form [7].

4.3 Representations of periodic stationary processes

This section discusses a harmonic series representation of the periodic stationary process U(x, z, ω)

as a stochastic functional of the binary sequence. Such a harmonic series representation was

first discussed in [44]. However, the discussion was limited to the fist order functional and

was incomplete for higher order functionals. Thus, we here reconsider such a harmonic series

representation to get an expression for the second order functional.
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Since U(x, z, ω) is a stochastic functional of the binary sequence {bn(ω)}, it can be repre-

sented by a binary functional expansion (A.13) for each value of (x, z). Making such an expansion

to satisfy U(x, z, ω) = U(x+mL, z, T−mω), however, we write

U(x, z, ω) = C0(x, z) +

∞
∑

m=−∞

C1(x−mL, z)B1[bm]

+

∞
∑

m,n=−∞

C2(x−mL, x− nL, z)B2[bm, bn] + · · · . (4.21)

Here, Bn[·] is the binary polynomial defined in appendix A, and C0(x, z), C1(x, z), · · · are the

deterministic functions called binary kernels. When n ≥ 2, Cn(x1, x2, · · · , xn, z) is symmetrical

with respect to its arguments xn’s. From (4.20), (4.21) and (A.6), we find that C0(x, z) is a

periodic function.

Next, we modify the expression (4.21) to make eipxU(x, z, ω) satisfy the wave equation (4.11)

and the radiation condition for z → ∞. Representing the binary kernels by multiple Fourier

integrals, we put

U(x, z, ω) =

∞
∑

q=−∞

C
(q)
0 (p)eikLqxeiβ0(p)z +

∞
∑

m=−∞

B1[bm]

∫ ∞

−∞
C1(λ

′|p)eiλ′(x−mL)+iβ0(p+λ′)zdλ′

+

∞
∑

m,n=−∞

B2[bm, bn]

∫∫ ∞

−∞
C2(λ1, λ2|p)eiλ1(x−nL)+iλ2(x−mL)+iβ0(p+λ1+λ2)zdλ1dλ2+· · · , (4.22)

where C0(p), C1(λ
′|p), C2(λ1, λ2|p), · · · are the binary kernels in the spectral domain. This expan-

sion is physically written as a sum of outgoing waves and surface waves ei(λ1+···+λn)x+iβ0(p+λ1+···+λn)z.

Taking the Rayleigh hypothesis, we assume that (4.22) is valid even in the region z ≤ zd =

max{f(x, ω)}. However, the expression (4.22) is redundant, and the kernel functions cannot be

determined uniquely.

On the other hand, it is known that a periodic stationary process has a harmonic series

representation [51, 52], which is a “Fourier series” with “Fourier coefficients” that are band-

limited stationary processes. Taking the fact that ei(λ1+···+λn)x+iβ0(p+λ1+···+λn)z is determined by

λs = λ1+· · ·+λn, we divide the integral interval of λs into bands with equal width [−kL/2, kL/2].

Defining a gate function S(λ′) as

S(λ′) =

{

1, (|λ′| ≤ kL/2)
0, (|λ′| > kL/2)

,
∞
∑

l=−∞

S(λ′ + kLl) ≡ 1, (4.23)

we rewrite, for example, the second order integral of U(x, z, ω) as :
∫∫ ∞

−∞
C2(λ1, λ2|p)eiλ1(x−nL)+iλ2(x−mL)+iβ0(p+λ1+λ2)zdλ1dλ2

=

∞
∑

q,l=−∞

∫∫ ∞

−∞
S(λs − kLq)S(λ1 − kLl)C2(λ1, λs−λ1|p)

×ei(λs−λ1)(x−mL)+iλ1(x−nL)+iβ0(p+λs)zdλ1dλs

=

∞
∑

q=−∞

eikLqx

∫∫ ∞

−∞
S(Λs)S(Λ1)C

(q)
2 (Λ1,Λs−Λ1|p)

× ei(Λs−Λ1)(x−mL)+iΛ1(x−nL)+iβq(p+Λs)zdΛ1dΛs, (4.24)
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where C
(q)
2 (λ1, λs−λ1) is the second order band-limited kernel

C
(q)
2 (λ1, λs−λ1|p) =

∞
∑

l=−∞

C2(λ1+kLl, λs−λ1+kL(q − l)|p), (λ1, λs ≤ |kL/2|). (4.25)

Repeating this procedure for higher order integrals, we finally obtain the harmonic series repre-

sentation for U(x, z, ω),

U(x, z, ω) =

∞
∑

q=−∞

eikLqxU (q)(x, z, ω) (4.26)

U (q)(x, z, ω) = C
(q)
0 (p)eiβq(p)z+

∞
∑

m=−∞

B1[bm]

∫ kL/2

−kL/2
C

(q)
1 (λs|p)eiλs(x−mL)+iβq(p+λs)zdλs

+

∞
∑

m,n=−∞

B2[bm, bn]

∫ kL/2

−kL/2

∫ kL/2

−kL/2
C

(q)
2 (λ1, λs−λ1|p)

×ei(λs−λ1)(x−mL)+iλ1(x−nL)+iβq(p+λs)zdλ1dλs+· · · , (4.27)

where C
(q)
1 (λs) is the first order band-limited kernel given as

C
(q)
1 (λs|p) = C1(λs + kLq|p). (4.28)

By (4.27), U (q)(x, z, ω) becomes wide sense stationary, that is, the ensemble average
〈

U (q)(x, z, ω)
〉

is constant and independent of x, and its two-point correlation function is a function of the dif-

ference of the two point x− x′(See appendix B). The expression (4.27) is not a power series of

the roughness parameter σ but is an orthogonal expansion. The band limited kernel functions

can be uniquely determined, as will be shown later.

Since ei(p+kLq)xU (q)(x, z, ω) is a component of the scattered wave, C
(q)
1 (λs|p), C(q)

2 (λs −
λ1, λ1|p), · · · are amplitude factors of the plane wave with the scattering angle φq(p+ λs) given

by

φq(p+ λ′) = cos−1

[

1

k

(

p+ kLq + λ′
)

]

, (4.29)

which is measured from the x-axis. (See figure 4.1.)

Since Bm[·] has zero average for m ≥ 1 by (A.6), we obtain the coherent wave (average wave)

from (4.14), (4.19), (4.26) and (4.27)

〈Ψ(x, z, ω)〉 = eipx

[

e−iβ0(p)z +
∞
∑

q=−∞

C
(q)
0 (p)eikLqxeiβq(p)z

]

. (4.30)

This is exactly the Floquet solution for a periodic grating, where C
(q)
0 (p) is an amplitude factor

of the q-th Floquet mode. It means that the periodic binary random surface acts as a periodic

surface and the coherent wave is diffracted into discrete directions φq(p).

From (4.26) and (4.27), we obtain the optical theorem [50]

β0(p)

k
=

1

k

∞
∑

q=−∞

Re [βq(p)]
∣

∣

∣C
(q)
0 (p)

∣

∣

∣

2
+

1

2π

∫ π

0
σ(φ|θ)dφ, (4.31)

where Re denotes the real part. The left-hand side is the incident power per unit length, the

first term and the integral in the right-hand side are the sum of the coherently diffracted power
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and the incoherent scattered power, respectively. σ(φ|θ) is the scattering cross section per unit

length to the scattering angle φ

σ(φ|θ) = σ1(φ|θ) + σ2(φ|θ) + · · · , (4.32)

where σ1(φ|θ) is the contribution from the first-order binary kernels

σ1(φ|θ) = 2πk sin2 φ
∞
∑

q=−∞

kL

∣

∣

∣
C

(q)
1 (k cosφ−p−kLq|p)

∣

∣

∣

2
S(k cosφ− p− kLq), (4.33)

and σ2(φ|θ) is the contribution from the second-order binary kernels

σ2(φ|θ) = 4πk sin2 φ
∞
∑

q=−∞

[

k2
L

∫ kL/2

−kL/2

∣

∣

∣

∣

C
(q)
2 (λ1, k cosφ−p−kLq−λ1|p)

∣

∣

∣

∣

2

S(k cosφ−p−kLq)dλ1

−kL

∣

∣

∣

∣

∫ kL/2

−kL/2
C

(q)
2 (λ1, k cosφ−p−kLq−λ1|p)S(k cosφ−p−kLq)dλ1

∣

∣

∣

∣

2]

, (4.34)

where S(λ) is the gate function (4.23). The first term in the right hand side is the main part

denoted by σ2(φ|θ)m. The second term is the subtractive part denoted by σ2(φ|θ)d, which comes

from the special property (4.4) of bm(ω). When one only considers the first order scattering,

no significant difference exists between the binary case and the Gaussian case. Since such a

subtractive term in σ2(φ|θ) does not exist in the Gaussian case [8], it is concluded that the

difference between two cases appears in the second or higher order scattering. Later, we see this

difference in numerical calculations.

The band-limited binary kernel C
(q)
1 (·) is expected to satisfy

C
(q)
1 (kL/2−p|p) = C

(q+1)
1 (−kL/2−p|p) (4.35)

at the band edge.

4.4 Hierarchical equations and an approximate solution

4.4.1 Derivation of hierarchical equations

On a perfectly conductive random surface z = f(x, ω), the wave function Ψ(x, z, ω) satisfies the

Dirichlet condition (4.13). Even though Ψ(x, z, ω) itself is not periodic stationary, |Ψ(x, z, ω)|
becomes a periodic stationary process by (4.19). Thus, we assume that the boundary condition

(4.13) holds in the norm sense (4.12),

∣

∣

∣

∣

∣

∣

∣

∣

Ψ(x, z, ω)

∣

∣

∣

∣

z=f(x,ω)

∣

∣

∣

∣

∣

∣

∣

∣

2

=

〈

1

L

∫ L/2

−L/2

∣

∣

∣

∣

(

e−iβ0(p)z + U(x, z, ω)
)

∣

∣

∣

∣

z=f(x,ω)

∣

∣

∣

∣

2

dx

〉

= 0. (4.36)

In the previous paper [44], the boundary condition was approximated under the assumption

σ2k2 � 1 as Ψ(x, z, ω) + f(x, ω) · ∂Ψ(x, z, ω)/∂z = 0 at z = 0, where σ is the surface roughness.

However, this paper employs (4.13) without approximation. To calculate the norm (4.36), we

substitute (4.19), (4.26) and (4.27) into (4.36) in |x| ≤ L/2. Using the identity eiβ0(p)f(x,ω) =

eiσβ0(p)g(x)b0(ω) = cos[σβ0(p)g(x)] + i sin[σβ0(p)g(x)]b0(ω), and applying the recurrence relations

(A.11) and the orthogonal relation (A.7), we obtain a hierarchy of equations for the binary
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kernels as a sufficient condition. Lower-order ones are

(zero order)

cos[σβ0(p)g(x)] +

∞
∑

q=−∞

eikLqx

[

C
(q)
0 (p) cos[σβq(p)g(x)]

+ i

∫ kL/2

−kL/2
C

(q)
1 (λs|p)eiλsx sin[σβq(p+ λs)g(x)]dλs

]

= 0, (4.37)

(first order) (m = 0,±1,±2, · · ·)

iδ(m, 0)

(

− sin[σβ0(p)g(x)] +

∞
∑

q=−∞

eikLqxC
(q)
0 (p) sin[σβq(p)g(x)]

)

+

∞
∑

q=−∞

eikLqx

[ ∫ kL/2

−kL/2
C

(q)
1 (λs|p)eiλs(x−mL) cos[σβq(p+ λs)g(x)]dλs

+ 2i

∫∫ kL/2

−kL/2
C

(q)
2 (λs−λ1, λ1|p)ei(λs−λ1)(x−mL)+iλ1x sin[σβq(p+λs)g(x)]dλ1dλs

− 2iδ(m, 0)

∫∫ kL/2

−kL/2
C

(q)
2 (λs−λ1, λ1|p)eiλsx sin[σβq(p+λs)g(x)]dλ1dλs

]

=0, (4.38)

(second order) (m,n = 0,±1,±2, · · ·)
∞
∑

q=−∞

eikLqx

[ ∫∫ kL/2

−kL/2
C

(q)
2 (λs−λ1, λ1|p)ei(λs−λ1)(x−mL)+iλ1(x−nL) cos[σβq(p+λs)g(x)]dλ1dλs

+
i

2
δ(n, 0)

∫ kL/2

−kL/2
C

(q)
1 (λs−λ1|p)ei(λs−λ1)(x−mL) sin[σβq(p+λs−λ1)g(x)]dλs

+
i

2
δ(m, 0)

∫ kL/2

−kL/2
C

(q)
1 (λ1|p)eiλ1(x−nL) sin[σβq(p+λ1)g(x)]dλ1

+ 3i

∫∫∫ kL/2

−kL/2
C

(q)
3 (λs−λ1−λ2, λ1, λ2|p)ei(λs−λ1−λ2)(x−mL)+iλ1(x−nL)+iλ2x

× sin[σβq(p+λs)g(x)]dλ1dλ2dλs

− 6iδ(n, 0)

∫∫∫ kL/2

−kL/2
C

(q)
3 (λs−λ1−λ2, λ1, λ2|p)ei(λs−λ1−λ2)(x−mL)+iλ1x+iλ2x

× sin[σβq(p+λs)g(x)]dλ1dλ2dλs

]

= 0. (4.39)

Here, (4.38) and (4.39) hold for any m and n. Since (4.37), (4.38) and (4.39) hold for any x

in |x| ≤ L/2, we expand the factors eikLqxeiλ
′x cos[σβq(p + λ′)g(x)] and eikLqxeiλ

′x sin[σβq(p +

λ′)g(x)] into Fourier series as

eikLqxeiλ
′x

[

cos[σβq(p+ λ′)g(x)]
sin[σβq(p+ λ′)g(x)]

]

=
∞
∑

j=−∞

[

Γc
jq(λ

′|p)
Γs

jq(λ
′|p)

]

eikLjx. (4.40)

Then, we get a set of hierarchical equations of Fourier coefficients for j = 0,±1,±2, · · ·. It

is convenient to introduce infinite-dimensional matrices Γs,Γc and infinite-dimensional vectors
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I0,Cn(·)(n = 0, 1, 2, · · ·) as

Γc(λ′|p) = [Γc
jq(λ

′|p)], (4.41)

Γs(λ′|p) = [Γs
jq(λ

′|p)], (4.42)

C0(p) = [· · · , C(−1)
0 (p), C

(0)
0 (p), C

(1)
0 (p), · · ·]t (4.43)

C1(λ
′|p) = [· · · , C(−1)

1 (λ′|p), C(0)
1 (λ′|p), C(1)

1 (λ′|p), · · ·]t (4.44)

C2(λ1, λ2|p) = [· · · , C(−1)
2 (λ1, λ2|p), C(0)

2 (λ1, λ2|p), C(1)
2 (λ1, λ2|p), · · ·]t, (4.45)

I0 = [· · · , 0, 1, 0, · · ·]t = [δ(m, 0)]t . (4.46)

Multiplying eiΛmL and eiΛ1mL+iΛ2nL to the first and second order equations, respectively, sum-

ming up with m and n, and using the identity

∞
∑

m=−∞

eimL(Λ−λ′) = kL

∞
∑

m=−∞

δ(Λ − λ′ + kLm), (4.47)

we obtain the hierarchy of equations in matrix form,

(zero order)

Γc(0|p)I0 + Γc(0|p)C0(p) + i

∫ kL/2

−kL/2
Γs(λ′|p)C1(λ

′|p)dλ′ = 0, (4.48)

(first order)

−iΓs(0|p)I0 + iΓs(0|p)C0(p) + kLΓc(Λ|p)C1(Λ|p)

+ 2ikL

∫ kL/2

−kL/2
Γs(Λ+λ1|p)C2(Λ, λ1|p)dλ1

− 2i

∫∫ kL/2

−kL/2
Γs(λ1+λ2|p)C2(λs−λ1, λ1|p)dλ1dλs = 0, (4.49)

(second order)

kLΓc(Λ1 + Λ2|p)C2(Λ1,Λ2|p)

+
i

2
Γs(Λ1|p)C1(Λ1|p) +

i

2
Γs(Λ2|p)C1(Λ2|p)

+ 3ikL

∫ kL/2

−kL/2
Γc(Λ1+Λ2+λ2|p)C3(Λ1,Λ2, λ2|p)dλ2

− 6i

∫∫ kL/2

−kL/2
Γc(Λ1+λ1+λ2|p)C3(Λ1, λ1, λ2|p)dλ1dλ2 = 0. (4.50)

Let us obtain the second order solution involving up to C2(λs − λ1, λ1|p). Neglecting C3(·)
in (4.50), substituting (4.50) into (4.49) and employing the diagonal approximation [53], we get

iΓs(0|p)
(

−I0 + C0(p)
)

+ kL

[

Γc(Λ|p) + M(1)(Λ|p)
]

C1(Λ|p) = 0, (4.51)

where M(1)(Λ|p) is the 1st order mass operator representing diffraction and scattering effects,

defined as

M(1)(Λ|p) =
1

kL

∫ kL/2

−kL/2
Γs(Λ+λ′|p)[Γc(Λ+λ′|p)]−1Γs(Λ|p)dλ′, (4.52)
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which is proportional to σ2. From (4.48), (4.50) and (4.51), we obtain

C0(p) = −
[

Γc(0|p)+M(2)(0|p)
]−1 [

Γc(0|p)−M(2)(0|p)
]

I0, (4.53)

C1(Λ|p) =
i

kL
[Γc(Λ|p)+M(1)(Λ|p)]−1Γs(0|p)(I0−C0(p)) (4.54)

=
i

kL
[Γc(Λ|p)+M(1)(Λ|p)]−1

×Γs(0|p)
(

I−
[

Γc(0|p)+M(2)(0|p)
]−1[

M(2)(0|p)−Γc(0|p)
]

)

I0, (4.55)

C2(Λ1,Λ2|p) = − i

2kL
[Γc(Λ1+Λ2|p)]−1

× (Γs(Λ1|p)C1(Λ1|p)+Γs(Λ2|p)C1(Λ2|p)) (4.56)

=
1

2kL
2 [Γc(Λ1+Λ2|p)]−1

×
(

Γs(Λ1|p)[Γc(Λ1|p)+M(1)(Λ1|p)]−1Γs(0|p)(I0−C0(p))

+Γs(Λ2|p)[Γc(Λ2|p) + M(1)(Λ2|p)]−1Γs(0|p)(I0−C0(p))
)

, (4.57)

where the 2nd order mass operator M(2)(Λ|p) is defined as follows :

M(2)(Λ|p) =
1

kL

∫ kL/2

−kL/2
Γs(Λ+λ′|p)

×
[

Γc(Λ+λ′|p)+M(1)(Λ+λ′|p)
]−1

Γs(Λ|p)dλ′, (4.58)

which is approximated by M(1)(0|p) in the following numerical calculations.

From (4.53), one finds that the coherent Floquet mode C0(p) is excited by I0, which denotes

the incident plane wave. If we put M(2)(0|p) = 0, equation (4.53) is reduced to C0(p) = −I0.

This means that the non-zeroth-order Floquet modes vanish and only the specular reflection

exists if we neglect the multiple scattering effect. Thus, we may conclude that the non-zeroth-

order Floquet modes are generated by multiple-scattering process in the case of the flat average

surface with 〈f(x, ω)〉 = 0. Since (4.54) has a ’dressed’ single scattering factor [Γc(Λ|p)+

M(1)(Λ|p)]−1, C1(Λ|p) describes a ’dressed’ single scattering excited by I0 the incident plane

wave and C0(p) the coherent Floquet mode. In addition to such a ’dressed’ single scattering

factor, however, equation (4.57) has an ’undressed’ single scattering factor [Γc(Λ1 +Λ2|p)]−1.

Therefore, C2(Λ1,Λ2|p) representes a double scattering process made up of ’undressed’ single

scattering and ’dressed’ single scattering.

4.5 Numerical examples

4.5.1 Parameters of calculation

For numerical calculations, we assume a local surface profile g(x) as

g(x) =
1

2

[

erf

(

x+ a0

κ

)

− erf

(

x− a0

κ

)]

, (4.59)

erf(x) =
2√
π

∫ x

0
e−t2dt, (4.60)
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Figure 4.3 Local surface profile g(x), which is a rectangular boss with smooth
edges (upper figure). λ is the wavelength, and spectrum of local surface profile G(λ′)
(lower figure). Some ripples are seen in the spectrum when a0 = λ.

G(λ′) =
sin(a0λ

′)

πλ′
σe−

(κλ′)2

4 , (4.61)

where erf(x) is the error function, a0 is a width parameter, σ is a height parameter and κ is

a constant which determines the slope angle. Figure 4.3 shows g(x) and G(λ′) for a0 = λ and

0.5λ, where λ is wavelength. g(x) is a rectangular boss with smooth edges. For numerical

calculations, we put L = 3λ, κ = 0.18λ. Also, we approximate infinite-dimensional matrices and

vectors (4.41) - (4.46) by finite ones : 21 × 21 matrices and 21 dimensional vectors.
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Figure 4.4 Scattering cross section σ1(φ|θ)(solid line) for L = 3λ, a0 = λ, θ = 60◦,
σ = 0.1λ and κ = 0.18λ, λ being the wavelength. Other curves are an incoherent
scattering component excited by a coherent Floquet mode. Each component has
dips due to the zeros of G(λ′) and becomes large at a scattering angle equal to the
diffraction direction of the Floquet mode of excitation. The incoherent component
excited by the 0th coherent mode is relatively large. Since incoherent components
interfere each other, the dip angles of σ1(φ|θ)(solid line) are different from those of
the incoherent component excited only by the 0th coherent mode.

4.5.2 Properties of diffraction and scattering

Let us start with the incoherent scattering cross section. From (4.54) one finds that C
(q)
1 (λs|p)

consists of components excited by the coherent modes C
(n)
0 (p) (n = 0,±1, · · ·). Figure 4.4 shows

σ1(φ|θ) for a0 = λ, θ = 60◦ and σ = 0.1λ, where the components excited by the 0th, 1st, -1st

order coherent modes are illustrated separately. Each component becomes relatively large in

the diffraction direction of the exciting Floquet modes, and has dips due to the zeros of G(λ ′).

When σ is small, the component excited by the 0th Floquet mode is relatively large and mainly

determines σ1(φ|θ), while the contribution from non-zero-order coherent modes increases as σ

becomes large.

Figure 4.5 illustrates σ1(φ|θ) for several width parameters. When a0 is small, no dip appears.

Figure 4.6 illustrates σ1(φ|θ) for several angles of incidence. The amplitude of scattering is

relatively large in the direction of specular reflection, i.e. the diffraction direction of the 0th

Floquet mode. Figure 4.7 shows σ1(φ|θ) for several height parameters. σ1(φ|θ) increases when

σ is large. The directions where the dips appear depend on the height parameter σ. It is

due to the interference among the incoherent components excited by different order Floquet

modes, since the scattered wave excited by non-zero-order Floquet modes increase when σ is

large. Figure 4.8 illustrates σ2(φ|θ), its main part σ2(φ|θ)m and subtractive part σ2(φ|θ)d for

σ = 0.05λ, a0 = λ, θ = 80◦. This figure shows that σ2(φ|θ)m and σ2(φ|θ)d are approximately

same in amplitude, so that σ2(φ|θ) becomes much smaller than σ2(φ|θ)m. We see that σ2(φ|θ)
has some dips in the diffraction directions of the Floquet modes. Such dips appear in the

binary case, but they do not exist in the Gaussian case [8]. It is due to the fact that the

subtractive part σ2(φ|θ)d becomes relatively large in such directions. Figure 4.9 illustrates

σ(φ|θ) = σ1(φ|θ)+σ2(φ|θ) for σ = 0.05λ, θ = 60◦, a0 = λ. σ2(φ|θ) is much smaller than σ1(φ|θ),
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Figure 4.5 Scattering cross section σ1(φ|θ) for several width parameter a0. L =
3λ, σ = 0.1λ, θ = 60◦ and κ = 0.18λ. When a0 is large, the number of dips increases.
No dip appears when a0 is 0.3λ.

so that σ2(φ|θ) contributes to σ(φ|θ) only when σ1(φ|θ) is very small.

Figure 4.10 shows the optical theorem calculated by the zero and first order binary kernels

against the surface height parameter σ. Total power is normalized as unity. As the surface

height becomes large, approximately up to 0.15λ, the incoherent scattering and non-zero-order

coherent modes increase, while the zero-order coherent mode and total coherent scattering de-

crease instead. However, when σ becomes larger than 0.15λ, the incoherent power decreases. It

may be due to M(1)(p), which represents the diffraction and multiple scattering effects. Total

power including coherent modes and incoherent scattering is almost constant, approximately

equal to the incident power. Figure 4.11 illustrates the optical theorem against the angle of

incidence θ, where the 1st and -1st order coherent powers are enlarged 10 times. Since L = 3λ,

the 1st order coherent power becomes radiating when θ ≥ 48.19◦. When the angle of incidence

is close to 90◦, the zero-order coherent power decreases.

4.6 Conclusion

We have studied the diffraction and scattering of a TE plane wave from a binary periodic ran-

dom surface generated by a binary sequence using the stochastic functional approach. Assuming

that such a periodic random surface is mathematically modeled by a periodic stationary pro-

cess, we have pointed out that the scattered wave has a stochastic Floquet form, which is a

product of an exponential phase factor and a periodic stationary process. We reconsidered the

harmonic series representation used in [44] for such a periodic stationary process. We wrote

such a periodic stationary process by orthogonal binary functionals with binary kernels given

by multiple Fourier integrals. We have then found that for the binary case it is necessary to

divide such Fourier integrals into bands with equal band width. Then, such a periodic stationary

process was represented by a harmonic series, of which coefficients are mutually correlated wide

sense stationary processes given by binary functionals with band-limited binary kernels. Using

the Dirichlet boundary condition without approximation, we have determined the band-limited
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Figure 4.6 Scattering cross section σ1(φ|θ) for several angles of incidence θ. L =
3λ, σ = 0.1λ, a0 = λ and κ = 0.18λ. Incoherent scattering is relatively strong in
the direction of specular reflection, i.e. the diffraction direction of the 0th Floquet
mode.

binary kernels up to the second order, from which several statistical properties of the scattering

were calculated. It is found that the components of the first order incoherent scattering are

relatively large in the diffraction directions of the exciting Floquet modes and have some dips

corresponding to the zeros of spectrum of the local profile. We find that, due to the special

property of the binary random variable, the second order scattering cross section has a subtrac-

tive term and becomes much smaller than the first order one. The second order scattering cross

section has dips in the diffraction directions of the Floquet modes. It is also found that the

incoherent power begins to decrease when the height parameter gets large, possibly due to the

diffraction and multiple scattering effects by the mass operator.

The discussion in this chapter was limited to the TE case. However, this approach can be

extended without any difficulties to TM wave scattering from a binary periodic random surface.

The TM case is discussed in the following chapter.
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3λ, θ = 60◦, a0 = 0.5λ and κ = 0.18λ. Incoherent scattering becomes large when
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Figure 4.8 Scattering cross section σ2(φ|θ), its main part σ2(φ|θ)m and subtrac-
tive part σ2(φ|θ)d. L = 3λ, σ = 0.05λ, θ = 80◦, a0 = λ and κ = 0.18λ. σ2(φ|θ)m
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Chapter 5

Diffraction and scattering of TM

plane wave from a binary periodic

random surface

5.1 Introduction

In the previous chapter, we have studied the diffraction and scattering from a binary periodic

random surface generated by a stationary binary sequence. But the discussions were limited to

TE wave case.

This chapter deals with the diffraction and scattering of a TM plane wave from a perfectly

conductive periodic random surface shown in figure 5.1, following the same manner as the

previous chapter in the formulation of the problem. We again employ the stochastic functional

approach [7, 8, 44, 59], and hierarchical equations for the TM case are derived to determine

such band-limited binary kernels are derived from the Neumann boundary condition without

approximation.

When the periodic random surface is periodic with average height, binary kernels can be

obtained by a single scattering approximation in Ref [8]. However, when the periodic random

surface is zero on average, such binary kernels by a single scattering approximation diverge

unphysically for critical wavenumbers. To obtain a physically meaningful(appropriate) solution,

effects of multiple scattering should be taken into account. Thus, to determine the band-limited

binary kernels, this chapter employs the multiply renormalizing approximation [53]. Then, we

obtain a new solution without such divergence difficulties. In terms of the new solution, several

statistical properties of the diffraction and scattering, such as differential scattering cross section

and optical theorem, are numerically calculated in terms of such binary kernels and illustrated

in figures.

As is well known, Wood’s anomaly occurs for critical angles of incidence as rapid variations

in the diffraction powers in the perfectly periodic case † [28, 29], however, we find that Wood’s

anomaly appears in the diffraction from such a binary periodic random surface with zero average.

It is because the periodic random surface with binary fluctuations acts as a periodic surface in

an average sense. Furthermore, incoherent Wood’s anomaly appears as rapid variations in the

†Since we consider a surface obtained by displacing the local profile with constant period, and binary fluc-
tuations on the height parameter of such a local profile, we utilize the word ’perfectly periodic’ for the classical
periodic surfaces without fluctuations.

69
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Figure 5.1 Geometry of the problem. Incident wave is diffracted and scattered
by a periodic random surface generated by a binary sequence. L and σ are the
period and the height parameter of the surface, θ is the angle of incidence and φ
is a scattering angle. The orders of the coherently diffracted waves are denoted by
numbers.

angular distribution of the scattering. In this chapter, we discuss the physical mechanisms of

Wood’s anomaly and incoherent Wood’s anomaly, which is a similar discussion to Chapter 3.

Incoherent Wood’s anomaly has been found in cases of random surfaces that are periodic on

average [6, 8] and in a deterministic case of a periodic grooves with single defect [46]. However,

we newly show that incoherent Wood’s anomaly appears even when a binary periodic random

surface has zero average.

5.2 Probabilistic formulation of the problem

5.2.1 Properties of binary periodic random surfaces

Following the same manner as the previous chapter, let us consider a periodic random surface

with binary fluctuations, shown in figure 5.1, where the surface deformations are expressed by

a periodic stationary process f(x, ω) generated by a binary sequence :

z = f(x, ω) = σ

∞
∑

m=−∞

g(x−mL)bm(ω), (−∞ < x <∞), (5.1)

= σg(x)b0(ω), (−L/2 < x < L/2). (5.2)

Here, σ is a parameter representing surface height, L is the period of the surface, and g(x)

is the local surface profile with g(x) = 0 for |x| ≥ L/2 under which (5.2) holds. g(x) has no

dimension. {bm(ω)} is an independent binary random sequence taking ±1 with equal probability

: P (bm(ω) = 1) = P (bm(ω) = −1) = 1/2, where ω is a probability parameter denoting a sample

point in the sample space Ω.
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Here, P (·) is the probability measure [24]. Then, bm(ω) has zero average and orthogonal corre-

lation,

〈bm(ω)〉 = 0, 〈bm(ω)bn(ω)〉 = δ(m,n), (5.3)

where the angular brackets 〈·〉 denote the ensemble average over Ω, and δ(m,n) is the Kronecker

delta. Furthermore, it is important to notice that bm(ω) is random but b2m(ω) always becomes

deterministic, namely,

b2m(ω) = 1. (5.4)

This is a special property‡ for the binary random variable taking ±1. As is pointed out in the

previous chapter, however, this simple property makes it complicated to treat its functionals,

compared with the Gaussian random cases [7, 8].

From (5.1) and (5.3), the average and the correlation function of f(x, ω) become

〈f(x, ω)〉 = 0, (5.5)

Rf (x, x′) = 〈f(x, ω)f(x′, ω)〉 = σ2
∞
∑

m=−∞

g(x−mL)g(x′−mL)

= Rf (x+L, x′+L). (5.6)

Here, Rf (x, x′) is periodic in the direction of x = x′ in the x-x′ plane (See figure 4.2). By (5.5)

and (5.6), the binary periodic random surface f(x, ω) becomes a periodic stationary process

with the period L. It should be noted that any realization f(x, ω) has no periodicity, however,

its correlation function is a periodic function with the period L. Furthermore, one easily finds

that Rf (x, x) = {f(x, ω)}2 under the condition (5.5), which is non-random and periodic.

We assume that the sample space Ω is of function space type [47], where Ω is regarded as

an infinite-dimensional Euclidean space and a sample point ω is an infinite-dimensional vector

in Ω given by a sample sequence :

ω = (· · · , ω−1, ω0, ω1, · · ·), ωn = bn(ω), (5.7)

where ωn is the n-th component of ω. Under this assumption, we define a measure-preserving

transformation in the sample space Ω by Tm, which generates a shift from ω to another sample

point ω′ = Tmω = (· · · , ωm−1, ωm, ωm+1, · · ·) where Tmωn = bm+n(ω), and the probability

measure P (·) is preserved, i.e. P (ω) = P (ω ′). Tm has group properties : T 0 ≡ 1 (identity) ;

Tm+n = TmT n [7]. Thus, we may write,

bn(ω) = b0(T
nω). (5.8)

By this property, f(x, ω) is invariant under the translation operator Dn [7]

Dnf(x, ω) = f(x+ nL, T−nω) = f(x, ω), (5.9)

and becomes a periodic stationary process [59].

‡On the other hand, if bm(ω) is a Gaussian random variable, b2
m(ω) remains random. Thus, here is a significant

difference between binary random variables and Gaussian random variables. However, such difference becomes
prominent in the properties of the scattering in the second or higher orders [59].
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5.2.2 Expression of wave field

Let us denote the y component of the magnetic field by Ψ(x, z, ω), which satisfies the wave

equation in free space,
[

∂2

∂x2
+

∂2

∂z2
+ k2

]

Ψ(x, z, ω) = 0, z > f(x, ω), (5.10)

where k is the wave number. On the perfectly conductive random surface z = f(x, ω), Ψ(x, z, ω)

satisfies the Neumann condition :

∂Ψ(x, z, ω)

∂n

∣

∣

∣

∣

z=f(x,ω)

=
1

√

1+(df/dx)2

[

− df

dx

∂

∂x
+
∂

∂z

]

Ψ(x, z, ω)

∣

∣

∣

∣

z=f(x,ω)

=0. (5.11)

For a periodic stationary process Φ(x, ω), we define a norm ‖ Φ(x, ω) ‖ as an ensemble

average of a space average of |Φ(x, ω)|2 over one period

‖ Φ(x, ω) ‖2=

〈

1

L

∫ L/2

−L/2
|Φ(x, ω)|2 dx

〉

, (5.12)

which will be used below.

When a TM plane wave eipxe−iβ0(p)z is incident on the periodic random surface, the wave

field can be represented as

Ψ(x, z, ω) = eipxe−iβ0(p)z+eipxU(x, z, ω), p = k cos θ, (5.13)

βn(λ′) =

√

k2 − (λ′ + 2πn/L)2 = βn+q

(

λ′ − kLq
)

, kL =
2π

L
, (5.14)

Im[βn(λ′)] ≥ 0, (n, q = 0,±1,±2, · · ·).

Here, (5.13) is a ’stochastic Floquet theorem’ [7]. The second term of the right-hand side of

(5.13) is the scattered wave and U(x, z, ω) is a periodic stationary process. Here, θ is the angle

of incidence, kL is the spatial angular frequency of the period L, and ‘Im’ denotes the imaginary

part.

Note that a periodic stationary process U(x, z, ω) is not periodic, but the ensemble average

〈U(x, z, ω)〉 becomes periodic, and U(x, z, ω) satisfies the shift invariance property [59]:

DmU(x, z, ω) = U(x+mL, z, T−mω) = U(x, z, ω). (5.15)

5.3 Representations of periodic stationary processes

5.3.1 Binary expansion of periodic stationary processes

To obtain the scattered wave eipxU(x, z, ω), it is necessary to determine the periodic stationary

process U(x, z, ω). In previous papers [44, 59], we discussed that such a periodic stationary

process can be expressed by a harmonic series representation.

Since U(x, z, ω) is a stochastic functional of the binary sequence {bm(ω)}, it can be repre-

sented by an orthogonal binary functional expansion for each value of (x, z), which should satisfy

U(x, z, ω) = U(x+mL, z, T−mω).

To make eipxU(x, z, ω) satisfy the wave equation (5.10), we write U(x, z, ω) as

U(x, z, ω) =

∞
∑

q=−∞

eikLqxU (q)(x, z, ω), (5.16)
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which is a harmonic series representation. (5.16) can be regarded as a ”Fourier series” with

”Fourier coefficients” given by mutually correlated stationary processes U (q)(x, z, ω) :

U (q)(x, z, ω) = C
(q)
0 (p) eiβq(p)z+

∞
∑

m=−∞

B1[bm]

∫ kL/2

−kL/2
C

(q)
1 (λs|p)eiλs(x−mL)+iβq(p+λs)zdλs

+
∞
∑

m,n=−∞

B2[bm, bn]

∫∫ kL/2

−kL/2
C

(q)
2 (λ1, λs − λ1|p)

×ei(λs−λ1)(x−mL)+iλ1(x−nL)+iβq(p+λs)zdλ1dλs + · · · . (5.17)

Here, Bn[·] is the n-th order binary polynomial defined in Appendix A, and C
(q)
0 (p), C

(q)
1 (λ′|p),

C
(q)
2 (λ1, λ2|p), · · · are the band-limited binary kernels [59] in the spectral domain. Note that this

expansion is physically written as a sum of outgoing plane waves and surface waves eiλsx+iβq(p+λs)z .

Taking the Rayleigh hypothesis, we assume that (5.16) and (5.17) are valid even in the region

f(x, ω) ≤ z ≤ max{f(x, ω)}. By (5.17), U (q)(x, z, ω) becomes wide sense stationary [59]. The

band-limited binary kernels C
(q)
0 (p), C

(q)
1 (λ|p), C(q)

2 (λ1, λ2|p), · · · can be uniquely determined,

as will be shown later.

Since ei(p+kLq)xU (q)(x, z, ω) is a component of the scattered wave, C
(q)
1 (λs|p), C(q)

2 (λs −
λ1, λ1|p), · · · are amplitude factors of the plane wave with the scattering angle φq(p+ λs) given

by

φq(p+ λs) = cos−1

[

p+ kLq + λs

k

]

, (5.18)

which is measured from the x-axis. (See figure 5.1.)

5.3.2 Statistical properties of wave field

Since Bm[·] has zero average for m ≥ 1 by (A.6), we obtain the coherent wave (average wave)

from (5.13), (5.16) and (5.17) as

〈Ψ(x, z, ω)〉 = eipx

[

e−iβ0(p)z +

∞
∑

q=−∞

C
(q)
0 (p)eikLqxeiβq(p)z

]

. (5.19)

This shows exactly the Floquet solution for a periodic grating, where C
(q)
0 (p) is an amplitude

factor of the q-th Floquet mode diffracted into the angle φq(p). It means that the binary periodic

random surface which has zero average acts as a perfectly periodic surface for the coherent wave.

Due to this fact, we say that the periodic random surface effectively has a discrete component

of the spectrum.

From (5.13), (5.16) and (5.17), we obtain the optical theorem [50, 59]

β0(p)

k
=

1

k

∞
∑

q=−∞

Re [βq(p)]
∣

∣

∣
C

(q)
0 (p)

∣

∣

∣

2
+

1

2π

∫ π

0
σ(φ|θ)dφ, (5.20)

where ‘Re’ denotes the real part. The left-hand side is the incident power per unit length, the

first term and the integral in the right-hand side are the sum of the coherent diffraction power

and the power of incoherent scattering, respectively. σ(φ|θ) is the differential scattering cross

section per unit length to the scattering angle φ

σ(φ|θ) = σ1(φ|θ) + σ2(φ|θ) + · · · . (5.21)
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σ1(φ|θ) is the contribution from the first-order band-limited binary kernels

σ1(φ|θ) = 2πk sin2 φ

∞
∑

q=−∞

kL

∣

∣

∣C
(q)
1 (k cosφ−p−kLq|p)

∣

∣

∣

2
S(k cosφ− p− kLq), (5.22)

where S(λ′) is a gate function defined as

S(λ′) =

{

1, (|λ′| ≤ kL/2)
0, (|λ′| > kL/2)

,

∞
∑

l=−∞

S(λ′ + kLl) ≡ 1. (5.23)

The band-limited binary kernel C
(q)
1 (·) is expected to satisfy

C
(q)
1 (kL/2−p|p) = C

(q+1)
1 (−kL/2−p|p) (5.24)

at the band edge. σ2(φ|θ) in (5.21) is the contribution from the second-order band-limited

kernels, however, in this paper, only σ1(φ|θ) is calculated for σ(φ|θ) and illustrated later.

5.4 Hierarchical equations and an approximate solution

5.4.1 Derivation of hierarchical equations

Even though Ψ(x, z, ω) itself is not periodic stationary, |Ψ(x, z, ω)| = |e−iβ0(p)z + U(x, z, ω)|
becomes a periodic stationary process by (5.13). Thus, we assume that the boundary condition

(5.11) holds in the norm sense (5.12) along the surface,

∣

∣

∣

∣

∣

∣

∣

∣

∂Ψ(x, z, ω)

∂n

∣

∣

∣

∣

z=f(x,ω)

∣

∣

∣

∣

∣

∣

∣

∣

2

=

〈

1

L

∫ L/2

−L/2

1
√

1+(df/dx)2

∣

∣

∣

∣

[

− df

dx

∂

∂x
+
∂

∂z

]

Ψ(x, z, ω)

∣

∣

∣

∣

z=f(x,ω)

∣

∣

∣

∣

2

dx

〉

=0. (5.25)

For TM incidence, an approximate boundary condition, so-called effective boundary condition

[18]: −(df/dx)∂Ψ(x, z, ω)/∂x+∂Ψ(x, z, ω)/∂z+∂2Ψ(x, z, ω)/∂z2 =0 at z=0, is often employed

to determine the wave field under the assumptions of small roughness σ2k2 � 1 and small slope

|df/dx| < 1. However, this paper deals with the Neumann boundary condition (5.11) without

approximation. To calculate the norm (5.25), we substitute (5.13), (5.16) and (5.17) into (5.25).

For simplicity, we note that

d

dx
f(x, ω) = h(x)b0(ω), h(x) = σ

d

dx
g(x) (5.26)

for |x| ≤ L/2. Using the identity for b0(ω) = ±1,

eiβ0(p)f(x,ω) = eiσβ0(p)g(x)b0(ω) = cos[σβ0(p)g(x)] + i sin[σβ0(p)g(x)]b0(ω) (5.27)

for |x| ≤ L/2, and applying the recurrence relations (A.11) and the orthogonal relation (A.7),

we obtain hierarchical equations for the binary kernels as a sufficient condition:

(zero order)

− i{β0(p) cos[σβ0(p)g(x)] − iph(x) sin[σβ0(p)g(x)]}
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+

∞
∑

q=−∞

eikLqx

[

i{βq(p) cos[σβq(p)g(x)] − i(p+ kLq)h(x) sin[σβq(p)g(x)]}C(q)
0 (p)

−
∫ kL/2

−kL/2
{βq(p+λs) sin[σβq(p+λs)g(x)]

+i(p+kLq+λs)h(x) cos[σβq(p+λs)g(x)]}C(q)
1 (λs|p)eiλsxdλs

]

=0, (5.28)

(first order) (m = 0,±1,±2, · · ·)

−δ(m, 0){β0(p) sin[σβ0(p)g(x)] + iph(x) cos[σβ0(p)g(x)]}

−δ(m, 0)
∞
∑

q=−∞

eikLqx{βq(p) sin[σβq(p)g(x)]+ i(p+kLq)h(x) cos[σβq(p)g(x)]}C(q)
0 (p)

+

∞
∑

q=−∞

eikLqx

[

i

∫ kL/2

−kL/2
{βq(p+λs) cos[σβq(p+λs)g(x)]

−i(p+kLq+λs)h(x) sin[σβq(p+λs)g(x)]}
×eiλs(x−mL)C

(q)
1 (λs|p)dλs

− 2

∫∫ kL/2

−kL/2
{βq(p+λs) sin[σβq(p+λs)g(x)]

+i(p+kLq+λs)h(x) cos[σβq(p+λs)g(x)]}
×ei(λs−λ1)(x−mL)+iλ1xC

(q)
2 (λs−λ1, λ1|p)dλ1dλs

+ 2δ(m, 0)

∫∫ kL/2

−kL/2
{βq(p+λs) sin[σβq(p+λs)g(x)]

+i(p+kLq+λs)h(x) cos[σβq(p+λs)g(x)]}

×eiλsxC
(q)
2 (λs−λ1, λ1|p)dλ1dλs

]

= 0, (5.29)

(second order) (m1,m2 = 0,±1,±2, · · ·)
∞
∑

q=−∞

eikLqx

[

i

∫∫ kL/2

−kL/2
{βq(p+λs) cos[σβq(p+λs)g(x)]

−i(p+kLq+λs)h(x) sin[σβq(p+λs)g(x)]}
×ei(λs−λ1)(x−m1L)+iλ1(x−m2L)C

(q)
2 (λs−λ1, λ1|p)dλ1dλs

− 1

2
δ(m2, 0)

∫ kL/2

−kL/2
{βq(p+λs−λ1) sin[σβq(p+λs−λ1)g(x)]

+i(p+kLq+λs−λ1)h(x) cos[σβq(p+λs−λ1)g(x)]}
×ei(λs−λ1)(x−m1L)C

(q)
1 (λs−λ1|p)dλs

− 1

2
δ(m1, 0)

∫ kL/2

−kL/2
{βq(p+λ1) sin[σβq(p+λ1)g(x)]

+i(p+kLq+λ1)h(x) cos[σβq(p+λ1)g(x)]}
×eiλ1(x−m2L)C

(q)
1 (λ1|p)dλ1

− 3

∫∫∫ kL/2

−kL/2
{βq(p+λs) sin[σβq(p+λs)g(x)]
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+i(p+kLq+λs)h(x) cos[σβq(p+λs)g(x)]}
×ei(λs−λ1−λ2)(x−m1L)+iλ1(x−m2L)+iλ2x

×C(q)
3 (λs−λ1−λ2, λ1, λ2|p)dλ1dλ2dλs

+6δ(n, 0)

∫∫∫ kL/2

−kL/2
{βq(p+λs) sin[σβq(p+λs)g(x)]

+i(p+kLq+λs)h(x) cos[σβq(p+λs)g(x)]}
×ei(λs−λ1−λ2)(x−m1L)+iλ1x+iλ2x

×C(q)
3 (λs−λ1−λ2, λ1, λ2|p)dλ1dλ2dλs

]

= 0, (5.30)

(n-th order) (n ≥ 3) (m1, · · · ,mn = 0,±1,±2, · · ·)
∞
∑

q=−∞

eikLqx

[

i

∫

· · ·
∫ kL/2

−kL/2
{βq(p+λs) cos[σβq(p+λs)g(x)]

−i(p+kLq+λs)h(x) sin[σβq(p+λs)g(x)]}
×ei(λs−(λ1+···+λn−1))(x−mnL)+iλ1(x−m1L)+···+iλn−1(x−mn−1L)

×C(q)
n (λs−(λ1+ · · · + λn−1), λ1, · · · , λn−1|p)dλ1 · · · dλn−1dλs

− 1

n
δ(m1, 0)

∫

· · ·
∫ kL/2

−kL/2
{βq(p+λs−λ1) sin[σβq(p+λs−λ1)g(x)]

+i(p+kLq+λs−λ1)h(x) cos[σβq(p+λs−λ1)g(x)]}
×ei(λs−(λ1+···+λn−1))(x−mnL)+iλ2(x−m2L)+···+iλn−1(x−mn−1L)

×C(q)
n−1(λs−(λ1+ · · · +λn−1), λ2, · · · , λn−1|p)dλ2 · · · dλn−1dλs

...

− 1

n
δ(mn, 0)

∫

· · ·
∫ kL/2

−kL/2
{βq(p+λ1+· · ·+λn−1) sin[σβq(p+λ1+ · · · +λn−1)g(x)]

+i(p+kLq+λ1+· · ·+λn−1)h(x) cos[σβq(p+λ1+ · · · +λn−1)g(x)]}
×C(q)

n−1(λ1, · · · , λn−1|p)eiλ1(x−m1L)+···+iλn−1(x−mn−1L)dλ1 · · · dλn−1

− (n+ 1)

∫

· · ·
∫ kL/2

−kL/2
{βq(p+λs) sin[σβq(p+λs)g(x)]

+i(p+kLq+λs)h(x) cos[σβq(p+λs)g(x)]}
×ei(λs−(λ1+···+λn))x+iλ1(x−m1L)+···+iλn(x−mnL)

×C(q)
n+1(λs−(λ1+ · · · +λn), λ1, · · · , λn|p)dλ1 · · · dλndλs

+n(n+ 1)δ(mn, 0)

∫

· · ·
∫ kL/2

−kL/2
{βq(p+λs) sin[σβq(p+λs)g(x)]

+i(p+kLq+λs)h(x) cos[σβq(p+λs)g(x)]}
×ei(λs−(λ1+···+λn))x+iλ1(x−m1L)+···+iλn−1(x−mn−1L)+iλnx

×C(q)
n+1(λs−(λ1+ · · · +λn), λ1, · · · , λn|p)dλ1 · · · dλndλs

]

= 0 (5.31)

Here, (5.29), (5.30) and (5.31) hold for any m or mj (j = 1, · · · , n). Since (5.28)-(5.31)

hold for any x in |x| ≤ L/2, we expand the factors {βq(p+λ′) cos[σβq(p+λ′)g(x)] − i(p+

kLq+λ′)h(x) sin[σβq(p+λ′)g(x)]}eikLqxeiλ
′x and {βq(p+λ′) sin[σβq(p+λ′)g(x)] + i(p+ kLq+
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λ′)h(x) cos[σβq(p+λ
′)g(x)]}eikLqxeiλ

′x into Fourier series as
[

βq(p+λ
′) cos[σβq(p+λ

′)g(x)]−i(p+kLq+λ
′)h(x) sin[σβq(p+λ

′)g(x)]
βq(p+λ

′) sin[σβq(p+λ
′)g(x)]+i(p+kLq+λ

′)h(x) cos[σβq(p+λ
′)g(x)]

]

eikLqxeiλ
′x

=

∞
∑

j=−∞

[

Hc
jq(λ

′|p)
Hs

jq(λ
′|p)

]

eikLjx, (5.32)

where Hs
jq(λ

′|p) is at most of the order of σ1, while Hc
jq(λ

′|p) is of the order of σ0. Note that

Hc
jq(λ

′|p) = 0, (p+ λ′ = ±k − kLq), (5.33)

for all j, since βq(p + λ′) vanishes for such λ′, which causes anomalies in the diffraction and

scattering. This will be discussed later.

Then, we introduce infinite-dimensional matrices Hs(λ′|p), Hc(λ′|p) and infinite-dimensional

vectors C0(p), C1(λ
′|p), Cn(λ1, · · · , λn|p) (n ≥ 2), I0 as

Hc(λ′|p) = [Hc
jq(λ

′|p)], (5.34)

Hs(λ′|p) = [Hs
jq(λ

′|p)], (5.35)

C0(p) = [· · · , C(−1)
0 (p), C

(0)
0 (p), C

(1)
0 (p), · · ·]t, (5.36)

C1(λ
′|p) = [· · · , C(−1)

1 (λ′|p), C(0)
1 (λ′|p), C(1)

1 (λ′|p), · · ·]t, (5.37)

Cn(λ1, · · · , λn|p) = [· · · , C(−1)
n (λ1,···,λn|p),

C(0)
n (λ1,···,λn|p), C(1)

n (λ1,···,λn|p),· · ·]t, (5.38)

I0 = [· · · , 0, 1, 0, · · ·]t = [δ(m, 0)]t. (5.39)

From (5.33),

det [Hc(0|p)] = 0, (p = ±k − kLq), (5.40)

det
[

Hc(λ′|p)
]

= 0, (p+ λ′ = ±k − kLq), (5.41)

for q = 0, ±1, ±2, · · ·, where det[·] is a determinant of the matrix. (5.41) means that the

inverse matrix [Hc(λ′|p)]−1 diverges when p + λ′ = ±k − kLq. This fact is related to Wood’s

anomaly and incoherent Wood’s anomaly as is discussed below.

Multiplying eiΛmL, eiΛ1m1L+iΛ2m2L and eiΛ1m1L+···+iΛnmnL to the first, second and n-th order

equations, respectively, summing up with every mj (1 ≤ j ≤ n), and using the identity

∞
∑

m=−∞

eimL(Λ−λ′) = kL

∞
∑

m=−∞

δ(Λ − λ′ + kLm), (5.42)

we obtain the hierarchical equations in a matrix form,

(zero order)

−iHc(0|p)I0 + iHc(0|p)C0(p) −
∫ kL/2

−kL/2
Hs(λ′|p)C1(λ

′|p)dλ′ = 0, (5.43)

(first order)

ikLHc(Λ|p)C1(Λ|p) −Hs(0|p)
{

I0 + C0(p)
}

−2kL

∫ kL/2

−kL/2
Hs(Λ+λ1|p)C2(Λ, λ1|p)dλ1

+ 2

∫∫ kL/2

−kL/2
Hs(λs|p)C2(λs−λ1, λ1|p)dλ1dλs = 0, (5.44)
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(second order)

ikLHc(Λ1 + Λ2|p)C2(Λ1,Λ2|p)−
1

2
Hs(Λ1|p)C1(Λ1|p)−

1

2
Hs(Λ2|p)C1(Λ2|p)

− 3kL

∫ kL/2

−kL/2
Hs(Λ1+Λ2+λ2|p)C3(Λ1,Λ2, λ2|p)dλ2

+ 3

∫∫ kL/2

−kL/2
Hs(Λ1+λ1+λ2|p)C3(Λ1, λ1, λ2|p)dλ1dλ2

+ 3

∫∫ kL/2

−kL/2
Hs(Λ2+λ1+λ2|p)C3(Λ2, λ1, λ2|p)dλ1dλ2 =0, (5.45)

(n-th order)

ikLHc(Λ1 + · · · + Λn|p)Cn(Λ1, · · · ,Λn|p)

−
n
∑

l=1

1

n
Hs(Λ1+· · ·+Λl−1+Λl+1+· · ·+Λn|p)

×Cn−1(Λ1, · · · ,Λl−1,Λl+1, · · · ,Λn|p)

− (n+ 1)kL

∫ kL/2

−kL/2
Hs(Λ1+· · ·+Λn+λn|p)

×Cn+1(Λ1, · · · ,Λn, λn|p)dλn

+

n
∑

l=1

(n+1)

∫∫ kL/2

−kL/2
Hs(Λ1+· · ·+Λl−1+Λl+1+· · ·+Λn+λn−1+λn|p)

×Cn+1(Λ1, · · · ,Λl−1,Λl+1, · · ·Λn, λn−1, λn|p)dλn−1dλn =0. (5.46)

Note that the n-th order relation (5.46) describes ascending coupling [53] between Cn(·) and the

sum of Cn−1(·) and descending coupling between Cn(·) and the integral terms of Cn+1(·). Since

Hs(λ′|p) is of the order of σ1 by (5.32), however, one finds from these hierarchical equations

that C0(p) is of the order of σ0 and Cn(λ1, λ2, · · · , λn|p) is of the order of σn for n ≥ 1 under

kσ < 1. Therefore, for a sufficiently small σ, we may solve the hierarchical equations.

5.4.2 Binary kernels by a single scattering approximation

In this section, we discuss binary kernels Ĉ0(p), Ĉ1(Λ|p) and Ĉn(Λ1, · · · ,Λn|p) obtained by a

single scattering approximation, which is the same manner as [8]. Neglecting integral terms in

(5.43), (5.44) and (5.46), we may obtain such binary kernels as

Ĉ0(p) = I0, (5.47)

Ĉ1(Λ|p) =
2

ikL
[Hc(Λ|p)]−1Hs(0|p)I0, (5.48)

Ĉn(Λ1, · · · ,Λn|p) =
1

inkL
[Hc(Λ1 + · · · + Λn|p)]−1

×
n
∑

l=1

Hs(Λ1+· · ·+Λl−1+Λl+1+· · ·+Λn|p)

×Ĉn−1(Λ1, · · · ,Λl−1,Λl+1, · · · ,Λn|p), (n ≥ 2). (5.49)

(5.47) means that there only occurs a specular reflection of I0 that stands for the incident plane

wave for an average wave field, and (5.48) is written as a “bare” single scattering of the incidence.
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(5.49) describes ascending coupling between the n-th and (n − 1)-th order binary kernels, and

could be regarded as an n-tuple “bare” single scattering of the incidence. Since det[Hc(Λ|p)]
vanishes for p + Λ = ±k − kLq as is mentioned above, (5.48) and (5.49) diverge. This is a

drawback of the single scattering approximation. Such a drawback can be overcome by taking

multiple scattering effects into account, as is discussed below. Note that the solution in [8] does

not diverge, since the ensemble average of the random surface is periodic with average height.

However, in the case where the average height becomes zero, such a solution diverges.

5.4.3 Binary kernels by the multiply renormalizing approximation

Let us obtain approximate binary kernels Cn(Λ1, · · · ,Λn|p) by use of the multiply renormalizing

approximation [53], which is made up of two steps.

First, we get an expression of Cn(Λ1, · · · ,Λn|p) by use of a truncation procedure and the

diagonal approximation [53]. Neglecting CN+1(·) in the N -th order relation (N ≥ 2), we obtain

ikLHc(Λ1 + · · · + ΛN |p)C(N)
N (Λ1, · · · ,ΛN |p)

=

N
∑

l=1

1

N
Hs(Λ1+· · ·+Λl−1+Λl+1+· · ·+ΛN |p)

×C
(N)
N−1(Λ1, · · · ,Λl−1,Λl+1, · · · ,ΛN |p). (5.50)

Here, the superscript (N) indicates the truncation number N . Substituting (5.50) into the

(N−1)-th order relation, we get

ikLHc(Λ1+· · ·+ΛN−1|p)C(N)
N−1(Λ1, · · · ,ΛN−1|p)

−
N−1
∑

l=1

1

N−1
Hs(Λ1+· · ·+Λl−1+Λl+1+· · ·+ΛN−1|p)

×C
(N)
N−2(Λ1, · · · ,Λl−1,Λl+1, · · · ,ΛN−1|p)

+ i

∫ kL/2

−kL/2
Hs(Λ1+· · ·+ΛN−1+λN−1|p)

×[Hc(Λ1 + · · · + ΛN−1 + λN−1|p)]−1

×Hs(Λ1+· · ·+ΛN−1|p)dλN−1C
(N)
N−1(Λ1, · · · ,ΛN−1|p)

+
N−1
∑

l=1

i

∫ kL/2

−kL/2
Hs(Λ1+· · ·+ΛN−1+λN−1|p)

×[Hc(Λ1+· · ·+ΛN−1 + λN−1|p)]−1

×Hs(Λ1−· · ·−Λl−1−Λl+1+· · ·+ΛN−1 + λN−1|p)
×C

(N)
N−1(Λ1, · · · ,Λl−1,Λl+1, · · · ,ΛN−1, λN−1|p)dλN−1

−
N−1
∑

l=1

iN

kL

∫∫ kL/2

−kL/2
Hs(Λ1+· · ·+Λl−1+Λl+1+· · ·+ΛN−1+λN−2+λN−1|p)

×[Hc(Λ1+· · ·+Λl−1+Λl+1+· · ·+ΛN−1+λN−2+λN−1|p)]−1

×Hs(Λ1+· · ·+Λl−1+Λl+1+· · ·+ΛN−1 + λN−1|p)
×C

(N)
N−1(Λ1, · · · ,Λl−1,Λl+1, · · · ,ΛN−1, λN−1|p)dλN−2dλN−1 =0. (5.51)
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Taking the diagonal approximation on (5.51), we obtain C
(N)
N−1(·) as

C
(N)
N−1(Λ1, · · · ,ΛN−1|p)

'
N−1
∑

l=1

1

ikL(N−1)

[

Hc(Λ1+· · ·+ΛN−1|p) + M(1)(Λ1+· · ·+ΛN−1|p)
]−1

×Hs(Λ1+· · ·+Λl−1+Λl+1+· · ·+ΛN−1|p)
×C

(N)
N−2(Λ1, · · · ,Λl−1,Λl+1, · · · ,ΛN−1|p). (5.52)

Substituting such a relation and applying the diagonal approximation recursively, we get a

relation between C
(N)
n (·) and C

(N)
n−1(·) as

C(N)
n (Λ1, ···,Λn|p) '



































1

inkL

n
∑

l=1

[

Hc(Λ1+···+Λn|p)+M(N−n)(Λ1+···+Λn|p)
]−1

×Hs(Λ1+···+Λl−1+Λl+1+···+Λn|p)
×C

(N)
n−1(Λ1, ···,Λl−1,Λl+1, ···,Λn|p), (N≥n≥2),

1

ikL

[

Hc(Λ|p)+M(N−1)(Λ|p)
]−1

Hs(0|p)
{

I0+C0(p)
}

, (n=1),

(5.53)

where M(n)(Λ|p) is defined as

M(n)(Λ|p)=



















1

kL

∫ kL/2

−kL/2
Hs(Λ+λ′|p)

×
[

Hc(Λ+λ′|p)+M(n−1)(Λ+λ′|p)
]−1

Hs(Λ|p)dλ′, (n≥1),
0, (n=0).

(5.54)

M(n)(Λ|p) is the n-th order iterative mass operator. Since M(n)(Λ|p) has products of Hs(Λ+λ′|p)
and Hs(Λ|p) in the integrand, it contains couplings between different orders on q of the harmonic

series. Thus, M(n)(Λ|p) may represent effects of diffraction. Also, M(n)(Λ|p) represents multiple

scattering effects because it has a component of an inverse matrix of Hc(Λ+λ′|p)+M(n−1)(Λ+

λ′|p). Note that M(n)(p+ Λ) can be estimated to be proportional to σ2 under small roughness

kσ < 1, since Hs(Λ|p) is of the order of σ1. We note that M(1)(p + Λ) may correspond to the

mass operator by the first order smoothing approximation in the multiple scattering theory [62].

Repeating the above procedure, we obtain C
(N)
0 (p) as

C
(N)
0 (p) =

[

Hc(0|p) + M(N)(0|p)
]−1[

Hc(0|p)−M(N)(0|p)
]

I0. (5.55)

From (5.53) and (5.55), C
(N)
n (·) (n ≥ 1) can be obtained. The N -th order binary kernel C

(N)
N (·),

where N is the order of the truncation, does not have descending coupling from the (N + 1)-th

order, thus it inevitably diverges for wavenumbers which satisfy (5.41) owing to the truncation.

Moreover, the truncation at the N -th order relation consequently leads a spurious resonance in

1/det[Hc(Λ|p)+M(2)(Λ|p)], that is, det[Hc(Λ|p)+M(2)(Λ|p)] vanishes with some Λ which does

not satisfy p + Λ = ±k + kLq, q being integer. Thus, the solution (5.53) and (5.55) may not

work well even though the boundary condition is evaluated without approximation. This will

be referred below.

In view of this undesirable nature, a case where the truncation number N goes to infinity

should be considered in the next step. We may assume the existence of a limit of the iterative

mass operator M(N)(Λ|p):
lim

N→∞
M(N)(Λ|p)=M(∞)(Λ|p)≡M(Λ|p). (5.56)
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Thus, we obtain a non-linear integral equation in a matrix form for M(Λ|p) from (5.54):

M(Λ|p)= 1

kL

∫ kL/2

−kL/2
Hs(Λ+λ′|p)

[

Hc(Λ+λ′|p)+M(Λ+λ′|p)
]−1

Hs(Λ|p)dλ′, (5.57)

which we call the ’multiple renormalized mass operator’ [53]. Using the multiple renormalized

mass operator M(Λ|p), the expression of the binary kernels (5.55) and (5.53) can be rewritten

as

C0(p) = [Hc(0|p) + M(0|p)]−1 [Hc(0|p) −M(0|p)] I0, (5.58)

C1(Λ|p) =
1

ikL
[Hc(Λ|p)+M(Λ|p)]−1Hs(0|p)

[

I0+C0(p)
]

=
1

ikL
[Hc(Λ|p)+M(Λ|p)]−1Hs(0|p)

×
[

I0+[Hc(0|p)+M(0|p)]−1 [Hc(0|p)−M(0|p)] I0

]

, (5.59)

C2(Λ1,Λ2|p) =
1

2ikL
[Hc(Λ1+Λ2|p)+M(Λ1+Λ2|p)]−1

× [Hs(Λ1|p)C1(Λ1|p) + Hs(Λ2|p)C1(Λ2|p)]

= − 1

2kL
2 [Hc(Λ1+Λ2|p)+M(Λ1+Λ2|p)]−1

×
[

Hs(Λ1|p) [Hc(Λ1|p)+M(Λ1|p)]−1
Hs(0|p)

[

I0−C0(p)
]

+ Hs(Λ2|p) [Hc(Λ2|p)+M(Λ2|p)]−1
Hs(0|p)

[

I0−C0(p)
]

]

, (5.60)

Cn(Λ1, · · · ,Λn|p) '
1

inkL

n
∑

l=1

[Hc(Λ1+· · ·+Λn|p)+M(Λ1+· · ·+Λn|p)]−1

×Hs(Λ1+· · ·+Λl−1+Λl+1+· · ·+Λn|p)
×Cn−1(Λ1, · · · ,Λl−1,Λl+1, · · · ,Λn|p), (n ≥ 2), (5.61)

From (5.58), one finds that the coherent Floquet mode C0(p) is excited by the incidence I0.

When the surface has no deformation, M(0|p) vanishes. This means that the non-zero order

Floquet modes vanish and only the specular reflection remains. Thus, we may conclude that

the non-zero order Floquet modes are generated by multiple scattering processes in the case of

a binary periodic random surface with zero average : 〈f(x, ω)〉 = 0.

Since (5.59) has [Hc(Λ|p) + M(Λ|p)]−1, which we call a “dressed” single scattering factor,

C1(Λ|p) describes a “dressed” single scattering excited by I0 the incident plane wave and C0(p)

the coherent Floquet modes. Furthermore, (5.60) has another “dressed” single scattering factor

[Hc(Λ1 +Λ2|p) + M(Λ1 +Λ2|p)]−1 in addition to such a “dressed” single scattering factor of

C1(Λ|p). Therefore, C2(Λ1,Λ2|p) represents a “dressed” double scattering process made up of

such “dressed” single scattering processes. Similarly, Cn(Λ1, · · · ,Λn|p) by (5.61) expresses a

“dressed” n-tuple scattering process made up of such “dressed” single scattering processes.

The resonance factor |1/det[Hc(Λ|p) + M(Λ|p)]| represents characteristics of the diffraction

and scattering. Thus, properties of the resonance factor against wavenumber Λ is illustrated

below.
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x

H  =ey −ikx

perfectly conductive flat surface

x

ps

perfectly conductive binary periodic random surface

(b) guided surface waves on a binary periodic random surface

(a) free guided waves along a flat surface

Figure 5.2 (a) Free guided waves propagating into the x direction along a per-
fectly conductive flat surface without any roughness. Such free guided waves have
the Rayleigh wavenumber +k and −k, and satisfy the Helmholtz equation (3.7) and
the Neumann condition ∂Hy/∂z = 0 at z = 0. (b) Guided surface waves propagat-
ing along the perfectly conductive binary periodic random surface. Guided surface
waves have complex propagation constants ±sp into the x direction.

5.5 Wood’s anomaly and incoherent Wood’s anomaly

In this section, we discuss the physical mechanisms of anomalies which appear in the diffraction

and scattering.

As is well known, Wood’s anomaly appears for critical angles of incidence as rapid variations

in the diffraction powers in the perfectly periodic case [28, 29]. On the other hand, another

anomaly which occurs in the angular distribution of the scattering has been found in cases

of periodic random surfaces [6, 8]. In this paper, we newly show that it takes place in the

scattering from a periodic random surface with binary deformations even when the surface is

flat on average.

As far as the authors know, there have been few discussions on the physical mechanisms of

such anomalies. In this section, we point out that such anomalies are caused by diffraction of

the guided surface waves.

As is explained in section 5.3.2, a binary periodic random surface with zero average acts as

a periodic surface for the average wave field, and the incident wave is diffracted into discrete

directions. When Hc(0|p) in (5.58) vanishes, the diffraction amplitude C0(p) may become large

in a shallow case with σ � λ. As is well known, this causes Wood’s anomaly, which occurs

at critical angles of incidence as rapid variations of the diffraction powers against the angle of

incidence.
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(b) diffraction of the guided surface wave

with the wavenumber near +k
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Figure 5.3 Incoherent Wood’s anomaly at critical angles of scattering (a) φ
[+1]
−

and φ
[+2]
− and (b) φ

[−1]
+ and φ

[−2]
+ for L = 1.35λ. (a) Guided surface wave with

the wavenumber near −k is diffracted into −k + kL and −k + 2kL by the periodic
grating. It is also diffracted to −k+3kL in the evanescent region. (b) Guided surface
wave with the wavenumber near +k is diffracted into +k− kL and +k− 2kL by the
periodic grating. It is also diffracted to +k − 3kL in the evanescent region.

First, we point out a mathematical fact. In a flat surface case without any roughness, TM

plane waves Hy = e±ikx±iβ0(±k)z = e±ikx are exact solutions of the wave equation (5.10) and

satisfy the Neumann condition ∂Hy/∂z = 0 at z = 0 (See figure 5.2(a)). Therefore, a plane

wave with the Rayleigh wavenumber +k or −k is a free guided wave propagating along the flat

surface [20, 58]. Such a free guided wave does not exist in the TE case. When the surface has

a periodic structure, such a free guided wave is scattered by the surface roughness and decays

exponentially with propagation distance. As a result, it becomes a guided surface wave with a

complex propagation constant +sp or −sp into the x direction (See figure 5.2(b)). In our case,

the surface, which is not periodic but flat on average, works as a periodic surface due to the

multiple scattering effects. Mathematically, such ±sp should be given as complex roots of the

determinant of [Hc(0|p) + M(0|p)]. When the surface roughness is sufficiently small, however,

we may expect that such complex propagation constant sp exists very close to the Rayleigh

wavenumber k. † In the case of a perfectly periodic surface, or when a periodic random surface

†Since this complex propagation constant sp should exist very close to the Rayleigh wavenumber k in the
shallow case, we assume Re(sp) ≈ k and put such complex sp as real k in the following discussion for simplicity.
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acts as a perfectly periodic surface for an average wave field, the surface has a discrete spectrum,

and such a guided surface wave is excited by the incident wave. Therefore, such excitation takes

place only for the critical angles of incidence θ
[l]
W , which are determined by

k2 − (k cos θ
[l]
W − lkL)2 = 0, (l = ±1,±2, · · ·). (5.62)

When θ = θ
[l]
W holds, such a guided surface wave is excited due to the diffraction by perfect

periodicity and may have a large amplitude. Then, it is diffracted again due to the periodicity.

Thus, a multiple scattering takes place for a critical angle of incidence, which causes Wood’s

anomaly. As a result, Wood’s anomaly appears as rapid variations of the coherent diffraction

powers. Note that, at θ = θ
[l]
W , the lth order Floquet mode becomes cutoff.

In the case of a periodic random surface with binary fluctuations, another anomaly, which we

call incoherent Wood’s anomaly, appears at several scattering angles as rapid variations in the

angular distribution of the scattering. The surface spectrum has a discrete component effectively

and a continuous component due to the binary fluctuations. Because of the scattering by the

continuous component, such a guided surface wave is always excited by the incident plane wave

with any angle of incidence and then diffracted into discrete directions by the discrete component.

To describe these processes, we rewrite a critical wavenumber which satisfies (5.41) as

λ
[l]
± = ±k − p+ lkL, (l = 0,±1,±2, · · ·). (5.63)

Let us consider the binary kernel C1(Λ|p) given by (5.59). When Λ = λ
[0]
± = ±k − p holds,

[Hc(Λ|p) +M(Λ|p)] becomes small in (5.59), since Hc(Λ|p) vanishes with such Λ and M(Λ|p) is

estimated to be of the order of σ2 under small roughness kσ < 1. Thus, the solution C1(Λ|p) =

C1(λ
[0]
± |p) has a large amplitude, because M(Λ|p) is small in the shallow case. From (5.17), we

regard C1(λ
[0]
± |p) as the amplitude of the guided surface wave, which is diffracted into discrete

directions λ
[l]
± . This means that C1(λ

[0]
± |p) = C1(±k−p+ lkL|p) could have a large amplitude for

any integer l, due to the discrete Bragg coupling from λ
[0]
± = (±k − p) to λ

[l]
± = (±k − p+ lkL).

Thus, we may observe rapid variations of the scattering amplitude near a critical scattering

angle φ
[l]
± (See figure 5.3),

p+ λ
[l]
± = ±k + lkL = k cosφ

[l]
± , (5.64)

φ
[l]
± = cos−1

(

±1 + l
λ

L

)

, (l = ±1,±2, · · ·), (5.65)

where the sign ± goes together in (5.65). It should be noticed that λ
[l]
± and φ

[l]
± only depend on

the period L and the wavelength λ and are independent of the angle of incidence θ.

Note that incoherent Wood’s anomaly has been found in a deterministic case of periodic

grooves with single defect [46].

5.6 Numerical examples

Let us discuss the properties of diffraction and scattering of the wave field by determining the

binary kernels up to the first order.



5.6 Numerical examples 85

 0.0

 1.0

-0.6 -0.3  0  0.3  0.6

he
ig

ht

x in λ

a0=0.3λ
κ=0.12λ

Figure 5.4 Local surface profile g(x), which is a rectangular boss with smooth
edge. κ = 0.12λ and a0 = 0.3λ, λ is wavelength.

5.6.1 Parameters of calculation

In this paper, we take the local surface profile g(x) as a trapezoidal boss with smooth edges.

We put such a local profile for numerical calculations as

g(x) =
1

2

[

erf

(

x+ a0

κ

)

− erf

(

x− a0

κ

)]

, erf(x) =
2√
π

∫ x

0
e−t2dt, (5.66)

where erf(x) is the error function with erf(±∞) = ±1, a0 is a width parameter, and κ is a

constant which determines the slope angle of the trapezoidal boss. When a0/κ � 1, it holds

that g(0) ≈ 1 as is shown in figure 5.4. We calculated numerical examples for periods L = 1.35λ

and 1.7λ, and height parameters σ = 0.025λ, 0.05λ and 0.1λ, λ being wavelength.

In this paper, C0(p) and C1(Λ|p) are used to calculate statistical properties of the diffraction

and scattering from the binary periodic random surface. We determine the binary kernels C0(p)

and C1(Λ|p) by introducing the truncation number of the order in the spectral domain Nq,

which means that we assume

{

C
(q)
0 (p) = 0,

C
(q)
1 (λ′|p) = 0,

|q| > Nq, (5.67)

Thus, the infinite-dimensional matrices and vectors (5.34)-(5.39) are approximated by finite ones

: Nq ×Nq matrices and Nq dimensional vectors in the numerical calculations below. Nq should

be set so that the first-order band-limited binary kernel C
(q)
1 (·) enjoys (5.24), however, we take

Nq as to make C
(q)
1 (·) satisfy

∣

∣

∣
C

(q)
1 (kL/2 − p|p) − C

(q+1)
1 (−kL/2 − p|p)

∣

∣

∣

< ε
∣

∣

∣
C

(q)
1 (kL/2 − p|p) + C

(q+1)
1 (−kL/2 − p|p)

∣

∣

∣
. (5.68)
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at the band edge on the evaluation of ε for L = 1.35λ and θ = 90◦(p = 0). In this paper, we set
†

Nq =

{

29, (σ = 0.025λ),
43, (σ = 0.05λ, 0.1λ),

ε =

{

0.01, (σ = 0.025λ),
0.025, (σ = 0.05λ).

(5.69)

5.6.2 Calculation of mass operator

In this section, we present procedures to calculate the multiple renormalized mass operator

M(Λ|p) numerically.

To calculate properties of the diffraction and scattering, it is necessary to obtain M(Λ|p)
solving the non-linear integral equation (5.57) for M(Λ|p). To calculate M(Λ|p) numerically, the

iterative solution with initial guess M(0)(Λ|p) ≡ 0 is often employed under the estimation that

M(Λ|p) is of the order of σ2. However, this iterative solution gives the iterative mass operator

(5.54) again. Moreover, when the second-order iterative mass operator with the truncation

number N = 2 is used to calculate the properties of the diffraction and scattering, a serious

problem comes out: a spurious peak appears in the Λ-dependence of the resonance factor of

the matrix [Hc(Λ|p) + M(2)(Λ|p)] in the zero order binary kernels (5.55), which implies the

existence of a complex spurious pole †. Such a spurious pole is similar to those appearing in the

corresponding resonance factor of the iterative mass operator in classical random surfaces [53].

To overcome this problem, we estimate the mass operator M(Λ|p) for the binary periodic

random surface in the same manner as it is used in the case of the classical random surfaces [53].

Thus, we use the modified iterative mass operator M̃(n)(Λ|p) as,

M̃(n)(Λ|p)=























1

kL

∫ kL/2

−kL/2
Hs(Λ+λ′|p)

×
[

Hc(Λ+λ′|p)+M̃(n−1)(Λ+λ′|p)
]−1

Hs(Λ|p)dλ′, (n≥1),

M(δ)(Λ|p), (n=0).

(5.70)

Here, the initial value matrix M(δ)(λ′|p) is set as a diagonal matrix and its elements can be

calculated as follows ‡ :

M(δ)(λ′|p) =



















M−q(λ
′|p) 0 · · · · · · 0

0
. . .

...
... Mn(λ′|p) ...
...

. . . 0
0 · · · · · · 0 Mq(λ

′|p)



















, (5.71)

Mn(λ′|p) = −H
c
nn(λ′|p)

2
+

√

(

Hc
nn(λ′|p)

2

)2

+Hs
nn(λ′|p)2, (n ≤ |q|), (5.72)

†To obtain an approximate solution with high accuracy, Nq should be sufficiently large, however, it takes a
certain amount of calculation time (approximately two weeks for M̃

(1)(Λ|p) with Nq = 43 for σ = 0.1λ on a
workstation with dual Quad-core Xeon X5365 3.0GHz CPUs). We set Nq as (5.69), however, for angles very close

to critical angles of incidence θ
[l]
W , the relative error (5.68) is not as small as that for other θ.

†Such a spurious pole does not appear in the Λ-dependence of the resonance factor of the matrix [Hc(Λ|p) +
M

(1)(Λ|p)] in the first order binary kernels (5.53).
‡In the discussion in section 4, we have introduced infinite-dimensional matrices and vectors, however,

M̃
(n)(Λ|p) and M(δ)(Λ|p) are written as Nq × Nq matrices in (5.70) and (5.71), which is actually used for

numerical calculation.
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Figure 5.5 Relative value of
∣

∣

∣1/det[Hc(Λ|p) + M̃(2)(Λ|p)]
∣

∣

∣ against wavenumber Λ

for periods L = 1.35λ (upper figure) and 1.7λ (lower figure) with height σ = 0.05λ

(p = 0). The resonance factor has large value at critical wavenumbers k, λ
[−1]
+ =

k − kL, λ
[2]
− = −k + 2kL and λ

[3]
− − k + 3kL.

where the branch cut of √ in (5.72) is chosen such that lim
|λ′|→∞

Mn(λ′|p) = 0 holds.

It was demonstrated in Ref [53], if we take the δ-exact solution as an initial value, the

multiple renormalized mass operator can be numerically obtained only by two times of iteration.

In our case of the binary periodic random surface, we employ M̃(2)(Λ|p) instead of the multiple

renormalized mass operator M(Λ|p) for numerical calculations below †, which we write M(Λ|p)
in what follows.

†
M̃

(2)(Λ|p) converges as M̃
(2)(Λ|p) ≈ M̃

(n)(Λ|p) (n ≥ 3) owing to the initial value M(δ)(Λ|p) under a conver-
gence study up to M̃

(8)(Λ|p) for p = 0 with σ = 0.05λ and L = 1.35λ.
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5.6.3 Properties of diffraction and scattering

Let us start with the property of the resonance factor. Figure 5.5 illustrates relative values of

the resonance factor
∣

∣

∣1/det[Hc(Λ|0) + M̃(2)(Λ|0)]
∣

∣

∣ against wavenumber Λ for periods L = 1.35λ

with height σ = 0.05λ and L = 1.7λ with height σ = 0.025λ (p = 0). The resonance factor

has steep peaks at critical wave numbers k, λ
[−1]
+ , λ

[2]
− and λ

[3]
− for both periods L = 1.35λ and

1.7λ, as is expected †. Since the resonance factor commonly appears in the binary kernels, such

peaks lead rapid variations both in the diffraction powers and in the angular distributions of

differential scattering cross section.

Next, we show relations on powers of diffraction and scattering. Figure 5.6 illustrates the

relative coherent diffraction power for L = 1.35λ and σ = 0.05λ (upper figure) and for L = 1.7λ

and σ = 0.025λ (lower figure) against the angles of incidence. Total coherent diffraction power is

normalized to unity. The line ’0th order’ means the relative power of the 0th order Floquet mode,

i.e, Re[β0(p)]
∣

∣

∣
C

(0)
0 (p)

∣

∣

∣

2
/β0(p), and the line ’1st order’ that of the 1st order Floquet mode, and

so on. For L = 1.3λ, the diffraction power rapidly changes near the critical angles of incidence

θ
[−2]
W = 61.218◦ and θ

[1]
W = 74.974◦ given by (5.62), at which one particular diffraction mode

appears or disappears. This is well-known Wood’s anomaly. For L = 1.7λ, such rapid variations

appear at critical incident angles θ
[−3]
W = 40.119◦, θ

[1]
W = 65.684◦ and θ

[−2]
W = 79.836◦. Figure 5.7

illustrates the normalized optical theorem (5.20) against the angle of incidence θ for L = 1.35λ

and σ = 0.05λ (upper figure), and for L = 1.7λ and σ = 0.025λ (lower figure). The incident

power is normalized as unity. ’Coherent’ means power of coherent diffractions, ’Incoherent’

means that of incoherent scattering, and ’Total’ means a sum of both powers. When the angle

of incidence is close to 90◦, the incoherent scattering increases. From the upper figure, it is found

that error |Total−1| is less than 0.05 for any angles of incidence except for low grazing angles of

incidence less than 20◦, where accuracy of the coherent diffractions is not sufficient. For critical

angles of incidence, sharp peaks appear in the power of coherent diffractions, while that of

incoherent scattering compensationally decreases sharply. Near θ
[1]
W = 74.974◦ with L = 1.35λ,

’Total’ slightly exceeds unity (at most 1.002). From the lower figure, it is found that the error

|Total − 1| is less than 0.015 for any angles of incidence except for grazing incident angles less

than 15◦. For σ = 0.025λ, power of incoherent scattering is at most less than 3.4×10−2. In this

case, the optical theorem holds better accuracy at grazing angles of incidence than the case for

L = 1.35λ and σ = 0.05λ, however, the coherent power rapidly decreases for θ < 5◦.

In order to grasp characteristics of incoherent Wood’s anomaly, we show some exapmles

of the differential scattering cross section σ(φ|θ). Figure 5.8 illustrates σ(φ|θ) for angles of

incidence θ = 74.98◦ and 90◦ (upper figure), and θ = 74.98◦ and 74.9727◦ ≈ θ
[1]
W (lower figure)

with L = 1.35λ and σ = 0.05λ. As is expected, incoherent Wood’s anomaly occurs near critical

scattering angles φ
[l]
± as rapid variations in σ(φ|θ) associating a peak and a dip together within

a narrow range of scattering angles. Such critical scattering angles φ
[l]
± are calculated by (5.65)

with L = 1.35λ as φ
[2]
− = 61.218◦, φ

[−1]
+ = 74.974◦, φ

[1]
− = 105.026◦, φ

[−2]
+ = 118.782◦ . The critical

scattering angles are independent of the angles of incidence θ. For θ = 90◦, only dips appear

at critical scattering angles, while a peak and dip are associated together at φ
[−1]
+ = 74.974◦

and φ
[1]
− = 105.026◦ for θ = 74.98◦. Appearance of peaks and dips vary with parameters, such

†Strictly speaking, wavenumber Λ at th peak point near k has small shift from exact k, since sp is a complex
propagation constant and its real part does not correspond to k exactly. Such shift amounts 1.5 × 10−5k for
σ = 0.05λ, and varies with the height parameter σ: the shift becomes large (1.8 × 10−4k) for σ = 0.1λ, which
suggests that complex sp moves away from the real x-axis, while it becomes small (1 × 10−6k) for σ = 0.025λ
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as the period of the surface, the height of the surface profile or the angle of incidence. Note

that σ(φ|θ) does not decrease until low grazing scattering angles, and then vanishes rapidly at

φ = 0◦ and φ = 180◦, which can be considered as an anomalous scattering [19] due to the

existence of the guided surface modes. In the case for θ = 90◦ with σ = 0.05λ, σ(φ|θ) diminishes

rapidly for φ < 0.2◦ and φ > 179.8◦. When θ = 74.9727◦, which is very close to θ
[1]
W , behavior

of σ(φ|θ) is quite different from that for θ = 74.98◦ : σ(φ|θ) decreases around directions of the

specular reflection. It can be considered that the component [I0 +C0(p)] in (5.59) decreases for

angles of incidence near θ
[l]
W . On the other hand, σ(φ|θ) becomes large for φ > 130◦. Figure 5.9

illustrates σ(φ|θ) for periods of the surface L = 1.35λ and 1.7λ with θ = 85◦ and σ = 0.025λ.

Incoherent Wood’s anomaly appears at different scattering angles for L = 1.35λ and 1.7λ, since

the critical scattering angles only depend on the wavelength λ and the period of the surface L.

With L = 1.7λ, φ
[l]
± are calculated by (5.65) as φ

[3]
− = 40.119◦, φ

[−1]
+ = 65.684◦, φ

[2]
− = 79.836◦,

φ
[2]
+ = 100.164◦, φ

[1]
− = 114.316◦ , φ

[−3]
+ = 139.881◦ . With θ = 85◦ and σ = 0.025λ, only dips

appear at φ
[−l]
+ and φ

[l]
− (l = 1, 2, 3) for both L = 1.35λ and L = 1.7λ. Figure 5.10 illustrates

σ(φ|θ) for height parameters σ = 0.025λ, 0.05λ and 0.1λ. Behavior of σ(φ|θ) near φ
[1]
− = 105.026◦

is shown in the lower figure. It can be seen that σ(φ|θ) is proportional to σ2 for most angles of

scattering, however, near critical scattering angles and low grazing scattering angles σ(φ|θ) is

no longer proportional. It is also found that, in the shallow case with σ = 0.025λ, an anomalous

dip becomes narrower and steeper than a dip with σ = 0.05λ or a peak with σ = 0.1λ. On the

other hand, in the case with σ = 0.1λ, σ(φ|θ) changes gently in comparison with the shallow

cases, however, such a peak and dip appear within a range less than one degree. σ(φ|θ) starts

to decrease for φ < 2.5◦ and φ > 177.0◦ with σ = 0.1λ. When σ = 0.1λ, σ(φ|θ) increases

toward the low grazing angles, which may be because the coupling with the guided surface wave

becomes strong due to large σ.

5.7 Conclusion

We have studied the diffraction and scattering of a TM plane wave from a binary periodic ran-

dom surface generated by a binary sequence using the stochastic functional approach. We have

considered the equal probability case of the binary sequence, where the ensemble average of the

periodic random surface becomes flat. Assuming that such a binary periodic random surface

is mathematically modeled by a periodic stationary process, we wrote the scattered wave in

a stochastic Floquet form, which is a product of an exponential phase factor and a periodic

stationary process. We expressed such a periodic stationary process in the harmonic series rep-

resentation, with mutually correlated stationary processes which are represented by a sum of

orthogonal binary functional series with band-limited binary kernels. Then, the hierarchical

equations for the binary kernels were derived from the Neumann boundary condition without

approximation. We have pointed out that the solution obtained by the single scattering ap-

proximation diverges unphysically when the periodic random surface is zero on average. Thus,

we have obtained expressions for such binary kernels by use of the multiply renormalizing ap-

proximation, in which effects of the multiple scattering are involved. Furthermore, the multiple

renormalized mass operator should be employed to obtain the binary kernels in order to avoid

their unphysical divergence due to the truncation procedure. Then, several statistical properties

of the diffraction and scattering were calculated in terms of such binary kernels. It is found that
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incoherent Wood’s anomaly occurs at critical scattering angles as rapid variations in the angular

distribution of the scattering even when a binary periodic random surface has zero average. It

is caused by the diffraction of the guided surface wave along the surface. On the other hand,

such anomalies do not appear in the TE case [59]. Furthermore, the differential scattering cross

section does not diminish until the low grazing scattering angles, which can be considered as an

anomalous scattering due to the existence of the guided surface modes.

In the discussion of this chapter, however, accuracy of the optical theorem is not sufficient

for grazing angles of incidence. Therefore, more accurate solution should be studied.

Our discussion was limited to the properties on the first-order scattering. In the case of

Gaussian fluctuations on height parameter, the diffracted backscattering enhancement in the

second-order scattering has been found for TM incidence [8]. On the other hand, the contribution

of the second-order scattering becomes small for TE incidence in the binary case. Thus, it

may be interesting to study the second-order scattering for TM incidence in the binary case

[59]. Furthermore, the discussion was limited to the equal probability case, however, it can be

extended to an unequal probability case. Studies on diffraction and scattering for such a case

will be left for future study.
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Figure 5.6 Relative coherent power against the angle of incidence θ for periods
L = 1.35λ with height σ = 0.05λ(upper figure) and periods L = 1.7λ with height
σ = 0.025λ(lower figure). The line ’0th order’ means the relative power of the 0th

order Floquet mode, i.e, Re[β0(p)]
∣

∣

∣C
(0)
0 (p)

∣

∣

∣

2

/β0(p), and the line ’1st order’ that of

the 1st order Floquet mode, and so on. Wood’s anomaly occurs at angles where one
particular diffraction mode disappears.
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Figure 5.7 Normalized optical theorem against θ for σ = 0.05λ and L = 1.35λ
(upper figure), and for σ = 0.025λ and L = 1.7λ (lower figure). The incident power
is normalized as unity. ’Coherent’ means power of coherent diffractions, ’Incoherent’
means that of incoherent scattering, and ’Total’ means a sum of both power. When
the angle of incidence is close to 90◦, the incoherent scattering increases. Error
|Total − 1| is less than 0.05 for σ = 0.05λ except for grazing incident angles less
than 20◦. For σ = 0.025λ, it holds better accuracy for grazing angles of incidence,
however, the coherent power rapidly decreases for θ < 5◦.
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Figure 5.8 Differential scattering cross section σ(φ|θ) for θ = 74.98◦ and 90◦

(upper figure), and θ = 74.98◦ and 74.9727◦ ≈ θ
[1]
W (lower figure) with L = 1.35λ,

σ = 0.05λ. Incoherent Wood’s anomaly occurs near critical scattering angles φ
[l]
±

as rapid variations in σ(φ|θ) associating a peak and a dip together within a narrow
range of scattering angles. σ(φ|θ) does not decrease until low grazing scattering
angles, and vanishes rapidly at φ = 0◦ and φ = 180◦, which can be considered as
an anomalous scattering due to the existence of the guided surface modes. When
θ = 74.9727◦, behavior of σ(φ|θ) is quite different from that for θ = 74.98◦ : σ(φ|θ)
becomes small around directions of the specular reflection.
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Figure 5.9 Differential scattering cross section σ(φ|θ) for L = 1.35λ and 1.7λ with
θ = 85◦ and σ = 0.025λ. Incoherent Wood’s anomaly appears at different angles of
scattering for L = 1.35λ and 1.7λ, since the critical angles of scattering only depend
on the wavelength λ and the period of the surface L. With θ = 85◦ and σ = 0.025λ,

only peaks appear at φ
[3]
− and φ

[−3]
+ for L = 1.7λ and only dips appear at φ

[2]
− and

φ
[2]
+ for L = 1.7λ and at φ

[−1]
+ for L = 1.35λ. In most cases, a peak and a dip are

associated together at critical angles of scattering φ
[l]
± , however, only a peak or a

dip appears with some parameters, such as the period of the surface or the angle of
incidence.
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Figure 5.10 Differential scattering cross section σ(φ|θ) for σ = 0.025λ, 0.05λ and

0.1λ with L = 1.35λ and θ = 85◦ (upper figure), and behavior of σ(φ|θ) near φ
[1]
−

(lower figure). σ(φ|θ) is proportional to σ2 for most angles of scattering, however,
σ(φ|θ) is no longer proportional near critical angles of scattering and grazing angles.
In the shallow case with σ = 0.025λ, an anomalous peak and dip become narrower
and steeper than those with σ = 0.05λ and 0.1λ. In the case with σ = 0.1λ, σ(φ|θ)
changes gently in comparison with the shallow cases, however, such a peak and dip
appear within a range less than one degree.





Chapter 6

Conclusion

In this thesis, diffraction and scattering from periodic surfaces with binary fluctuations have

been studied theoretically.

Here are the summaries of each chapter.

Chapter 2 We considered a one-dimensional periodic grating with single defect, of which

position is known. We took TE plane wave as an incidence, wrote the wave field above the

grooves as a perturbation from the diffracted wave for the perfectly periodic case. We derived

two sets of equations to determine the wave field from the boundary condition, and we obtained

a new representation of the optical theorem, which relates the total scattering cross section

with the reduction of the scattering amplitude. Further, we proposed the single scattering

approximation given only by the base components for the perfectly periodic grating.

We found that the differential scattering cross section is determined by the spectrum of

the groove. This property may be applicable to the measurement of the condition of surfaces

combining with the other polarization. We found that when the guided mode in the grooves

becomes resonant, the differential scattering cross section becomes almost symmetric even for

oblique incidence. We found the single scattering approximation is useful when the depth of the

groove is small.

Chapter 3 We have considered the scattering of a TM plane wave from a periodic grating with

single defect. We wrote the scattered wave above the grooves as a variation from the diffracted

wave for the perfectly periodic case. Then, we obtained an integral equation for the scattering

amplitude, which is solved by the iteration method using the diagonal approximation solution as

an initial guess. We found that incoherent Wood’s anomaly appears in the differential scattering

cross section for the periodic grating with single defect. The critical angles of scattering where

incoherent Wood’s anomaly appears only depend on the period of the grating and the wave-

length, and are independent of the angle of incidence. We pointed out that incoherent Wood’s

anomaly is caused by the diffraction of the guided surface waves.

When the angle of incidence becomes close to one of the critical angles of incidence or close

to a low grazing angle, error with respect to the optical theorem becomes large. This means

that our iterative solution is not good enough for such angles of incidence. Therefore, practical

methods of approximation must be studied to obtain a highly accurate solution.

Chapter 4 We have studied the scattering of a TE plane wave from a periodic random surface

generated by a binary sequence using the stochastic functional approach. Assuming that such

97
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a periodic random surface is mathematically modeled by a periodic stationary process, we have

pointed out that the scattered wave has a stochastic Floquet form, which is a product of an

exponential phase factor and a periodic stationary process. We reconsider the harmonic series

representation used in [44] for such a periodic stationary process. We write such a periodic sta-

tionary process by orthogonal binary functionals with binary kernels given by multiple Fourier

integrals. We then find that for the binary case it is necessary to divide such Fourier integrals

into bands with equal band width. Then, such a periodic stationary process is represented by

a harmonic series, of which coefficients are mutually correlated wide sense stationary processes

given by binary functionals with band-limited binary kernels. Using the Dirichlet boundary con-

dition, we have determined the band-limited binary kernels up to the second order, from which

several statistical properties of the scattering were calculated. It is found that the components

of the first order incoherent scattering are relatively large in the diffraction directions of the

exciting Floquet modes and have some dips corresponding to the zeros of spectrum of the local

profile. We find that, due to the special property of the binary random variable, the second

order scattering cross section has a subtractive term and becomes much smaller than the first

order one. The second order scattering cross section has dips in the diffraction directions of the

Floquet modes. It is also found that the incoherent power begins to decrease when the height

parameter gets large, possibly due to the diffraction and multiple scattering effects by the mass

operator.

Chapter 5 We have studied the diffraction and scattering of a TM plane wave from a binary

periodic random surface generated by a binary sequence using the stochastic functional approach.

Assuming that such a binary periodic random surface is mathematically modeled by a periodic

stationary process, we wrote the scattered wave in a stochastic Floquet form, which is a product

of an exponential phase factor and a periodic stationary process. We expressed such a periodic

stationary process in the harmonic series representation, with mutually correlated stationary

processes which are represented by a sum of orthogonal binary functional series with band-

limited binary kernels. Then, the hierarchical equations for the binary kernels were derived

from the Neumann condition, and expressions for such binary kernels were obtained by use of

the multiply renormalizing approximation. Several statistical properties of the diffraction and

scattering were calculated in terms of such binary kernels. It is found that incoherent Wood’s

anomaly occurs at critical angles of scattering as rapid variations in the angular distribution of

the scattering even when a binary periodic random surface has zero average. It is caused by the

diffraction of the guided surface wave along the surface. On the other hand, such anomalies do

not appear in the TE case [59]. Furthermore, the differential scattering cross section does not

diminish until the low grazing limit, which can be considered as an anomalous scattering due to

the existence of the guided surface modes.

Future studies In the discussions of chapter 2 and 3, we have considered the single defect case

in the periodic grating of rectangular grooves. However, there are other mathematical models

of periodic grating with defects: one is a case with double or finite number of defects which

positions are known. Another is a case with random defects, that is, the defect probability is

known but their positions are unknown. It is theoretically interesting to consider such periodic

gratings with defects.

Although it is also practically important to consider a metallic or dielectric grating with

defects for the optical measurement or inspection, it is still difficult to treat the cases with
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defects for such materials.

In the discussions of chapter 4 and 5, we have considered the periodic random surfaces

with binary fluctuations on height parameter. In the TM case, our discussion was limited to the

properties on the first-order scattering. In the case of Gaussian fluctuations on height parameter,

the diffracted backscattering enhancement in the second-order scattering has been found for TM

incidence [8]. On the other hand, the contribution of the second-order scattering becomes small

for TE incidence in the binary case [59]. Thus, it may be interesting to study the second-order

scattering for TM incidence in the binary case. Furthermore, the discussion was limited to the

equal probability case, however, it can be extended to an unequal probability case.

Studies on diffraction and scattering for such cases will be left for future study.





Appendix A

Multi-variate binary polynomials

and orthogonal functional expansion

Here, we summarize some formulae on multi-variate binary polynomials and orthogonal func-

tional expansion called the binary expansion. For mathematical details, see references [49, 63].

Let bm(ω) be an independent stationary sequence with (5.3). Then we define binary poly-

nomials Bn[ · ] as

B0 = 1, B1[bm(ω)] = bm(ω), B2[bm(ω), bn(ω)] = bm(ω)bn(ω) − δ(m,n), (A.1)

Bn[bi1 , bi2 , · · · , bin ] =

{

bi1bi2 · · · bin (i1, i2, · · · , in are all distinct)
0 (any other case)

= ∆n(i1, i2, · · · , in) × bi1bi2 · · · bin , (A.2)

where ω in bm(ω) is dropped to simplify notations in (A.2). Here, ∆n( · ) is a binary function

defined as

∆n(i1, i2, · · · , in) =

{

1 (i1, i2, · · · , in are all distinct)
0 (any other case)

(A.3)

=

[

1 −
n−1
∑

k=1

δ(in, ik)

][

1 −
n−2
∑

k=1

δ(in−1, ik)

]

× · · · ×
[

1 − δ(i3, i2) − δ(i3, i1)

][

1 − δ(i2, i1)

]

. (A.4)

Clearly, Bn[ · ] and ∆n( · ) are symmetrical and vanishes for any diagonal arguments.

From (A.1), (4.7) and (5.8), one finds the translation property under T ,

Bn[bi1(T
mω), bi2(T

mω), · · · , bin(Tmω)] = Bn[bm+i1(ω), bm+i2(ω), · · · , bm+in(ω)] (A.5)

The multi-variate binary polynomials have zero average and enjoy the orthogonal relation

〈Bn[bi1 , bi2 , · · · , bin ]〉 = δ(n, 0), (A.6)

〈Bn[bi1 , bi2 , · · · , bin ]Bm[bj1 , bj2 , · · · , bjm ]〉 = ∆n(i1, i2, · · · , in)δ(m,n)δ(n)(i, j), (A.7)

δ(n)(i, j) =

n
∑

l1=1

δ(i1, jl1) ×
n
∑

l2=1
l2 6=l1

δ(i2, jl2) × · · · ×
n
∑

ln=1
ln 6=l1,..,ln−1

δ(in, jln). (A.8)

101



102 Appendices

Here, δ(n)(i, j) equals to the sum of all distinct product of n-tuple Kronecker deltas of the form

δ(iu, jv), which involves n! terms. From (A.4), we find the recurrence relations

B1[bi1 ]B1[bi2 ] = B2[bi1 , bi2 ] + δ(i1, i2), (A.9)

B2[bi1 , bi2 ]B1[bi3 ] = B3[bi1 , bi2 , bi3 ] +B1[bi2 ]δ(i3, i1) +B1[bi1 ]δ(i3, i2)

− B1[bi2 ]δ(i3, i1)δ(i2, i1)−B1[bi1 ]δ(i3, i2)δ(i1, i2), (A.10)

Bn−1[bi1 , · · · , bin−1 ]B1[bin ] = Bn[bi1 , bi2 , · · · , bin ]

+

n−1
∑

l=1

Bn−2[bi1 , · · · , bil−1
, bil+1

, · · · , bin−1 ]δ(in, il)

−
n−1
∑

l=1

n−1
∑

k=1
k 6=l

Bn−2[bi1 , · · · , bil−1
, bil+1

, · · · , bin−1 ]

×δ(in, il)δ(ik , il). (A.11)

Let Φ(ω) = Φ(· · · , b−1, b0, b1, · · ·) be a stochastic functional of the binary sequence bm(ω)

with a finite mean square

〈|Φ(ω)|2〉 <∞. (A.12)

Then, Φ(ω) has an orthogonal functional expansion in terms of the binary polynomial as

Φ(ω) = c0 +
∞
∑

m=−∞

c1(m)B1[bm] +
∞
∑

m,n=−∞

c2(m,n)B2[bm, bn] + · · · , (A.13)

where cn(i1, · · · , in) is a deterministic function that we call the binary kernel. Thus, the mean

square of Φ(ω) is written as

〈|Φ(ω)|2〉= |c0|2+1!
∞
∑

m=−∞

|c1(m)|2 +2!
∞
∑

m,n=−∞

|c2(m,n)−δ(m,n)c2(m,n)|2+· · · . (A.14)

A binary kernel cn(i1, ·, in) is assumed to be symmetrical with respect to its arguments :

i1, · · · , in. (A.13) is an orthogonal expansion, because each sum in the right hand side is un-

correlated to any other term by the orthogonality (A.7). By (A.7), the kernel functions are

determined by the cross correlations as

〈Φ(ω) ·Bn[bi1 , bi2 , · · · , bin ]〉 = n!∆n(i1, i2, · · · , in)cn(i1, i2, · · · , in). (A.15)



Appendix B

Properties of band-limited binary

kernels and stationary processes

Here, we discuss some properties of the band-limited kernels and the stationary process U (q)(x, z, ω)

given by (5.17).

Band-limited binary kernels From (4.25) and (4.28), one easily finds the properties of

C
(q)
1 (λs), C

(q)
2 (λ1, λs − λ1) :

C
(q)
1 (λs + kL) = C

(q+1)
1 (λs), (B.1)

C
(q)
2 (λ1, λs−λ1) = C

(q)
2 (λs−λ1, λ1), (B.2)

C
(q)
2 (λ1+kL, λs−(λ1+kL)) = C

(q)
2 (λ1, λs−λ1), (B.3)

C
(q)
2 (λ1, λs+kL−λ1) = C

(q+1)
2 (λ1, λs−λ1). (B.4)

(B.2) shows that C
(q)
2 (·) is symmetrical with its wavenumber arguments. A higher order band-

limited kernel is defined by

C(q)
n (λ1, · · · , λn−1, λs−λn−1−· · ·−λ1)

=
∞
∑

l1,···,ln−1=−∞

Cn(λ1+kLl1, · · · , λn−1+kLln−1, λs−λ1 −· · ·−λn−1+kL(q−l1−· · ·−ln−1)),(B.5)

which satisfies the property

C(q)
n (λ1, . . . , λn−1, λs+kL−λn−1−· · ·−λ1) = C(q+1)

n (λ1, . . . , λn−1, λs−λn−1−· · ·−λ1). (B.6)

Stationary processes U (q)(x, z, ω) By (5.17) and the orthogonal property (A.7), we have the

average of U (q)(x, z, ω) as

〈U (q)(x, z, ω)〉 = C
(q)
0 eiβq(p)z, (B.7)

which is independent of x. We also obtain the mutual correlation function RU
q,q′(x− x′, z) as

RU
q,q′(x−x′, z) =

〈

(U (q)(x, z, ω)−〈U (q)(x, z, ω)〉)(U (q′)(x′, z, ω)−〈U (q′)(x′, z, ω)〉)
〉

= kL

∫ kL/2

−kL/2
C

(q)
1 (λs)C

(q′)∗
1 (λs)e

iλs(x−x′)+iβq(p+λs)z−iβ′
q(p+λs)zdλs
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+ 2k2
L

∫∫ kL/2

−kL/2
C

(q)
2 (λ1, λs − λ1)C

(q′)∗
2 (λ1, λs − λ1)

× eiλs(x−x′)+iβq(p+λs)z−iβ′
q(p+λs)zdλ1dλs

− 2kL

∫ kL/2

−kL/2
eiλs(x−x′)+iβq(p+λs)z−iβ′

q(p+λs)z

×
(
∫ kL/2

−kL/2
C

(q)
2 (λ1, λs − λ1)dλ1

)

·
(
∫ kL/2

−kL/2
C

(q′)∗
2 (λ′1, λs − λ′1)dλ

′
1

)

dλs + · · · ,(B.8)

which means that RU
q,q′(x − x′, z) only depends on the difference (x − x′), so that U (q)(x, z, ω)

becomes a wide sense stationary process of x. By (5.16), (5.17) and (B.8), we obtain the

correlation function of U(x, z, ω), RU(x, x′, z) as

RU (x, x′, z) =
〈

(U(x, z, ω) − 〈U(x, z, ω)〉)
(

U(x′, z, ω) − 〈U(x′, z, ω)〉
)〉

=

∞
∑

q,q′=−∞

eikL(qx−q′x′)RU
q,q′(x− x′, z), (B.9)

which is a periodic function of x and x′ with the period L.



Appendix C

Derivation of optical theorem

Here, we summerize the derivation of the optical theorem for the binary random case and single

defect case.

Binary random case Let us consider an area which is surrounded by ABCD and the periodic

random surface z = f(x, ω) shown in figure C.1. We take A and D at x = −mL− L
2 and B and

C at x = mL+ L
2 , and z0 is taken as z0 � max {f(x, ω)}. Since Ψ∗(x, z, ω) satisfies Helmholtz

equation (4.11), Ψ∗ ∂Ψ
∂n and Ψ∂Ψ∗

∂n satisfies Green’s theorem on ABCDA:

∫

ABCDA

(

Ψ∗∂Ψ

∂n
− Ψ

∂Ψ∗

∂n

)

= 0 (C.1)

The integral along the periphery of ABCDA can be decomposed into four parts:
(∫

AB
dx+

∫

BC
dz +

∫

CD
dl +

∫

DA
dz

)(

Ψ∗ ∂Ψ

∂n
− Ψ

∂Ψ∗

∂n

)

= 0. (C.2)

Now, let us extend the area ABCDA along x-axis with m→ ∞. Generally, the integrals along

(AB) and (CD) diverge under such extension, while the integrals along (BC) and (DA) in

the z direction remain finite. On the other hand, Ψ and Ψ∗ satisfy the Dirichlet and Neumann

boundary condition on the surface z = f(x, ω). Thus, the integral along (CD) vanishes. Dividing

both sides of (C.2) by (2m+ 1)L, we obtain

lim
m→∞

1

(2m+ 1)L

∫ mL+L/2

−mL−L/2

(

Ψ∗∂Ψ

∂z
− Ψ

∂Ψ∗

∂z

)∣

∣

∣

∣

z=z0

dx

= lim
m→∞

1

(2m+ 1)L

m
∑

N=−m

∫ NL+L/2

NL−L/2
Im[Ψ∗gradΨ]

∣

∣

∣

∣

z=z0

dx = 0. (C.3)

Here, we rewrote ∂n→ ∂z along (AB).

Since the total wave field Ψ has the stochastic Floquet form (4.19), Ψ∗gradΨ is a periodic

stationary process. Furthermore, 〈Ψ∗gradΨ〉 becomes a periodic function of x with the period

L. Substituting (4.26) into (C.3) and dividing both sides of (C.3) by k, (C.3) can be rewritten

as

lim
n→∞

1

(2n+ 1)L

n
∑

m=−n

∫ mL+L/2

mL−L/2
Im

[

Ψ∗

k
gradΨ

]∣

∣

∣

∣

z=z0

dx
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x

z
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z0

D

A B
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−nL− L
2 nL+ L

2

Figure C.1 Area of optical theorem, which is surrounded by DABC and with
the periodic random surface.

=
1

L

∫ L/2

−L/2
Im

〈

Ψ∗

k
gradΨ

∣

∣

∣

∣

z=z0

〉

dx =
1

L

∫ L/2

−L/2
Re

〈

Ψ∗

ik

∂Ψ

∂z

∣

∣

∣

∣

z=z0

〉

dx

= −β0(p)

k
+

1

L

∫ L/2

−L/2
Re

〈

U∗

ik

∂U

∂z

∣

∣

∣

∣

z=z0

〉

dx = 0. (C.4)

The first term of the left hand side of (C.4) is the energy of the incident wave, while the second

term expresses the energy of diffracted and scattered waves.

By (5.17) and the orthogonal property of the binary polynomials (A.7), the second term of

(C.4) becomes

1

L

∫ L/2

−L/2
Re

〈

U∗

ik

∂U

∂z

∣

∣

∣

∣

z=z0

〉

dx

=
1

L

∫ L/2

−L/2
Re





1

k

( ∞
∑

q,q′=−∞

eikL(q′−q)xβq′(p)C
(q′)
0 C

(q)∗
0

+

∞
∑

m=−∞

∞
∑

q,q′

∫∫ kL/2

−kL/2
eikL(q′−q)xei(λ

′
s−λs)(x−mL)+i(βq′ (p+λ′

s)−βq(p+λs))z0

×βq′(p+ λ′s)C
(q′)
1 (λ′s)C

(q)∗
1 (λs)dλsdλ

′
s

+

∞
∑

m,n

∞
∑

m′,n′

∞
∑

q,q′

∫∫∫∫ kL/2

−kL/2
eikL(q′−q)x

×ei(λ′
s−λ′

1)(x−m′L)−i(λs−λ1)(x−mL)+iλ′
1(x−n′L)−iλ1(x−nL)

×ei(βq′ (p+λ′
s)−βq(p+λs))z0(2!δ(m,m′)δ(n, n′) − 2!δ(m,n)δ(m,m′)δ(m′, n′))

×βq′(p+λ
′
s)C

(q′)
2 (λ′s−λ′1, λ′1)C

(q)∗
2 (λs−λ1, λ1)dλ1dλsdλ

′
1dλ

′
s + · · ·

)]

dx. (C.5)

For the zeroth order binary kernels, integrating over one period L, only terms with q ′ − q = 0

remain, because all factors on x are periodic functions. For the first order binary kernels, by use
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of the identity for δ-pulse series (4.47), λ′
s − λs = 0 holds (−kL/2 ≤ λs, λ

′
s ≤ kL/2 with m = 0),

and again only terms with q′ − q = 0 remain. Thus,

1

L

∫ L/2

−L/2
Re

〈

U∗

ik

∂U

∂z

∣

∣

∣

∣

z=z0

〉

dx =

=
1

L

∫ L/2

−L/2
Re

〈

1

k

( ∞
∑

q=−∞

(

βq(p)
∣

∣

∣
C

(q)
0

∣

∣

∣

2
+1!kL

∫ kL/2

−kL/2
βq(p+ λs)

∣

∣

∣
C

(q)
1 (λs)

∣

∣

∣

2
dλs

)

+

∞
∑

m,n

∞
∑

m′,n′

∞
∑

q,q′

∫∫∫∫ kL/2

−kL/2
eikL(q′−q)xei(λ

′
s−λ′

1)(x−m′L)−i(λs−λ1)(x−mL)+iλ′
1(x−n′L)−iλ1(x−nL)

×ei(βq′ (p+λ′
s)−βq(p+λs))z0(2!δ(m,m′)δ(n, n′) − 2!δ(m,n)δ(m,m′)δ(m′, n′))

×βq′(p+ λ′s)C
(q′)
2 (λ′s−λ′1, λ′1)C

(q)∗
2 (λs−λ1, λ1)dλ1dλsdλ

′
1dλ

′
s + · · ·

)〉

dx.

For the second order binary kernels, by use of (4.47),

1

L

∫ L/2

−L/2
Re

〈

U∗

ik

∂U

∂z

∣

∣

∣

∣

z=z0

〉

dx =

=
1

L

∫ L/2

−L/2
Re

〈

1

k

( ∞
∑

q=−∞

(

βq(p)
∣

∣

∣
C

(q)
0

∣

∣

∣

2
+1!kL

∫ kL/2

−kL/2
βq(p+ λs)

∣

∣

∣
C

(q)
1 (λs)

∣

∣

∣

2
dλs

)

+ 2!
∞
∑

m,n

∞
∑

q,q′

k2
L

∫∫∫∫ kL/2

−kL/2
eikL(q′−q)xei((λ

′
s−λ′

1)−(λs−λ1))x+i(λ′
1−λ1)x+i(βq′(p+λ′

s)−βq(p+λs))z0

×δ((λs − λ1) − (λ′s − λ′1) + kLm)δ(λ1 − λ′1 + kLn)

×βq′(p+ λ′s)C
(q′)
2 (λ′s − λ′1, λ

′
1)C

(q)∗
2 (λs − λ1, λ1)dλ1dλsdλ

′
1dλ

′
s

− 2!
∞
∑

m=−∞

∞
∑

q,q′

kL

∫∫∫∫ kL/2

−kL/2
eikL(q′−q)xei(λ

′
s−λs)x+i(βq′ (p+λ′

s)−βq(p+λs))z0δ(λs − λ′s + kLm)

×βq′(p+ λ′s)C
(q′)
2 (λ′s−λ′1, λ′1)C

(q)∗
2 (λs−λ1, λ1)dλ1dλsdλ

′
1dλ

′
s + · · ·

)〉

dx.

For the first term of the integral for C2(λ, λ
′), δ((λs −λ1)− (λ′s −λ′1)+ kLm)δ(λ1 −λ′1 + kLn) =

δ(λs − λ′s + kLm)δ(λ1 − λ′1 + kLn) is satisfied only with m,n = 0, and for the second term,

δ(λs − λ′s + kLm) only with m = 0. As a result, only terms with q ′ − q = 0 remain for the

integration over x, then, the optical theorem up to the second order binary kernels becomes as

follows:

1

L

∫ L/2

−L/2
Re

〈

U∗

ik

∂U

∂z

∣

∣

∣

∣

z=z0

〉

dx

=
1

L

∫ L/2

−L/2

〈

1

k

∞
∑

q=−∞

(

Re [βq(p)]
∣

∣

∣C
(q)
0

∣

∣

∣

2
+1!kL

∫ kL/2

−kL/2
Re [βq(p+ λs)]

∣

∣

∣C
(q)
1 (λs)

∣

∣

∣

2
dλs

+ 2!k2
L

∫∫ kL/2

−kL/2
Re [βq(p+ λs)]

∣

∣

∣C
(q)
2 (λs − λ1, λ1)

∣

∣

∣

2
dλ1dλs

− 2!kL

∫∫∫ kL/2

−kL/2
Re [βq(p+ λs)]C

(q)
2 (λs − λ′1, λ

′
1)C

(q)∗
2 (λs − λ1, λ1)dλ1dλ

′
1dλs

)〉

dx
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=
1

L

∫ L/2

−L/2

〈

1

k

∞
∑

q=−∞

(

Re [βq(p)]
∣

∣

∣
C

(q)
0

∣

∣

∣

2
+1!kL

∫ kL/2

−kL/2
Re [βq(p+ λs)]

∣

∣

∣
C

(q)
1 (λs)

∣

∣

∣

2
dλs

+ 2!k2
L

∫∫ kL/2

−kL/2
Re [βq(p+ λs)]

∣

∣

∣C
(q)
2 (λs − λ1, λ1)

∣

∣

∣

2
dλ1dλs

)

− 2!kL

∫ kL/2

−kL/2
Re [βq(p+ λs)] ×

∣

∣

∣

∣

∣

∞
∑

q=−∞

∫ kL/2

−kL/2
C

(q)
2 (λs − λ, λ)dλ

∣

∣

∣

∣

∣

2

dλs

〉

dx. (C.6)

Single defect case Let us consider an area which is surrounded by ABCD and the periodic

arrays of rectangular grooves with single defect z = f(x) shown in figure C.2. We take A and

D at x = −(N + L
2 )L and B and C at x = (N + L

2 )L. Now, let us extend the area ABCDA

along x-axis with N → ∞. As is mentioned in section 2.4, ψs(x, z) decays proportional to

(x2 + z2)−1/4. Thus Ψ̂1gradψ
∗
s , ψsgradΨ̂∗

1 and ψsgradψ
∗
s vanish at |x| → ∞, which means

the integrals along (BC) and (DA) in the z direction can be considered to vanish. Further,

Ψ̂1gradΨ̂∗
1 is a periodic function of x with the period L, and Ψ and Ψ∗ satisfy the Dirichlet

and Neumann boundary condition on the surface z = f(x). Thus, we obtain from the identity

Im[div(Ψ̂1 + ψs)grad(Ψ̂1 + ψs)
∗] = 0

lim
m→∞

∫ (N+1/2)L

−(N+1/2)L
Im

[

Ψ̂1(x, z)
∂

∂z
ψ∗

s(x, z)

+ ψs(x, z)
∂

∂z
Ψ̂∗

1(x, z)+ψs(x, z)
∂

∂z
ψ∗

s(x, z)

∣

∣

∣

∣

z=z0

]

dx = 0. (C.7)

On the other hand, from (2.15)(2.16)(2.27)(2.28), we get the integrand of (C.7) as

Ψ̂1(x, z)
∂

∂z
ψ∗

s(x, z) + ψs(x, z)
∂

∂z
Ψ̂∗

1(x, z)+ψs(x, z)
∂

∂z
ψ∗

s(x, z)

= −i
[

e−iβ0(p)z0 +
∞
∑

n=−∞

An(p)einkLx+iβn(p)z0

]

∫ ∞

−∞
β∗0(p+ s)a∗(s)e−isx−iβ∗

0 (p+s)z0ds

+

∫ ∞

−∞
a(s)eisx+iβ0(p+s)z0ds

[

iβ0(p)e
iβ0(p)z0 − i

∞
∑

n=−∞

β∗n(p)A∗
n(p)e−inkLx−iβ∗

n(p)z0

]

−i
∫ ∞

−∞

∫ ∞

−∞
β∗0(p+ s)a∗(s)a(s)ei(s−s′)x+i[β0(p+s)−β∗

0(p+s′)z0dsds′. (C.8)

For convenience, we define U(s|N) as

U(s|N) =

∫ (N+1/2)L

−(N+1/2)L
eisxdx, (C.9)

lim
N→∞

U(s|N) = 2πδ(s), U(−s|N) = U(s|N). (C.10)

Integrating in terms of x over [(−(N + 1/2)L, (N + 1/2)L], we rewrite (C.8) as

∫ (N+1/2)L

−(N+1/2)L
Ψ̂1(x, z)

∂

∂z
ψ∗

s(x, z) + ψs(x, z)
∂

∂z
Ψ̂∗

1(x, z)+ψs(x, z)
∂

∂z
ψ∗

s(x, z)dx

= −i
∫ ∞

−∞
β∗0(p+ s)a∗(s)U(s|N)e−i[β0(p)+β∗

0 (p+s)]z0ds
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Figure C.2 Area of optical theorem for sigle defect case, which is surrounded by
DABC and with the periodic grooves with single defect.

−i
∞
∑

n=−∞

∫ ∞

−∞
β∗0(p+ s)a∗(s)An(p)U(s− nkL|N)ei[βn(p)−β∗

0 (p+s)]zds

+ iβ0

∫ ∞

−∞
a(s)U(s|N)ei[β0(p)+β0(p+s)]z0ds

−i
∞
∑

n=−∞

β∗n(p)A∗
n(p)

∫ ∞

−∞
U(s− nkL)a(s)ei[β0(p+s)−β∗

n(p)]z0ds

−i
∫ ∞

−∞

∫ ∞

−∞
β∗0(p+ s)a∗(s′)a(s)U(s− s′|N)ei[β0(p+s)−β∗

0(p+s′)zdsds′. (C.11)

Putting N → ∞ and taking the imaginary part

lim
N→∞

∫ (N+1/2)L

−(N+1/2)L
Im

[

Ψ1(x, z)
∂

∂z
Ψ∗

1(x, z)

∣

∣

∣

∣

z=z0

]

dx

= 2πIm

[

− iβ∗0(p)a∗(p)e−i[β0(p)+β∗
0 (p)]z0

− i

∞
∑

n=−∞

β∗0(p+ nkL)a∗(nkL)An(p)ei[βn(p)−β∗
0 (p+nkL)]z0

+ iβ0(p)a(p)e
i[β0(p)+β∗

0 (p)]z0 − i

∞
∑

n=−∞

β∗n(p)A∗
n(p)a(nkL)ei[β0(p+nkL)−β∗

n(p)]z0

− i

∫ ∞

−∞
β∗(p+ s)|a(s)|2ei[β0(p+s)−β∗

0 (p+s)]z0ds

]

= −2πi

[ ∞
∑

n=−∞

β∗na
∗(nkL)An(p)ei[βn(p)−β∗

0 (p+kLn)]z0

+

∞
∑

n=−∞

β∗n(p)A∗
n(p)a(nkL)ei[βn(p)−β∗

n(p)]z0
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+

∫ ∞

−∞
β∗0(p+ s)|a(s)|2ei[β0(p+s)−β∗

0 (p+s)]z0ds

]

= 0. (C.12)

Then, we finally obtain the optical theorem for the single defect case

−2

∞
∑

n=−∞

Re [β∗
n(p)] Re [a(nkL)A∗

n(p)] =

∫ ∞

−∞
Re [β0(p+ s)]|a(s)|2ds (C.13)

Here, we have used the facts that β0(p + nkL) = βn(p), and −iβ∗
0(p)a∗(p)e−i[β0(p)+β∗

0 (p)]z0 +

iβ0(p)a(p)e
i[β0(p)+β∗

0 (p)]z0 and i[βn(p) − β∗
n(p)] are real numbers.



Appendix D

Binary kernels by multiply

renormalizing approximation for TE

incidence

In this appendix, we derive expressions of the binary kernels by the multiply renormalizing

approximation for TE plane wave incidence, following the same procedure for TM case in Chapter

5.

From the boundary condition (4.36), the n-th order hierarchical equation is written as

(n-th order) (n ≥ 3) (m1, · · · ,mn = 0,±1,±2, · · ·)

∞
∑

q=−∞

eikLqx

[
∫

· · ·
∫ kL/2

−kL/2
cos[σβq(p+λs)g(x)]

×ei(λs−(λ1+···+λn−1))(x−mnL)+iλ1(x−m1L)+···+iλn−1(x−mn−1L)

×C(q)
n (λs−(λ1+ · · · + λn−1), λ1, · · · , λn−1|p)dλ1 · · · dλn−1dλs

+
i

n
δ(m1, 0)

∫

· · ·
∫ kL/2

−kL/2
sin[σβq(p+λs−λ1)g(x)]

×ei(λs−(λ1+···+λn−1))(x−mnL)+iλ2(x−m2L)+···+iλn−1(x−mn−1L)

×C(q)
n−1(λs−(λ1+ · · · +λn−1), λ2, · · · , λn−1|p)dλ2 · · · dλn−1dλs

...

+
i

n
δ(mn, 0)

∫

· · ·
∫ kL/2

−kL/2
sin[σβq(p+λ1+ · · · +λn−1)g(x)]

×eiλ1(x−m1L)+···+iλn−1(x−mn−1L)C
(q)
n−1(λ1, · · · , λn−1|p)dλ1 · · · dλn−1

+(n+1) i

∫

· · ·
∫ kL/2

−kL/2
sin[σβq(p+λs)g(x)]

×ei(λs−(λ1+···+λn))x+iλ1(x−m1L)+···+iλn(x−mnL)

×C(q)
n+1(λs−(λ1+ · · · +λn), λ1, · · · , λn|p)dλ1 · · · dλndλs

−n(n+1)δ(mn, 0) i

∫

· · ·
∫ kL/2

−kL/2
sin[σβq(p+λs)g(x)]

×ei(λs−(λ1+···+λn))x+iλ1(x−m1L)+···+iλn−1(x−mn−1L)+iλnx
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×C(q)
n+1(λs−(λ1+ · · · +λn), λ1, · · · , λn|p)dλ1 · · · dλndλs

]

= 0 (D.1)

Here, (D.1) holds for any mn. Expanding the factors of (D.1) by (4.40), introducing the infinite-

dimensional matrices (4.41)-(4.46) and applying (4.47) after multiplying eiΛ1m1L+···+iΛnmnL and

summing up with every mj (1 ≤ j ≤ n), we obtain the n-th order hierarchical equation in matrix

form,

(n-th order)

kLΓc(Λ1 + · · · + Λn|p)Cn(Λ1, · · · ,Λn|p)

+

n
∑

l=1

i

n
Γs(Λ1+· · ·+Λl−1+Λl+1+· · ·+Λn|p)

×Cn−1(Λ1, · · · ,Λl−1,Λl+1, · · · ,Λn|p)

+(n+1) ikL

∫ kL/2

−kL/2
Γs(Λ1+· · ·+Λn+λn|p)

×Cn+1(Λ1, · · · ,Λn, λn|p)dλn

−
n
∑

l=1

(n+1) i

∫∫ kL/2

−kL/2
Γs(Λ1+· · ·+Λl−1+Λl+1+· · ·+Λn+λn−1+λn|p)

×Cn+1(Λ1, · · · ,Λl−1,Λl+1, · · ·Λn, λn−1, λn|p)dλn−1dλn =0. (D.2)

Let us obtain approximate binary kernels Cn(Λ1, · · · ,Λn|p) by use of the multiply renormal-

izing approximation [53], which is made up of two steps.

First, we get an expression of Cn(Λ1, · · · ,Λn|p) by use of a truncation procedure and the

diagonal approximation [53]. Neglecting CN+1(·) in the N -th order relation (N ≥ 2), we obtain

kLΓc(Λ1 + · · · + ΛN |p)C(N)
N (Λ1, · · · ,ΛN |p)

= −
N
∑

l=1

i

N
Γs(Λ1+· · ·+Λl−1+Λl+1+· · ·+ΛN |p)

×C
(N)
N−1(Λ1, · · · ,Λl−1,Λl+1, · · · ,ΛN |p), (D.3)

where, the superscript (N) indicates the truncation number N . Substituting (D.3) into the

(N−1)-th order relation, we get

kLΓc(Λ1+· · ·+ΛN−1|p)C(N)
N−1(Λ1, · · · ,ΛN−1|p)

+i
N−1
∑

l=1

1

N−1
Γs(Λ1+· · ·+Λl−1+Λl+1+· · ·+ΛN−1|p)

×C
(N)
N−2(Λ1, · · · ,Λl−1,Λl+1, · · · ,ΛN−1|p)

+

∫ kL/2

−kL/2
Γs(Λ1+· · ·+ΛN−1+λN−1|p)

×[Γc(Λ1 + · · · + ΛN−1 + λN−1|p)]−1

×Γs(Λ1+· · ·+ΛN−1|p)dλN−1C
(N)
N−1(Λ1, · · · ,ΛN−1|p)

+

N−1
∑

l=1

∫ kL/2

−kL/2
Γs(Λ1+· · ·+ΛN−1+λN−1|p)
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×[Γc(Λ1+· · ·+ΛN−1 + λN−1|p)]−1

×Γs(Λ1−· · ·−Λl−1−Λl+1+· · ·+ΛN−1 + λN−1|p)
×C

(N)
N−1(Λ1, · · · ,Λl−1,Λl+1, · · · ,ΛN−1, λN−1|p)dλN−1

−
N−1
∑

l=1

N

kL

∫∫ kL/2

−kL/2
Γs(Λ1+· · ·+Λl−1+Λl+1+· · ·+ΛN−1+λN−2+λN−1|p)

×[Γc(Λ1+· · ·+Λl−1+Λl+1+· · ·+ΛN−1+λN−2+λN−1|p)]−1

×Γs(Λ1+· · ·+Λl−1+Λl+1+· · ·+ΛN−1 + λN−1|p)
×C

(N)
N−1(Λ1, · · · ,Λl−1,Λl+1, · · · ,ΛN−1, λN−1|p)dλN−2dλN−1 =0. (D.4)

Taking the diagonal approximation on (D.4), we obtain C
(N)
N−1(·) as

C
(N)
N−1(Λ1, · · · ,ΛN−1|p)

'
N−1
∑

l=1

−i
kL(N−1)

[

Γc(Λ1+· · ·+ΛN−1|p) + M(1)(Λ1+· · ·+ΛN−1|p)
]−1

×Γs(Λ1+· · ·+Λl−1+Λl+1+· · ·+ΛN−1|p)
×C

(N)
N−2(Λ1, · · · ,Λl−1,Λl+1, · · · ,ΛN−1|p). (D.5)

Secondly, substituting such a relation and applying the diagonal approximation recursively, we

get a relation between C
(N)
n (·) and C

(N)
n−1(·) as

C(N)
n (Λ1, ···,Λn|p) '



































−i
nkL

n
∑

l=1

[

Γc(Λ1+···+Λn|p)+M(N−n)(Λ1+···+Λn|p)
]−1

×Γs(Λ1+···+Λl−1+Λl+1+···+Λn|p)
×C

(N)
n−1(Λ1, ···,Λl−1,Λl+1, ···,Λn|p), (N≥n≥2),

i

kL

[

Γc(Λ|p)+M(N−1)(Λ|p)
]−1

Γs(0|p)
{

I0−C0(p)
}

, (n=1),

(D.6)

where M(n)(Λ|p) is defined as

M(n)(Λ|p)=



















1

kL

∫ kL/2

−kL/2
Γs(Λ+λ′|p)

×
[

Γc(Λ+λ′|p)+M(n−1)(Λ+λ′|p)
]−1

Γs(Λ|p)dλ′, (n≥1),
0, (n=0).

(D.7)

M(n)(Λ|p) is an n-th order iterative mass operator. Since M(n)(Λ|p) has products of Γs(Λ+λ′|p)
and Γs(Λ|p) in the integrand, it contains couplings between different orders on q of the harmonic

series. Thus, M(n)(Λ|p) may represent effects of diffraction. Also, M(n)(Λ|p) represents multiple

scattering effects because it has a component of an inverse matrix of Γc(Λ+λ′|p)+M(n−1)(Λ+λ′|p).
Note that M(n)(p+Λ) can be estimated to be proportional to σ2 under small roughness kσ < 1,

since Γs(Λ|p) is of the order of σ1. Repeating the above procedure, we obtain C
(N)
0 (p) as

C
(N)
0 (p) = −

[

Γc(0|p) + M(N)(0|p)
]−1[

Γc(0|p)−M(N)(0|p)
]

I0. (D.8)

From (D.6) and (D.8), C
(N)
n (·) (n ≥ 1) can be obtained.
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Next, since the hierarchical equations (4.48)-(D.2) continue to infinite orders, a limit of the

truncation number N could be considered. In such a case, we may assume the existence of a

limit of the iterative mass operator M(N)(Λ|p):

lim
N→∞

M(N)(Λ|p)=M(∞)(Λ|p)≡M(Λ|p). (D.9)

Thus, we obtain a non-linear integral equation in a matrix form for the multiple renormalized

mass operator M(Λ|p) from (D.7):

M(Λ|p)= 1

kL

∫ kL/2

−kL/2
Γs(Λ+λ′|p)

[

Γc(Λ+λ′|p)+M(Λ+λ′|p)
]−1

Γs(Λ|p)dλ′. (D.10)

Using the multiple renormalized mass operator M(Λ|p), the expression of the binary kernels

(D.8) and (D.6) can be rewritten as

C0(p) = − [Γc(0|p)+M(0|p)]−1 [Γc(0|p)−M(0|p)] I0, (D.11)

C1(Λ|p) =
i

kL
[Γc(Λ|p)+M(Λ|p)]−1Γs(0|p)(I0−C0(p))

=
i

kL
[Γc(Λ|p)+M(Λ|p)]−1Γs(0|p)

×
[

I0+[Γc(0|p)+M(0|p)]−1[Γc(0|p)−M(0|p)] I0
]

, (D.12)

C2(Λ1,Λ2|p) = − i

2kL
[Γc(Λ1+Λ2|p)+M(Λ1+Λ2|p)]−1

× (Γs(Λ1|p)C1(Λ1|p)+Γs(Λ2|p)C1(Λ2|p)) (D.13)

=
1

2kL
2 [Γc(Λ1+Λ2|p)+M(Λ1+Λ2|p)]−1

×
[

Γs(Λ1|p)[Γc(Λ1|p)+M(Λ1|p)]−1Γs(0|p)(I0−C0(p))

+Γs(Λ2|p)[Γc(Λ2|p) + M(Λ2|p)]−1Γs(0|p)(I0−C0(p))
]

, (D.14)

Cn(Λ1, · · · ,Λn|p) '
−i
nkL

n
∑

l=1

[Γc(Λ1+· · ·+Λn|p)+M(Λ1+· · ·+Λn|p)]−1

×Γs(Λ1+· · ·+Λl−1+Λl+1+· · ·+Λn|p)
×Cn−1(Λ1, · · · ,Λl−1,Λl+1, · · · ,Λn|p), (n ≥ 2). (D.15)

Since (D.12) has a ’dressed’ single scattering factor [Γc(Λ|p)+M(Λ|p)]−1, C1(Λ|p) describes

a ’dressed’ single scattering excited by I0 the incident plane wave and C0(p) the coherent Flo-

quet mode. Furthermore, (D.14) has another ’dressed’ single scattering factor [Γc(Λ1+Λ2|p)+
M(Λ1+Λ2|p)]−1 in addition to such a ”dressed” single scattering factor of C1(Λ|p). Therefore,

C2(Λ1,Λ2|p) representes a double scattering process made up of such ’dressed’ single scatter-

ing processes. Similarly, Cn(Λ1, · · · ,Λn|p) by (D.15) expresses a ”dressed” n-tuple scattering

process made up of such ”dressed” single scattering processes.
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