研究活動

複雑組成廃液の分析技術に

関する研究

II．イオン電檴法によるフッ化物イオンの簡易定量廃液処理施設 山 田 悦

1．はじめに

フッ素化合物は，一般に熱的，化学的安定性と界面的特性に特長があり，又生物活性に特異な性質などをもつため，近年，有機合成，医学，農学などの分野で広く研究されるよ うになってきた。その結果，大学，研究所などで排出される有機廃液にも多種類のフッ素化合物が含まれるようになり，その廃液を焼却処理する際に発生する酸性ガスを中和する ためのアルカリ液（洗煙発水）にも高濃度のフッ化物イオンが含まれている。またテフロ ン製品やテフロン加工製品などが大量に都市でみに混入してくるため，でみ焼却場の洗煙廃水中にあフッ化物イオンが多量に含まれるようになり，これらの処理が新たな問題とな っている。また近年，エレクトロニクスの分野でホウフッ化物が多く用いられるようにな ったが，とのホウフッ化物イオン（ BF_{4} ）は難分解性でフッ素の処理を困難にしている。環境試料中のフッ化物イオンの定量には，ランタンーアリザリンコンプレキソンによる比色分析法及び検量線法によるイオン電極法が広く用いられ，公定法としても定められて いる。しかし，とれらの方法は，共存イオンの干渉を除去するためにフッ化物イオンを蒸留分離する必要があり，蒸留に時間を要するため迅速な分析ができないという欠点がある。本研究では，洗煙廃水や大学の研究室加ら排出される無機廃液など，塩濃度か滈く，重金属，陰イオンなどが共存する複䊮な組成の廃水中のフッ化物イオンの定量に，蒸留を行わ ず直接イオン電極法（既知量添加法及びグランプロット標準添加法）の適用を検討したと ころ，共存イオンの影響も受けず廃水中のフッ化物イオンを簡便に定量できるととがわか った。しかしなからとの直接イオン電極法では，難分解性のホウフッ化物イオンは検出で きないのでさらに検討を行ったとてろ，酸性下でアルミニウムイオンを添加した後電子レ ンジで加熱すると，非常に短時間でホウフッ化物イオンを完全分解でき，イオン電極法の前処理としてとの操作を行うと，難分解性のホウフッ化物イオンを含むすべてのフッ化物 イオンを迅速かつ簡便に定量できるととを見いだした。

2．装置及び試薬

2． 1 装 置

イオン電極は，松下電器製の pF 型フッ化物イオン電極を，比較電極は堀場製ダブルジ

ャンクション型を用いた。電位は Orion製811型 pH メーターをミリボルト（ mV ）レン ジにして測定した。測定はシャープ製T E－10K型電子恒温槽中で， $25 \pm 0.5{ }^{\circ} \mathrm{C}$ で行 った。フッ素化合物の蒸留には，杉山元製P－90－I EL型フッ素蒸留装置を使用した。電子レンジは，日立製MR－412型電子レンジ（400w）を用いた。

2． 2 試 薬

フッ化物イオン標準溶液（ $0.1 \mathrm{mg} \mathrm{F}-/ m \ell$ ）：和光純薬工業製特級フッ化ナトリウムを白金皿に採り， $500 \sim 550$ Cで $40 \sim 50$ 分間加熱し，デシケーター中で放冷した後， 0.221 g を採り，蒸留水に溶解し 1ℓ とし，ポリエチレン瓶に入れて保存する。

全イオン強度調整緩衝溶液（T I S A B と略記）：T I S A B は，クエン酸ナトリウム を含むもの（T I S A B 1）と，1，2－シクロヘキサンジアミン四酢酸（C y D T A） を含むもの（T I S A B 2）の 2 種類のTI S A B を用いた。

TISAB $1:$ 水 500 ml 江酢酸 57 ml ，塩化ナトリウム 58 g ，クエン酸ナトリウ ム二水和物 0.3 g を加えて溶かし，水酸化ナトリウムで pH 5.2 に調整した後，水を加え て 1 と とする。

TISAB 2：水 500 ml に酢酸 57 ml ，塩化ナトリウム 58 g ，C y DTA4gを加えて溶㫑し，水酸化ナトリウムで pH 5.2 に調整した後，水を加えて 1ℓ とする。

ランタンーアリザリンコンプレキソン溶液：2．5gアルフッソン（ドータイト試薬）を蒸留水 50 ml に溶かした。

その他の試薬はすべて特級試薬を用いた。

3．定量操作

試料にホウフッ化物を含む場合は，フッ化物イオンとして 0.5 mg 以下の試料を反応器に採り，アルミニウムを添加した後 pH 2 に調整して蒸留水で 50 ml とする。これを電子レ ンジで 90 秒加熱した後室温まで泠却し，イオン電極法で測定する。この前処理法の操作 をFig． 1 に示した。
蒸留を行わない直接イオン電極法（既知量添加法及びグランプロット標準添加法）では，まずT ISABを 10 ml 添加した 1 pmの 10 pmの のフッ化物イオンの標準溶液 $100 \mathrm{~m} \mathrm{\ell}$ を用い，電位を測定 して電位勾配（ s ）を求める。試料の適量（ F^{-}として $0.02 \sim 1.0 \mathrm{mg}$ を含む）をメスフラスコ 100 ml に採り，フッ化物イオン電極を用いて電位を測定する。更に 1000 pmのフッッ化物イオン標準溶液を $50 \mu \ell$ ずつ添加し，そのときの電位を記録する。この操作を 4 回繰 り返す。これらの測定値を用い，既知量添加法では，式 $\mathrm{C}_{\mathrm{A}}=\mathrm{C}_{\mathrm{S}}\left(\mathrm{V}_{\mathrm{S}} / \mathrm{V}_{\mathrm{O}}\right) /\left(10^{\Delta \mathrm{E} / \mathrm{S}}\right.$ $-1)$ より求める。又，グランプロット法では，Fig． 2 に示したように緃軸に（ $V_{O}+V_{S}$ ） $\times 10^{\mathrm{E} / \mathrm{S}}$ ，横軸に V_{S} をプロットし，乙の直線を延長して横軸と交わる点を $\mathrm{V}_{\mathrm{S}}{ }^{*}$ とすると，

Fig. 1 Pretreatment method for borofluoride ion determination

Fig. 2 Gran's plot method

式 $C_{A}=-C_{S} V_{S} * / V_{0}$ より求まる。ただし，こてで C_{A} 及び V_{0} は試料のフッ化物イオン濃度 と試料体積，CS及びVS は添加する高濃度の標準液とその添加量を示す。これらの解析は，日本電気製PC－9801を用いて行った。

検量線法は，各濃度のフッ化物イオンを含む溶液に 10 ml のTISABを加え，その電位を測定して得られた検量線から，フッ化物イオンの濃度を求める。

又，蒸留を併用したイオン電極の検量線法及びアルフッソンを用いる比色分析法につい ては，いずれもJ I S に準じた方法で行った。

4．実験結果と考察

4． 1 共存イオンの影響

廃水中には，目的とするフッ化物イオン以外の共存物質が多く， Fe や Al など，フッ化物イオンと錯生成して測定を妨害する金属イオンの存在量も多いため，それらの影響を詳細に検討した。

廃水中のフッ化物イオン濃度は数百 $m g / \ell$ 程度，又その処理水中のフッ化物イオン濃度 は数十 mg / ℓ 程度なので，測定はフッ化物イオン濃度が $0.2 \sim 10 \mathrm{mg} / \ell$ になるように， 10 ～ 100 倍希釈して行った。そとで共存イオンの影響は， 0.1 mg のフッ化物イオンに対し， Al （III）， Fe （III）， Pb （II）などの陽イオンを最大 10 mg まで添加し，T I S AB 10 $m \ell$ を加え全量を $100 m \ell$ として蒸留を行わず直接イオン電極で測定を行い既知量添加法， グランプロット標準添加法及び検量線法についてそれらの影響を検討した。また Ca（II） そついては，廃水のフッ素処理にCaを用いる場合では，その処理水中のCa濃度が 1000 ppam上となるので 50 mg 添加まで， Mg （II）については 20 mg 添加まで検討を行った。 とれらの結果をTable 1 に示す。
既知量添加法及びグランプロット標準添加法では， Ca （II）イオンでは $50 \mathrm{mg}, \mathrm{Mg}$ （II）イオンでは $20 \mathrm{mg}, \mathrm{Pb}$（II）イオン， Fe （III）イオンなどの金属イオンでは 10 mg の添加まで全く影響がなかった。Al（III）イオンの場合は，T I S A B 1 を用いたとき は1 mgの添加まで，T I S A B 2 を用いたときは 2 mgの添加までは妨害を受けなかった。 しかし，これらの濃度を越えてAl（III）イオンが共存する場合には妨害は非常に大きく， Al （III）イオン 5 mg の添加では，誤差が $60 \sim 100 \%$ となった。一方，検量線法では上記 2 法よりも共存イオンの影響が大きく，Mg（II）イオン 20 mg 及び Ca （II）イオン 50 $m g$ の添加ではフッ化物イオンの回収率は共に約 85% であった。 Pb （II）イオンや Fe （III） イオンは1 0 mgの添加まで影響はなかった。Al（III）イオンが共存する場合は，既知量添加法やグランプロット標準添加法よりあ更にその影響は顕著である。
$\mathrm{Cl}{ }^{-}, \mathrm{I}^{-}, \mathrm{Br}^{-}, \mathrm{SO}_{4}{ }^{2-}$ ， $\mathrm{H} \cdot \mathrm{CO}_{3}{ }^{-}$，シュウ酸イオンなどの陰イオン及びE D T Aに ついても検討したが，それらの影響はほとんどなかった。

Table 1 Effect of metal ions on the determination of fluoride iona)

Metal ion added/mg		Buffer	Recovery of F^{-}, \%			
		Calib.	KA	GP		
$\mathrm{Ca}(\mathrm{II})$	50		TISAB 1 ${ }^{\text {b }}$	85	101	100
		2	86	101	100	
Mg (II)	20	1	82	99	102	
		2	85	102	101	
Pb (II)	10	1	102	102	99	
		2	103	103	101	
Fe (III)	10	1	94	99	99	
		2	98	101	101	
Al (III)	0.1	1	70	96	97	
		2	96	101	101	
	1	1	2.4	119	99	
		2	71	99	98	
	2	2	53	97	97	

a) $100 \mu \mathrm{~g}$ fluoride ion and 10 ml TISAB were present in a sample solution of 100 ml . b) Total ionic strength adjustment buffer contains sodium citrate (1) and CyDTA (2). KA : known addition, GP: Gran's plot

Fig. 3 Effect of heating time on the decomposition of $\mathrm{BF}_{4}{ }^{-}$

以上のととから，T I S A B を添加して既知量添加法あるいはグランプロット標準添加法を用いれば，Al（III）イオン以外の共存イオンの影響はほとんど除去できるとと，また Al （III）イオンが共存している場合は，クエン酸ナトリウムを含むTISAB1よりあ TISAB 2 のほうが効果的であり，T I S AB 2を添加すれば，1 0 倍希釈では 200 pma ， 100 倍希釈では 2000 ppm まで Al（III）イオンが元の試料に含まれていても影響がないととが明かとなった。

4． 2 ホウフッ化物イオンの分解

研究室から排出される無機廃液の中には，難分解性のホウフッ化物イオンが含まれる廃液がある。CyDTAを含むT I S A B 2 を添加した既知量添加法とグランプロット標準添加法でもB F 4 －の形のフッ素は測定できなかった。またフッ化物イオン濃度として 1000 pprになるように調製した NaBF_{4} の溶液は，徐々に分解して 15 日後には約 35 $\%$ のフッ化物イオンが検出されたが，それ以上放置してもほとんど分解しなかった。てれ らの結果より，ホウフッ化物イオンが共存している試料を分析する場合には，分解処理が必要であることがわかった。

ホウフッ化物はそのままではカルシウムによる沈殿処理ができないため，前処理として硫酸アルミニウムを添加して加熱し，加水分解することが知られている。しかしながらと の方法は，硫酸アルミニウムを添加して $80{ }^{\circ} \mathrm{C}$ で $1 \sim 2$ 時間加熱しなければホウフッ化物 イオンを分解するととができない。そとでより分解速度を高める方法として電子レンジの使用を検討した。Fig． 3 に示したように，ホウフッ化物イオンを含む試料にアルミニウム を添加した後 pH 2 に調整して電子レンジ（ 400 w ）で加熱すると， 90 秒という短時間でほぼ完全に分解できた。ての前処理法を，フッ化物イオンのみの試料に適用してあ前処理の過程でフッ化物イオンが消失するということはなく，イオン電極法での回収率はほ ぼ100\％であった。

4． 3 分析精度

クエン酸ナトリウムを含むTISAB1あるいはCyDTAを含むTISAB 2 を添加して作成した検量線は共にフッ化物イオン 0.01 ～ 10 mg の濃度範囲で直線となった。既知量添加法及びグランプロット標準添加法の分析精度を求めるため， 3 の操作に従い 0.1 mg のフッ化物イオンに 2 mg の Al （III）イオンを共存させて検討したとてろ，相対標準偏差として約 2% であるととがわかった。またイオン電極の応答速度は $1 \sim 2$ 分であり， 3 の定量操作に従って定量を行うと約 10 分であった。

4． 4 実試料への適用

実試料として，大学，研究所などの実験室から排出された有機廃液を焼却する際に生ず る洗煙廃水（A $1 \sim$ A 3）及び塩化カルシウムで処理したその処理水（B1～B4）並び に実験室から排出された無機廃液をフェライト法で処理した処理水（C1，C 2）を用い，蒸留を行わず直接イオン電極を用いて測定する方法に適用した。J I S に定められている蒸留した後，アルフッソンによる比色分析法及び蒸留を併用したイオン電極法（検量線法） であ測定を行い，これらの結果Table 2 に示す。

Table 2 Determination of fluoride ion in wastewater by various methods

Sample ${ }^{\text {a }}$ （TISAB）	Colori－metry ${ }^{\text {b }}$（ mg l $^{-1}$		$\mathrm{F}^{-} / \mathrm{mg}^{1-1}$		
			Calib．c）	$\mathrm{KA}^{\text {c }}$ ）	GPe）
A－1（1）	114		110	110	108
（2）		111	106	110	115
A－2（1）	131		130	133	131
（2）		128	133	134	134
A－3（1）	298		280	284	276
（2）		275	285	289	287
B－1（1）	9.2		8.3	10.4	10.2
（2）		9.7	8.5	10.7	10.3
B－2（1）	15.7		13.8	15.6	15.2
（2）		15.3	14.5	16.0	16.0
B－3（1）	14.3		12.7	14.4	14.1
（2）		14.5	13.2	14.3	14.7
B－4（1）	13.0		12.0	13.1	13.0
（2）		13.6	11.9	13.2	13.4
C－1（1）	4.3		3.8	4.0	4.0
（2）		4.3	4.0	4.1	4.1
C－2（1）	2.0		1.6	1.7	1.5
（2）		1.6	1.7	1.5	2.0

a）A：wastewater from the organic waste incinerator， B ：wastewater after removing fluoride ion by CaCl_{2} from wastewater A，C ：wastewater after inorganic material treatment；b）with distillation；c）ISE with－ out preliminary distillation

蒸留を行わず直接イオン電極で測定する方法でも，既知量添加法及びグランプロット標準添加法で求めた結果は，公定法で得られた結果と良く一致した。しかし，直接イオン電極法（検量線法）では，処理水B1～B4で他の方法と比較すると低い値となった。てれ は，乙れらの処理水に Ca （II）イオンが $1000 \sim 2000$ p吅含まれているうえに Na （ I ） イオンが $7000 \sim 50000$ pm含まれており，測定の際 10 倍希釈してTISABを添

加してあイオン強度の補正ができないためと考えられる。更に，10倍希釈したB2試料 にA1（III）イオンを $2 m g$ 添加してCyDTAを含むTISAB 2 を加えた直接イオン電極法の測定値を求めたところ，検量線法ではフッ化物イオンが検出されなかったが，既知量添加法及びグランプロット標準添加法ではTable 2 に示したA1（III）イオン無添加 の場合の分析値と良い一致を得た。

5．結 言

T I S A B を添加して直接イオン電極で測定する方法は，既知量添加法あるいはグラン プロット標準添加法を用いれば，共存イオンの影響をほとんど受けず，洗煙廃水など複雑 な組成の廃水中のフッ化物イオンを迅速かつ簡便に精度良く定量できることが分かった。 この方法は，公定法のように蒸留を行わないため短時間で分析結果を出すととができ，廃水処理のためにも極めて有効である。また電子レンジによる加熱は，難分解性のホウフッ化物イオンを非常に短時間で分解する方法として極めて有効であるととが明らかとなった。電子レンジは，難分解性化合物の分解あるいは化学反応を速める方法として，今後大いに利用されると思われる。

最後に廃水試料を提供いただいた京都大学環境保全センターの高月 紘教授と真島敏行技官に感謝致します。

参 考 文 献

1）山田 武，山田 悦，佐藤昌憲，分析化学， 37 ，T 61 －T 65 （1988）．

