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Abstract

Suppose M is a noncompact connected 2-manifold and let J#° (M) denote the
homeomorphism group of M with the compact-open topology. In this paper we determine
the condition on the end of M under which #(M) is an ¢ Zmanifold. It is shown that

FO(M) is an ¢ Zmanifold iff i) M = N\(FUA), where N is a compact connected 2-manifold, F
is a finite subset of Int N and A is a 0-dimensional compact subset of ON and (ii) the group . #% (4 )
of order preserving homeomorphisms of A is discrete.
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1. Introduction

In this paper we will investigate the homeomorphism groups of noncompact 2-manifolds
from the viewpoint of infinite-dimensional manifolds. Suppose M" is a topological n-manifold
and let & (M) denote the homeomorphism group of M onto itself with the compact-open
topology (the topology of uniform convergence on every compact subset). R. D. Anderson"
showed that#” (R ), the group of orientation-preserving homeomorphisms of the real line R ,
is homeomorphic to € % (the Hilbert space of square summarable real sequences). After this
result, it was conjectured that the homeomorphism group 4 (M) is an # Zmanifold for any
compact #-manifold and some noncompact n-manifolds M".

The development of the theory of infinite-dimensional topological manifold reached its
climax in the characterization theorems of various infinite-dimensional topological manifolds.
In particular, a separable, completely metrizable space X is an £ Z manifold iff X is an ANR
(absolute neighborhood retract) and ¢ %stable (X X €2 = X).V Since o (M) is always
¢ Zstable,® the conjecture is reduced to the problem of whether # (M) is an ANR. It is
known that #° (M) is always locally contractible when either M is compact or M is the
interior of a compact manifold.?’ However, the infinite-dimensionality of .#°(M) has prevented
the detection of ANR property. For this reason the conjecture is known to be true only for =
=1 and 2, and still remains open for n = 3. In the one-dimensional case, # (M) is an
¢ “manifold even if Mis noncompact.” In the two dimensional case, the conjecture has been
proved for any compact 2-manifolds.®”” On the other hand, if M is a noncompact 2-manifold,
then in general # (M) is not necessarily even locally path connected. (Consider the case
where M has infinitely many handles, cf. Ref. 10) Example 5.6.1.) The purpose of this paper
is to determine the condition on the end of a noncompact 2-manifold M under which#’ (M) is
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an ¢ “manifold.

Suppose M is a noncompact connected PL 2-manifold and X is a compact subpolyhedron
of M. (Note that every 2-manifold admits a PL-triangulation.) Let o x (M) (respectively
I xus (M)) denote the subgroup of &’ (M) consisting of the homeomorphisms of M which are
identity on X (respectively XUOS M). Consider the following condition on M

(%) M= N\(FUA), where N is a compact connected 2-manifold, F is a finite subset of
Int N and A is a O-dimensional compact subset of ON.

Proposition 1. Suppose M is a moncompact connected PL 2-manifold and X is a compact
subpolyhedron of M. Then the following conditions are equivalent:

(1) xua(M) is an € Zmanifold.

(11)H xUa (M) is locally path connected.

(111) M takes the form of ().

To ensure that the whole group.# x (M) is an ¢ Zmanifold, we need a further restriction
on the end of M. When M has the form ( % ), we can define the group #°+ (A) of order
preserving homeomorphisms of A as follows: Choose a finite collection of disjoint oriented
arcs Z = {L};in ON with AC U,L; and set A; = AN I, The orientation on I; induces a
linear order on A; Let#H +(A)=H+ (A F)= | fEAH(A): f(A) = A; and flA; is order
preserving for each i, equipped with the compact open topology. The following is the main
result of this paper.

Theorem 1. Suppose M is a noncompact connected PL 2-manifold and X is a compact subpolyhedron
of M. Then the following conditions ave equivalent:

(1)Hx(M) is an € Zmanifold.

(11)H x (M) is locally path connected.

(111) M takes the form (%) and A +(A) is discrete.

Theorem 1 implies that local path connectedness is the unique obstruction. The similar
problem for PL-homeomorphisms and diffeomorphisms will be investigated in a subsequent

paper.

2. Basic Facts on ¢ ZManifolds and Homeomorphism Groups

Throughout the paper we assume that all spaces are separable and metrizable and that
all maps are continuous. When A is a subset of a space X, Frx A, Intx 4 and clxy A denote the
topological frontier, interior and closure of A in X. On the other hand, @.X and Int M denote
the boundary and interior of a manifold M. The notation =means “homeomorphic”, while ~
means “homotopic”

A space X is said to be an £ “manifold if each point has an open neighborhood which is
homeomorphic to £ 2 H. Toruniczyk'? showed that ¢ £manifolds are characterized by their
ANR-property and eg—stability. A space X is said to be an ANR (absolute neighborhood
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retract) if for every map f:B— X from a closed subset B of a space Y there exist a
neighborhood U of Bin Y and an extension f : U— X of f If, in addition, we can always take
U =Y, then X is said to be an AR.

Fact 2.1. A space X is an ANR iff each point of X has a neighborhood which is an ANR. In
particular, a topological group is an ANR iff the unit element has an ANR neighborhood.*

A space X is said to be ¢ Zstable if X X €2 =X,

Fact 2.2. A space Xis an ¢ 2 manifold iff X is a separable, completely metrizable ANR and is
¢ Zstable.tV

Suppose X is a space. By #°(X) we denote the group of homeomorphisms of X onto itself
with the compact open topology. When A, C are subsets of X, we set #¢c (X, 4) = {fEH(X)| f
(A)= A and fic = idd . Suppose M is an n-manifold (m>1) and A is a proper closed subset
of M. Then (i)s# 4 (M) is a separable, completely metrizable topological group*? and (i) A 4
(M) is € “stable.®. Therefore, the next assertion follows from Facts 2.1 and 2.2.

Fact 2.3. Suppose M is an wn-manifold (n=>1) and A is a proper closed subset of M. Then H# 4
(M) is an £ “manifold iff the identity idsy has an ANR neighborhood in# 4 (M).

Luke-Mason®? verified the ANR property in the 2-dimensional compact case.

Fact 2.4. (i) If Mis a compact 2-manifold, then #(M) is an ANR.®
(i1) If M is a compact PL 2-manifold and X is a compact subpolyhedron, thens# x (M) is an
ANR"®

In Ref. 5) it is shown that#” (X) is an ANR for every compact 2-dimensional polyhedron.
This follows from Fact 2.4.( 1) by a cutting argument. Fact 2.4. (1ii) (the relative version)
also follows from Fact 2.4. (1) by a similar cutting argument.

Finally, we list a fact on end compactifications.

Fact 2.5. Suppose X is a locally connected compact metric space, A is a 0-dimensional
compact subset of X and Cis a compact subset of XN\ A. If (1) X\ 4 is dense in X and (i1)
U\ A is connected for any connected open subset U of X (for example, X is a compact 2-
manifold), then the restriction map# ¢ (X, A) = Hc(X\NA): h—=>hlxy 4 is a homeomorphism.

3. Local Path Connectedness of #°(M) and the Ends of M

Suppose M is a noncompact connected PL 2-manifold and X is a compact subpolyhedron
of M. In this section we will show that if #° x (M) or # xus (M) is locally path connected, then
M takes the form (%) :
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(%) M= N\(FUA), where N is a compact connected 2-manifold, F is a finite subset of Int N
and A is a 0-dimensional compact subset of ON.

Lemma 3.1. M takes the form (%) iff theve exists a (nonempty) compact connected 2-submanifold
No of M such that each component L of cl (M\ No) satisfies the following condition:

(% %)L = U L; where

(1) each L; is a compact connected 2-submanifold of L, FryLCInt L, and L;Clnt;L;+ 1,

(11) (a) each component K of cl(L\ L)) is noncompact, (b) KM Li+1 is connected, (c) KN L; is an
arc or a circle, and :

(111) each L; is a disk with m holes (m = m (L) is independent of 1).

Proof. If L satisfies (% %), then from (iii) each component H of cl(L;+1 \ Ly). is either (a) a
disk D such that DN L; is an arc or (b) an annulus A such that AN L; is a boundary circle.
Let € ;= the number of the annulus components of ¢l (Li+1 \L;). Then ¢ ;> ¢ ,+,, and we
may assume that ¢ ;= £ (constant) by omitting finitely many L;s. Hence L takes the form
(%), where N is a disk with holes and # F= ¢ . This implies that M itself takes the form

(). ]

Let 9 denote the subset of &# 5 (M) consisting of all Dehn twists on M. From the
definition of the compact-open topology, if # x (M) or S xus (M) is locally path connected
then & satisfies the following condition :

(#) There exists a compact subset C of M such that ($#)c: if hED and hlc = id then h=
1d .

The following properties of Dehn twists will be used in a criterion of the condition ()

in Lemma 3.5.

Lemma 3.2. (1) Every Dehn twist along a meridian of a handle in M is not homotopic to id .
(2) Suppose D C M is a sphere with n + 1 holes, n > 4, and let S and S; (i = 1,***, n) denote the
boundary circles of D. Suppose C is a circle in D which encircles exactly two holes S1 and So and h
is the Dehn twist along C. If there exists a closed set E of M such that DONEC S and DUE is a
retract of M, then h 2idy,.
Proof. Statement (1) is verified by a simple mi-calculation. The next statement also follows
from a m-calculation.
(2') Suppose D is a sphere with # holes, n > 4, and let S;(i = 1,***, n) denote the boundary
circles of D. Suppose C is a circle in D which encircles exactly two holes S; and Sz, £ is a
circle in D which encircles exactly two holes Sz and Sz and % is the Dehn twist along C. Then
hé22¢ in D.

Statement (2) reduces to (2") by (a) retracting M onto DU E and (b) capping S by a disk
and mapping F into this disk. O

Lemma 3.3. If M is a noncompact connected 2-manifold and C is a boundary circle of M, then C is
a retract of M.
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Proof. Take a half ray @ in M which starts from a point on C and goes toward the end of M.
If A is a regular neighborhoood of CU «a, then FryA=R (the real line). Hence we have a
sequence of retractions M—> A— CUa — C. ]

Lemma 3.4. Suppose M is a noncompact connected 2-manifold. If M is ovientable and contains no
handles, then for any compact subset C of M there exists a compact connected 2-submanifold N of M
such that each component L of cl (M\\N) is (a) noncompact and (b) LN N is an arc or circle.

Proof. Let N be a compact connected 2-submanifold with C C N and set ¢ = the number of
components of ¢/ (M\ N) and m = the number of components of FrN. Then m > ¢ and the
condition (b) is equivalent to the condition m = £.

Suppose m — € > 1. There exists a component L of ¢/(M \ N) which contains two
components C; and C; of FrN. We can join these components by a proper arc « in L. Let A
be a regular neighborhood of a in L. If ¢/ (L\\ A) is connected, then we can find (1) a circle
£ in L which meets « at one point and (11) a proper arc 7 in N connecting the end points of
a. Since M is orientable, a regular neighborhood of @ UB U7 is a handle. This contradicts
the assumption. Hence ¢l (L\\ A) has two components. Each component Cy is an arc or circle. If
one of C,is a circle, then ¢l (L\\ A4) is connected. Hence, both C; and C; are arcs. Therefore if
we replace N by NU A, then ¢ increases by 1, while m unchanges, so m— ¢ decreases by 1.
By the repeated application of this procedure we can reach m— € = 0. To achieve (a), add
all compact components of ¢/ (M\N) to N. : O

Lemma 3.5. If & satisfies the condition ($), then M takes the form of ().

Proof. From the assumption there exists a compact connected 2-submanifold N of M which
satisfies (#)y. Then by Lemma 3.2.(1) each component of ¢/ (M \ N) contains no handles, and
thus contains at most two Mobius bands. Hence, we can enlarge N so that
(1) each component L of ¢/ (M\N) is noncompact, orientable and contains no handles.

Thus, using Lemma 3.4 we can further enlarge N so that
(i1) LN N is an arc or a circle for each component L of ¢l (M\ N).
At this point N satisfies ($)u, (1) and (ii). We will show that each component L of ¢l (M \ N)
satisfies the condition (*% %) in Lemma 3.1. This leads to the conclusion.

By the repeated application of Lemma 3.4 we can write each component L of ¢l (M\ N) as
L= U%, L, where
(111) each L; is a compact connected 2-submanifold of L, LONN C Int;L;, and L; C Int;L;+1,
(iv) each component K of ¢l (L\\ L) is noncompact, KN L; is an arc or circle and KN L;+ is
connected.
By (1) each L;is a disk with m; holes. It follows that m; < m;+1, since any component H of
cl(Li+1 \ L) is (a) a disk with holes, (b) HN L; is an arc or circle and (¢) Fr H= HN L. On
the other hand, we have m; < 3. In fact, if m; = 4, we can apply Lemma 3.2.(2) to D = L; and

= ¢l (M \\ L). (Note that (a) L; N E= LN N is an arc or a circle, which is contained in a
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boundary circle S of L; and (b) by (iv) and Lenuna 3.3 KM L; is a retract of K for any
component K of ¢l(L\ L), So L;UE is a retract of M) This contradicts (3 )y. Therefore we
may assume that m;=m (a constant) by omitting finitely many L;'s. This completes the proof.

[

We conclude this section with the proof of Proposition 1.

Proof of Propoesition 1. If # xus (M) is locally path connected, then M takes the form (%) by
Lemma 3.5. Conversely, if M takes the form ( * ), then from Fact 2.5 we have a
homeomorphism & xus (M) =H xus (N, F). Since M is an open set of N and X is a compact
subpolyhedron of M with respect to a PL-triangulation on M, we can find a PL-triangulation
of N with respect to which X is a subpolyhedron of N® From Fact 2.4.0) A xurus (N) is an
ANR and it is an open neighborhood of idy in H# xyus (N, F). Hence # xus (N, F) is an
¢ Zmanifold by Fact 2.3. ]

4. Proof of Main Theorem

This final section contains the proof of Theorem 1. Throughout the section the subscript
“+ " in homeomorphism groups.means “orientation-preserving” or “order-preserving”. First
we will list some properties of the end groups# + (A). Suppose [ is an oriented arc and A is
a 0-dimensional compact subset in I The orientation on I induces a natural linear order on A.
Let A + (A) denote the group of order preserving homeomorphisms of A. Since H (A) is
totally disconnected, # + (A ) is locally connected iff it is discrete.

Lemma 4.1. 4+ (I, A) is an ANR (or locally path connected) iff 4 + (A) is discrete.

Proof. We may assume that I = [0, 1]. We know that (i) (0, 1)\ 4 is a disjoint union of (at
most countably many) open intervals U, = (ay, b,), (1) diam U, — 0 (as n — o), and (iii) the
correspondence (ay, b,) — (f(a.), f(b,) induces an order-preserving permutation of U,’s. Each
fESA + (A) has a canonical linear extension & (f) €S+ (I, A). The map 6(f) is defined by
0 (f)(ta, + (1 — t)b,) = tf(an) + (1 — 1) f(by) (0 < t < 1) (where f(0) =0 and f(1) = 1). It
follows that 6 : &+ (A) —H + (I, A) is continuous and induces a homeomorphism ¢ :
H ([, A=H+ (A) XH 4+ (1), P(h) = (hla, 8(h]4)~"h). The restriction map Ha+ (1) =
I1. 7% (U,): f—(f| U), also induces a homeomorphism. Since .# + (U, = €2V .4+ (U,) is
an AR, and-# 4 +(I) is also an AR.* The conclusion follows from these observations. ]

Suppose N is a compact connected PL 2-manifold, F is a finite subset of Int N, 4 is a O-
dimensional compact subset of ON and X is a compact subpolyhedron of N with XN(FU A4) =
0. Let £ = |I} be a finite collection of disjoint oriented ( arcs in N such that AC Ul (We
allow that I; is a single point.) The definition of the group #’+ (A) =# + (4; %) is given by
§1. If # is another collection which refines J, then .# (A; #) is an open neighborhood of
ida in# + (A; &). Hence the property “o%+ (A; #) is discrete” does not depend on the choice
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of the collection .

Lemma 4.2. 5 x (N, FUA) is an ANR (or locally path connected) iff H'+ (A; F) is discrete.

Proof. Replacing each I; by a subinterval (or a single point), we may assume that oI C A,
Let % = {fE€EH xur(N)| f(L;) = I; and f|i EH+ (I, A;) for each il and F = I ;% (I, As),
and let 7w : % — % m(f) = (f| 1); be the restriction map. It follows that (i) % is an open
neighborhood of idy in#x (N,FUA). (i1)H x (N, FUA) is an ANR iff %/ is an ANR, and (iii)
A+ (A) =110+ (A), so from Lemma 4.1 1 (A) is discrete iff & is an ANR.

Using a cone of I; embedded in N, we can easily find a map A : & — % such that 7 A
=idg (le, A (g):) ]y = g). This induces a homeomorphism ¢ : % = H xuruwn(N) X &,
?(f) = (AT (/N 'f 7 (f). The inverse is given by ¢ ' (h (g)) = A (g))h Since
H xuruun(N) is an ANR by Fact 2.4.(11), it follows that %/ is an ANR iff & is an ANR.
This implies the conclusion.

The same argument applies to the “locally path connected” case (replace “ANR” by
“locally path connected” ). O]

We can now complete the proof of Theorem 1.

Proof of Theorem 1. If M takes the form (%), then H# x (M) = x (N, FU A) by Fact 2.5. If
I x (M) is locally path connected, then M takes the form (%) from Lemma 3.5 and €+ (A; Z)
is discrete from Lemma 4.2. Conversely, suppose M takes the form (%) and &+ (A; g) is
discrete. Since X is a compact subpolyhedron of M, X is also a compact subpolyhedron of N
with respect to a PL-triangulation of N2 Hence Hx (N, FUA) is an ANR from Lemma 4.2,
and H x (M) is an € “manifold by Fact 2.3. O

Finally, we will give some examples of O-dimensional compact subsets A in I = [0,1] for
which the groups &+ (A) are not discrete. Note that these examples can be realized as ends
of noncompact 2-manifolds.

Example. (1) (1) Let A= {0} U 1%:@ 2t U {1——%;:142 2} U {1}, and for each n>1
take a compact subset X, in [_n—|1——1' %] such that (| n-!l——l %], X,) = (I A). If X=1{0} U(
U, X,), then # 4+ (X) = [l,=1 Z, where Z is the set of integers with the discrete topology.
This follows from -

H+ (A)=ANNOU=Z: f=f(1/2) and K+ (X) = [T+ (X)) : F=(fxn)n

n=1
(i1) If we replace A by B= {0} U {%: n>11and construct a compactum YC I from B
as in (1), then Y= X but#’+ (Y) = lidyl .
(2) If Cis a Cantor set in I, then #+ (C) has no isolated point.
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