The Homeomorphism Groups of Noncompact 2-Manifolds

Tatsuhiko Yagasaki

(Received August 13, 1998; Accepted August 28, 1998)

Abstract

Suppose M is a noncompact connected 2-manifold and let $\mathcal{H}(M)$ denote the homeomorphism group of M with the compact-open topology. In this paper we determine the condition on the end of M under which $\mathcal{H}(M)$ is an ℓ^2 -manifold. It is shown that $\mathcal{H}(M)$ is an ℓ^2 -manifold iff (i) $M = N \setminus (F \cup A)$, where N is a compact connected 2-manifold, F is a finite subset of Int N and A is a 0-dimensional compact subset of ∂N and (ii) the group $\mathcal{H}_+(A)$ of order preserving homeomorphisms of A is discrete.

Key Words: 2-manifolds; Ends; Homeomorphism groups; ℓ^2 -manifolds.

1. Introduction

In this paper we will investigate the homeomorphism groups of noncompact 2-manifolds from the viewpoint of infinite-dimensional manifolds. Suppose M^n is a topological n-manifold and let $\mathscr{H}(M)$ denote the homeomorphism group of M onto itself with the compact-open topology (the topology of uniform convergence on every compact subset). R. D. Anderson¹⁾ showed that $\mathscr{H}(\mathbb{R})$, the group of orientation-preserving homeomorphisms of the real line \mathbb{R} , is homeomorphic to ℓ^2 (the Hilbert space of square summarable real sequences). After this result, it was conjectured that the homeomorphism group $\mathscr{H}(M)$ is an ℓ^2 -manifold for any compact n-manifold and some noncompact n-manifolds M^n .

The development of the theory of infinite-dimensional topological manifold reached its climax in the characterization theorems of various infinite-dimensional topological manifolds. In particular, a separable, completely metrizable space X is an ℓ^2 -manifold iff X is an ANR (absolute neighborhood retract) and ℓ^2 -stable $(X \times \ell^2 \cong X)^{11}$. Since $\mathscr{H}(M)$ is always ℓ^2 -stable, the conjecture is reduced to the problem of whether $\mathscr{H}(M)$ is an ANR. It is known that $\mathscr{H}(M)$ is always locally contractible when either M is compact or M is the interior of a compact manifold. However, the infinite-dimensionality of $\mathscr{H}(M)$ has prevented the detection of ANR property. For this reason the conjecture is known to be true only for n = 1 and still remains open for n = 1 and n = 1 and still remains open for n = 1 and n = 1 and still remains open for n = 1 and n = 1 and still remains open for n = 1 and n = 1 and still remains open for n = 1 and n = 1 and still remains open for n = 1 and n = 1 and still remains open for n = 1 and n = 1 and still remains open for n = 1 and n = 1 and still remains open for n = 1 and n = 1 and still remains open for n = 1 and n = 1 and still remains open for n = 1 and n = 1 and still remains open for n = 1 and still remains open for n = 1 and n = 1 and still remains open for n = 1 and still remains op

an ℓ^2 -manifold.

Suppose M is a noncompact connected PL 2-manifold and X is a compact subpolyhedron of M. (Note that every 2-manifold admits a PL-triangulation.) Let $\mathscr{H}_X(M)$ (respectively $\mathscr{H}_{X\cup\partial}(M)$) denote the subgroup of $\mathscr{H}(M)$ consisting of the homeomorphisms of M which are identity on X (respectively $X\cup\partial M$). Consider the following condition on M:

(*) $M = N \setminus (F \cup A)$, where N is a compact connected 2-manifold, F is a finite subset of Int N and A is a 0-dimensional compact subset of ∂N .

Proposition 1. Suppose M is a noncompact connected PL 2-manifold and X is a compact subpolyhedron of M. Then the following conditions are equivalent:

- (i) $\mathcal{H}_{X\cup\partial}(M)$ is an ℓ^2 -manifold.
- (ii) $\mathcal{H}_{X\cup\partial}(M)$ is locally path connected.
- (iii) M takes the form of (*).

To ensure that the whole group $\mathcal{H}_X(M)$ is an ℓ^2 -manifold, we need a further restriction on the end of M. When M has the form (*), we can define the group $\mathcal{H}_+(A)$ of order preserving homeomorphisms of A as follows: Choose a finite collection of disjoint oriented arcs $\mathcal{J} = \{I_i\}_i$ in ∂N with $A \subset \bigcup_i I_i$ and set $A_i = A \cap I_i$. The orientation on I_i induces a linear order on A_i . Let $\mathcal{H}_+(A) \equiv \mathcal{H}_+(A;\mathcal{J}) = \{f \in \mathcal{H}(A) : f(A_i) = A_i \text{ and } f | A_i \text{ is order preserving for each } i\}$, equipped with the compact open topology. The following is the main result of this paper.

Theorem 1. Suppose M is a noncompact connected PL 2-manifold and X is a compact subpolyhedron of M. Then the following conditions are equivalent:

- (i) $\mathcal{H}_X(M)$ is an ℓ^2 -manifold.
- (ii) $\mathcal{H}_X(M)$ is locally path connected.
- (iii) M takes the form (*) and $\mathcal{H}_+(A)$ is discrete.

Theorem 1 implies that local path connectedness is the unique obstruction. The similar problem for PL-homeomorphisms and diffeomorphisms will be investigated in a subsequent paper.

2. Basic Facts on ℓ^2 -Manifolds and Homeomorphism Groups

Throughout the paper we assume that all spaces are separable and metrizable and that all maps are continuous. When A is a subset of a space X, $\operatorname{Fr}_X A$, $\operatorname{Int}_X A$ and $\operatorname{cl}_X A$ denote the topological frontier, interior and closure of A in X. On the other hand, ∂X and $\operatorname{Int} M$ denote the boundary and interior of a manifold M. The notation \cong means "homeomorphic", while \cong means "homotopic"

A space X is said to be an ℓ^2 -manifold if each point has an open neighborhood which is homeomorphic to ℓ^2 . H. Toruńczyk¹¹⁾ showed that ℓ^2 -manifolds are characterized by their ANR-property and ℓ^2 -stability. A space X is said to be an ANR (absolute neighborhood

retract) if for every map $f: B \to X$ from a closed subset B of a space Y there exist a neighborhood U of B in Y and an extension $\tilde{f}: U \to X$ of f. If, in addition, we can always take U = Y, then X is said to be an AR.

Fact 2.1. A space X is an ANR iff each point of X has a neighborhood which is an ANR. In particular, a topological group is an ANR iff the unit element has an ANR neighborhood.⁴⁾

A space X is said to be ℓ^2 -stable if $X \times \ell^2 \cong X$.

Fact 2.2. A space X is an ℓ^2 -manifold iff X is a separable, completely metrizable ANR and is ℓ^2 -stable. 11)

Suppose X is a space. By $\mathscr{H}(X)$ we denote the group of homeomorphisms of X onto itself with the compact open topology. When A, C are subsets of X, we set $\mathscr{H}_C(X, A) = \{f \in \mathscr{H}(X) | f(A) = A \text{ and } f|_C = id_C \}$. Suppose M is an n-manifold $(m \ge 1)$ and A is a proper closed subset of M. Then (i) $\mathscr{H}_A(M)$ is a separable, completely metrizable topological group M and (ii) $\mathscr{H}_A(M)$ is ℓ^2 -stable. Therefore, the next assertion follows from Facts 2.1 and 2.2.

Fact 2.3. Suppose M is an n-manifold $(n \ge 1)$ and A is a proper closed subset of M. Then \mathcal{H}_A (M) is an ℓ^2 -manifold iff the identity id_M has an ANR neighborhood in \mathcal{H}_A (M).

Luke-Mason^{6),7)} verified the ANR property in the 2-dimensional compact case.

Fact 2.4. (i) If M is a compact 2-manifold, then $\mathscr{H}(M)$ is an ANR.⁶⁾ (ii) If M is a compact PL 2-manifold and X is a compact subpolyhedron, then $\mathscr{H}_X(M)$ is an ANR.^{cf.5)}

In Ref. 5) it is shown that $\mathcal{H}(X)$ is an ANR for every compact 2-dimensional polyhedron. This follows from Fact 2.4.(i) by a cutting argument. Fact 2.4.(ii) (the relative version) also follows from Fact 2.4.(i) by a similar cutting argument.

Finally, we list a fact on end compactifications.

Fact 2.5. Suppose X is a locally connected compact metric space, A is a 0-dimensional compact subset of X and C is a compact subset of $X \setminus A$. If (i) $X \setminus A$ is dense in X and (ii) $U \setminus A$ is connected for any connected open subset U of X (for example, X is a compact 2-manifold), then the restriction map $\mathscr{H}_C(X, A) \to \mathscr{H}_C(X \setminus A)$: $h \mapsto h|_{X \setminus A}$ is a homeomorphism.

3. Local Path Connectedness of $\mathcal{H}(M)$ and the Ends of M

Suppose M is a noncompact connected PL 2-manifold and X is a compact subpolyhedron of M. In this section we will show that if $\mathscr{H}_X(M)$ or $\mathscr{H}_{X\cup\partial}(M)$ is locally path connected, then M takes the form (*):

(*) $M = N \setminus (F \cup A)$, where N is a compact connected 2-manifold, F is a finite subset of Int N and A is a 0-dimensional compact subset of ∂N .

Lemma 3.1. M takes the form (*) iff there exists a (nonempty) compact connected 2-submanifold N_0 of M such that each component L of $cl(M \setminus N_0)$ satisfies the following condition:

- $(**) L = \bigcup_{i=1}^{\infty} L_i$, where
- (i) each L_i is a compact connected 2-submanifold of L, $\operatorname{Fr}_M L \subset \operatorname{Int}_L L_1$ and $L_i \subset \operatorname{Int}_L L_{i+1}$,
- (ii) (a) each component K of $cl(L \setminus L_i)$ is noncompact, (b) $K \cap L_{i+1}$ is connected, (c) $K \cap L_i$ is an arc or a circle, and
- (iii) each L_i is a disk with m holes (m = m(L) is independent of i).

Proof. If L satisfies (**), then from (iii) each component H of $cl(L_{i+1} \setminus L_i)$. is either (a) a disk D such that $D \cap L_i$ is an arc or (b) an annulus A such that $A \cap L_i$ is a boundary circle. Let $\ell_i \equiv$ the number of the annulus components of $cl(L_{i+1} \setminus L_i)$. Then $\ell_i \geq \ell_{i+1}$, and we may assume that $\ell_i \equiv \ell$ (constant) by omitting finitely many L_i 's. Hence L takes the form (*), where N is a disk with holes and $\# F = \ell$. This implies that M itself takes the form (*).

Let \mathscr{D} denote the subset of $\mathscr{H}_{\partial}(M)$ consisting of all Dehn twists on M. From the definition of the compact-open topology, if $\mathscr{H}_X(M)$ or $\mathscr{H}_{X\cup\partial}(M)$ is locally path connected then \mathscr{D} satisfies the following condition :

(#) There exists a compact subset C of M such that $(\sharp)_C$: if $h \in \mathscr{D}$ and $h|_C = id$ then $h \simeq id_M$.

The following properties of Dehn twists will be used in a criterion of the condition (#) in Lemma 3.5.

Lemma 3.2. (1) Every Dehn twist along a meridian of a handle in M is not homotopic to id_M .

(2) Suppose $D \subset M$ is a sphere with n+1 holes, $n \geq 4$, and let S and S_i ($i=1,\dots,n$) denote the boundary circles of D. Suppose C is a circle in D which encircles exactly two holes S_1 and S_2 and h is the Dehn twist along C. If there exists a closed set E of M such that $D \cap E \subset S$ and $D \cup E$ is a retract of M, then $h \not\simeq id_M$.

Proof. Statement (1) is verified by a simple π_1 -calculation. The next statement also follows from a π_1 -calculation.

(2') Suppose D is a sphere with n holes, $n \geq 4$, and let $S_i (i = 1, \dots, n)$ denote the boundary circles of D. Suppose C is a circle in D which encircles exactly two holes S_1 and S_2 , ℓ is a circle in D which encircles exactly two holes S_2 and S_3 and h is the Dehn twist along C. Then $h \ell \not\simeq \ell$ in D.

Statement (2) reduces to (2') by (a) retracting M onto $D \cup E$ and (b) capping S by a disk and mapping E into this disk.

Lemma 3.3. If M is a noncompact connected 2-manifold and C is a boundary circle of M, then C is a retract of M.

Proof. Take a half ray α in M which starts from a point on C and goes toward the end of M. If A is a regular neighborhood of $C \cup \alpha$, then $\operatorname{Fr}_M A \simeq \mathbb{R}$ (the real line). Hence we have a sequence of retractions $M \to A \to C \cup \alpha \to C$.

Lemma 3.4. Suppose M is a noncompact connected 2-manifold. If M is orientable and contains no handles, then for any compact subset C of M there exists a compact connected 2-submanifold N of M such that each component L of $cl(M \setminus N)$ is (a) noncompact and (b) $L \cap N$ is an arc or circle.

Proof. Let N be a compact connected 2-submanifold with $C \subseteq N$ and set ℓ = the number of components of $cl(M \setminus N)$ and m = the number of components of FrN. Then $m \ge \ell$ and the condition (b) is equivalent to the condition $m = \ell$.

Suppose $m-\ell \geq 1$. There exists a component L of $cl(M \setminus N)$ which contains two components C_1 and C_2 of FrN. We can join these components by a proper arc α in L. Let A be a regular neighborhood of α in L. If $cl(L \setminus A)$ is connected, then we can find (i) a circle β in L which meets α at one point and (ii) a proper arc γ in N connecting the end points of α . Since M is orientable, a regular neighborhood of $\alpha \cup \beta \cup \gamma$ is a handle. This contradicts the assumption. Hence $cl(L \setminus A)$ has two components. Each component C_k is an arc or circle. If one of C_k is a circle, then $cl(L \setminus A)$ is connected. Hence, both C_1 and C_2 are arcs. Therefore if we replace N by $N \cup A$, then ℓ increases by 1, while m unchanges, so $m-\ell$ decreases by 1. By the repeated application of this procedure we can reach $m-\ell=0$. To achieve (a), add all compact components of $cl(M \setminus N)$ to N.

Lemma 3.5. If \mathscr{D} satisfies the condition (\sharp) , then M takes the form of (*).

Proof. From the assumption there exists a compact connected 2-submanifold N of M which satisfies $(\sharp)_N$. Then by Lemma 3.2.(1) each component of $cl(M \setminus N)$ contains no handles, and thus contains at most two Möbius bands. Hence, we can enlarge N so that

(i) each component L of $cl(M \setminus N)$ is noncompact, orientable and contains no handles.

Thus, using Lemma 3.4 we can further enlarge N so that

(ii) $L \cap N$ is an arc or a circle for each component L of $cl(M \setminus N)$.

At this point N satisfies $(\sharp)_N$, (i) and (ii). We will show that each component L of $cl(M \setminus N)$ satisfies the condition (**) in Lemma 3.1. This leads to the conclusion.

By the repeated application of Lemma 3.4 we can write each component L of $cl(M \setminus N)$ as $L = \bigcup_{i=1}^{\infty} L_i$, where

- (iii) each L_i is a compact connected 2-submanifold of L, $L \cap N \subset Int_L L_1$, and $L_i \subset Int_L L_{i+1}$,
- (iv) each component K of $cl(L \setminus L_i)$ is noncompact, $K \cap L_i$ is an arc or circle and $K \cap L_{i+1}$ is connected.

By (i) each L_i is a disk with m_i holes. It follows that $m_i \leq m_{i+1}$, since any component H of $cl(L_{i+1} \setminus L_i)$ is (a) a disk with holes, (b) $H \cap L_i$ is an arc or circle and (c) $Fr_L H \neq H \cap L_i$. On the other hand, we have $m_i \leq 3$. In fact, if $m_i \geq 4$, we can apply Lemma 3.2.(2) to $D = L_i$ and $E = cl(M \setminus L)$. (Note that (a) $L_i \cap E = L \cap N$ is an arc or a circle, which is contained in a

boundary circle S of L_i and (b) by (iv) and Lenuna 3.3 $K \cap L_i$ is a retract of K for any component K of $cl(L \setminus L_i)$, So $L_i \cup E$ is a retract of M.) This contradicts (\sharp)_N. Therefore we may assume that $m_i \equiv m$ (a constant) by omitting finitely many L_i 's. This completes the proof.

We conclude this section with the proof of Proposition 1.

Proof of Proposition 1. If $\mathscr{H}_{X\cup\partial}(M)$ is locally path connected, then M takes the form (*) by Lemma 3.5. Conversely, if M takes the form (*), then from Fact 2.5 we have a homeomorphism $\mathscr{H}_{X\cup\partial}(M)\cong\mathscr{H}_{X\cup\partial}(N,F)$. Since M is an open set of N and X is a compact subpolyhedron of M with respect to a PL-triangulation on M, we can find a PL-triangulation of N with respect to which X is a subpolyhedron of N. From Fact 2.4.(ii) $\mathscr{H}_{X\cup F\cup\partial}(N)$ is an ANR and it is an open neighborhood of id_N in $\mathscr{H}_{X\cup\partial}(N,F)$. Hence $\mathscr{H}_{X\cup\partial}(N,F)$ is an ℓ -manifold by Fact 2.3.

4. Proof of Main Theorem

This final section contains the proof of Theorem 1. Throughout the section the subscript "+" in homeomorphism groups means "orientation-preserving" or "order-preserving". First we will list some properties of the end group $\mathcal{H}_+(A)$. Suppose I is an oriented arc and A is a 0-dimensional compact subset in I. The orientation on I induces a natural linear order on A. Let $\mathcal{H}_+(A)$ denote the group of order preserving homeomorphisms of A. Since $\mathcal{H}_-(A)$ is totally disconnected, $\mathcal{H}_+(A)$ is locally connected iff it is discrete.

Lemma 4.1. \mathcal{H}_+ (I, A) is an ANR (or locally path connected) iff \mathcal{H}_+ (A) is discrete.

Proof. We may assume that I = [0, 1]. We know that $(i)(0, 1) \setminus A$ is a disjoint union of (at most countably many) open intervals $U_n = (a_n, b_n)$, (ii) diam $U_n \to 0$ (as $n \to \infty$), and (iii) the correspondence $(a_n, b_n) \mapsto (f(a_n), f(b_n))$ induces an order-preserving permutation of U_n 's. Each $f \in \mathcal{H}_+(A)$ has a canonical linear extension $\theta(f) \in \mathcal{H}_+(I, A)$. The map $\theta(f)$ is defined by $\theta(f)(ta_n + (1-t)b_n) = tf(a_n) + (1-t)f(b_n)$ ($0 \le t \le 1$) (where f(0) = 0 and f(1) = 1). It follows that $\theta: \mathcal{H}_+(A) \to \mathcal{H}_+(I, A)$ is continuous and induces a homeomorphism $\theta: \mathcal{H}_+(I, A) \cong \mathcal{H}_+(A) \times \mathcal{H}_{A,+}(I)$, $\theta(h) = (h|_A, \theta(h|_A)^{-1}h)$. The restriction map $\mathcal{H}_{A,+}(I) \cong \prod_n \mathcal{H}_+(U_n): f \mapsto (f|U_n)_n$ also induces a homeomorphism. Since $\mathcal{H}_+(U_n) \cong \ell^{2,1} \mathcal{H}_+(U_n)$ is an AR, and $\mathcal{H}_{A,+}(I)$ is also an AR. The conclusion follows from these observations.

Suppose N is a compact connected PL 2-manifold, F is a finite subset of Int N, A is a 0-dimensional compact subset of ∂N and X is a compact subpolyhedron of N with $X \cap (F \cup A) = \emptyset$. Let $\mathcal{J} = \{I_i | \text{ be a finite collection of disjoint oriented (arcs in } \partial N \text{ such that } A \subset \bigcup_i I_i$. (We allow that I_i is a single point.) The definition of the group $\mathcal{H}_+(A) \equiv \mathcal{H}_+(A;\mathcal{J})$ is given by §1. If \mathcal{J} is another collection which refines \mathcal{J} , then $\mathcal{H}_+(A;\mathcal{J})$ is an open neighborhood of id_A in $\mathcal{H}_+(A;\mathcal{J})$. Hence the property " $\mathcal{H}_+(A;\mathcal{J})$ is discrete" does not depend on the choice

of the collection \mathcal{J} .

This follows from

Lemma 4.2. $\mathcal{H}_X(N, F \cup A)$ is an ANR (or locally path connected) iff $\mathcal{H}_+(A; \mathcal{J})$ is discrete.

Proof. Replacing each I_i by a subinterval (or a single point), we may assume that $\partial I_i \subset A_i$. Let $\mathscr{U} = \{ f \in \mathscr{H}_{X \cup F}(N) | f(I_i) = I_i \text{ and } f|_{I_i} \in \mathscr{H}_+(I_i, A_i) \text{ for each } i \}$ and $\mathscr{F} = \prod_i \mathscr{H}_+(I_i, A_i)$, and let $\pi : \mathscr{U} \to \mathscr{F}$, $\pi(f) = (f|_{I_i})_i$ be the restriction map. It follows that (i) \mathscr{U} is an open neighborhood of id_N in $\mathscr{H}_X(N, F \cup A)$. (ii) $\mathscr{H}_X(N, F \cup A)$ is an ANR iff \mathscr{U} is an ANR, and (iii) $\mathscr{H}_+(A) \cong \prod_i \mathscr{H}_+(A_i)$, so from Lemma 4.1 $\mathscr{H}_+(A)$ is discrete iff \mathscr{F} is an ANR.

Using a cone of I_i embedded in N, we can easily find a map $\lambda: \mathscr{F} \to \mathscr{U}$ such that $\pi \lambda = id_{\mathscr{F}}$ (i.e., $\lambda ((g_i)_i)|_{I_i} = g_j$). This induces a homeomorphism $\mathscr{P}: \mathscr{U} \to \mathscr{H}_{X \cup F \cup (\cup ii)}(N) \times \mathscr{F}$, $\mathscr{P}(f) = ((\lambda \pi(f))^{-1}f, \pi(f))$. The inverse is given by $\mathscr{P}^{-1}(h, (g_i)_i) = \lambda ((g_i)_i)h$. Since $\mathscr{H}_{X \cup F \cup (\cup ii)}(N)$ is an ANR by Fact 2.4.(ii), it follows that \mathscr{U} is an ANR iff \mathscr{F} is an ANR. This implies the conclusion.

The same argument applies to the "locally path connected" case (replace "ANR" by "locally path connected"). $\hfill\Box$

We can now complete the proof of Theorem 1.

Proof of Theorem 1. If M takes the form (*), then $\mathscr{H}_X(M) \cong \mathscr{H}_X(N, F \cup A)$ by Fact 2.5. If $\mathscr{H}_X(M)$ is locally path connected, then M takes the form (*) from Lemma 3.5 and $\mathscr{H}_+(A;\mathscr{J})$ is discrete from Lemma 4.2. Conversely, suppose M takes the form (*) and $\mathscr{H}_+(A;\mathscr{J})$ is discrete. Since X is a compact subpolyhedron of M, X is also a compact subpolyhedron of N with respect to a PL-triangulation of N. Hence $\mathscr{H}_X(N, F \cup A)$ is an ANR from Lemma 4.2, and $\mathscr{H}_X(M)$ is an ℓ^2 -manifold by Fact 2.3.

Finally, we will give some examples of 0-dimensional compact subsets A in I = [0,1] for which the groups $\mathcal{H}_+(A)$ are not discrete. Note that these examples can be realized as ends of noncompact 2-manifolds.

Example. (1) (i) Let $A = \{0\} \cup \{\frac{1}{n} : n \geq 2\} \cup \{1 - \frac{1}{n} : n \geq 2\} \cup \{1\}$, and for each $n \geq 1$ take a compact subset X_n in $[\frac{1}{n+1}, \frac{1}{n}]$ such that $([\frac{1}{n+1}, \frac{1}{n}], X_n) \cong (I, A)$. If $X = \{0\} \cup (U_n X_n)$, then $\mathscr{H}_+(X) \cong \prod_{n=1}^{\infty} \mathbb{Z}$, where \mathbb{Z} is the set of integers with the discrete topology.

 $\mathscr{H}_+(A) \cong A \setminus \{0,1\} \cong \mathbb{Z} : f \mapsto f(1/2) \text{ and } \mathscr{H}_+(X) \cong \prod_{i=1}^{\infty} \mathscr{H}_+(X_n) : f \mapsto (f|_{X_n})_n.$

- (ii) If we replace A by $B = \{0\} \cup \{\frac{1}{n} : n \ge 1\}$ and construct a compactum $Y \subseteq I$ from B as in (i), then $Y \cong X$ but $\mathscr{H}_+(Y) = \{id_Y\}$.
- (2) If C is a Cantor set in I, then \mathcal{H}_+ (C) has no isolated point.

Department of Mechanical and System Engineering, Faculty of Engineering and Design, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585

References

- 1) R. D. Anderson, unpublished manuscript.
- 2) R. D. Edwards and R. C. Kirby, Ann. Math., 93, 63-88 (1971).
- 3) R. Geoghegan, Topology, 11, 159-177 (1972).
- 4) S. T. Hu, "Theory of retracts", p. 270, Wayne State Univ. Press, Detroit (1965).
- 5) W. Jakobsche, Bull. Acad. Polon. Sci. Sér. Sci. Math., 28, 71-75 (1980).
- 6) R. Luke and W. K. Mason, Trans. Amer. Math. Soc., ;164, 275-285 (1972).
- 7) W. K. Mason, Trans. Amer. Math. Soc., 161, 185-205 (1971).
- 8) E. Moise, "Geometric Topology in Dimensions 2 and 3", p.262, GTM 47, Springer, Berlin (1977).
- 9) J. van Mill, "Infinite-Dimensional Topology: Prerequisites and Introduction", p. 401, Elsevier Sci. Publ. B.V., Amsterdam (1989).
- 10) T. B. Rushing, "Topological Embeddings", p. 316, Academic Press, New York (1973).
- 11) H. Toruńczyk, Fund. Math., 101, 93-110 (1978).
- 12) T. Yagasaki, Topology and Appl., 76, 261-281 (1997).